
ZSI: The Zolera Soap Infrastructure
User’s Guide

Release 2.0.0

October 25, 2006

COPYRIGHT

Copyright c© 2001, Zolera Systems, Inc.
All Rights Reserved.

Copyright c© 2002-2003, Rich Salz.
All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the ”Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

Acknowledgments

We are grateful to the members of the soapbuilders mailing list (see http://groups.yahoo.com/soapbuilders),
Fredrik Lundh for his soaplib package (see http://www.secretlabs.com/downloads/index.htm#soap), Cayce Ullman
and Brian Matthews for their SOAP.py package (see http://sourceforge.net/projects/pywebsvcs).

We are particularly grateful to Brian Lloyd and the Zope Corporation (http://www.zope.com) for letting us incorporate
his ZOPE WebServices package and documentation into ZSI.

Abstract

ZSI, the Zolera SOAP Infrastructure, is a Python package that provides an implementation of SOAP messaging, as
described in The SOAP 1.1 Specification. In particular, ZSI parses and generates SOAP messages, and converts be-
tween native Python datatypes and SOAP syntax. It can also be used to build applications using SOAP Messages
with Attachments. ZSI is “transport neutral”, and provides only a simple I/O and dispatch framework; a more com-
plete solution is the responsibility of the application using ZSI. As usage patterns emerge, and common application
frameworks are more understood, this may change.

ZSI requires Python 2.0 or later and PyXML version 0.6.6 or later.

The ZSI homepage is at http://pywebsvcs.sf.net/.

CONTENTS

1 Introduction 1
1.1 How to Read this Document . 1

2 WSDL/XMLSchema python code generation 3
2.1 wsdl2py . 3
2.2 Code Generation from WSDL and XML Schema . 7
2.3 Advanced Usage Patterns . 9

i

ii

CHAPTER

ONE

Introduction

ZSI, the Zolera SOAP Infrastructure, is a Python package that provides an implementation of the SOAP specification,
as described in The SOAP 1.1 Specification. This guide demonstrates ZSI’s typecode generation facilities, these
typecodes are then used to parse and generates SOAP messages, and converts between native Python datatypes and
SOAP syntax.

ZSI requires Python 2.3 or later and PyXML version 0.8.3 or later.

The ZSI project is maintained at SourceForge, at http://pywebsvcs.sf.net. ZSI is discussed on the Python web services
mailing list, visit http://lists.sourceforge.net/lists/listinfo/pywebsvcs-talk to subscribe.

For a low-level treatment of typecodes, and a description of SOAP-based processing see the ZSI manual.

Within this document, tns is used as the prefix for the application’s target namespace, and the term element refers to
a DOM element node.)

1.1 How to Read this Document

1

2

CHAPTER

TWO

WSDL/XMLSchema python code
generation

Handling XML Schema (see XML Schema specification) is one of the more difficult aspects of using WSDL (see
The Web Services Description Language. Using wsdl2py generates a module with stub code for the client interface,
and a ”types” module that contains typecode representations of the XML Schema types and elements. The generated
typecodes are registered in a global schema instance, and once the ”types” module is imported by an application all
the global elements declarations and type definitions are available everywhere (see section ??).

2.1 wsdl2py

2.1.1 Command Line Flags

General Flags

-h, —help Display the help message and available command line flags that can be passed to wsdl2py.

-f FILE, —file=FILE Create bindings for the WSDL which is located at the local file path.

-u URL, —url=URL Create bindings for the remote WSDL which is located at the provided URL.

-x, —schema Just process a schema (xsd) file and generate the types mapping file.

-d, —debug Output verbose debugging messages during code generation.

-o OUTPUT DIR, —output-dir=OUTPUT DIR Write generated files to OUTPUT DIR.

Typecode Extensions (Stable)

-b, —complexType (more in subsection) Generate convenience functions for complexTypes. This includes getters,
setters, factory methods, and properties. ** Do NOT use with –simple-naming **

Development Extensions (Unstable)

-a, —address WS-Addressing support. The WS-Addressing schema must be included in the corresponding WSDL.

-w, —twisted Generate a twisted.web client. Dependencies: python>=2.4, Twisted>=2.0.0, TwistedWeb>=0.5.0

3

Customizations (Unstable)

-e, —extended Do extended code generation.

-z ANAME, —aname=ANAME Use a custom function, ANAME, for attribute name creation.

-t TYPES, —types=TYPES Dump the generated type mappings to a file named, “TYPES.py”.

-s, —simple-naming Simplify the generated naming.

-c CLIENTCLASSSUFFIX, —clientClassSuffix=CLIENTCLASSSUFFIX The suffic to use for service client
class. (default “SOAP”)

-m PYCLASSMAPMODULE, —pyclassMapModule=PYCLASSMAPMODULE Use the existing existing type
mapping file to determine the “pyclass” objects to be used. The module should contain an attribute, “mapping”,
which is a dictionary of form, schemaTypeName: (moduleName.py, className).

2.1.2 Basics of Code Generation

client stub module

Using only the General Flags options one can generate a client stub module from a WSDL description, consisting of
representations of the WSDL information items service, binding, portType, and message.

These four items are represented by three abstractions, consisting of a Locator class, PortType class, and several
Message classes. The Locator will have two methods for each service port declared in the WSDL definition. One
method returns the address specified in the binding, and the other is a factory method for returning a PortType instance.
Each Message class represents the aspects of the binding at the operation level and below, and any type information
specified by message part items.

types module

The types module is generated with the client module but it can be created independently. This is especially useful
for dealing with schema definitions that aren’t specified inside of a WSDL document.

The module level class defintions each represent a unique namespace, they are simply wrappers for the contents of
individual namespaces. The inner classes are the typecode representations of global type definitions (suffix Def), and
element declarations (suffix Dec).

understanding the generated typecodes

The generated inner typecode classes come in two flavors, as mentioned above. element declarations can be serialized
into XML, generally type definitions cannot. In very simple terms, the name attribute of an element declaration is
serialized into an XML tag, but type definitions lack this information so they cannot be directly serialized into an XML
instance. Most element declarations declare a type attribute, this must reference a type definition. Considering the
above scenario, a generated TypeCode class representing an element declaration will subclass the generated TypeCode
class representing the type definition.

pyclass All instances of generated TypeCode classes will have a pyclass attribute, instances of the pyclass can be
created to store the data representing an element declaration. The pyclass itself has a typecode attribute, which is a
reference to the TypeCode instance describing the data, thus making pyclass instances self-describing. When parsing
an XML instance the data will be marshalled into a pyclass instance.

4 Chapter 2. WSDL/XMLSchema python code generation

aname The aname is a TypeCode instance attribute, its value is a string representing the attribute name used to
reference data representing an element declaration. The set of XMLSchema element names is NCName, this is a
superset of ordinary identifiers in python.

Namespaces in XML

From Namespaces in XML
NCName ::= (Letter | ’_’) (NCNameChar)*
NCNameChar ::= Letter | Digit | ’.’ | ’-’ | ’_’ | CombiningChar | Extender

From Python Reference Manual (2.3 Identifiers and keywords)
identifier ::= (letter|"_") (letter | digit | "_")*

Default set of anames
ANAME ::= ("_") (letter | digit | "_")*

transform NCName into an ANAME

1. preprend ” ”

2. character not in set (letter | digit | ” ”) change to ” ”

Attribute Declarations: attrs aname The attrs aname is a TypeCode instance attribute, its value is a string repre-
senting the attribute name used to reference a dictionary, containing data representing attribute declarations. The keys
of this dictionary are the (namespace,name) tuples, the value of each key represents the value of the attribute.

Mixed Text Content: mixed aname

2.1.3 Typecode Extensions

–complexType

The complexType flag provides many conveniences to the programmer. This option is tested and reliable, and highly
recommended by the authors.

low-level description When enabled the __metaclass__ attribute will be set on all generated pyclasses. The
metaclass will introspect the typecode attribute of pyclass, and create a set of helper methods for each element and
attribute declared in the complexType definition. This option simply adds wrappers for dealing with content, it doesn’t
modify the generation scheme.

Getters/Setters A getter and setter function is defined for each element of a complex type. The functions are named
get_element_ANAME and set_element_ANAME respectively. In this example, variable wsreq has func-
tions named get_element__Options and set_element__Options. In addition to elements, getters
and setters are generated for the attributes of a complex type. For attributes, just the name of the attribute is used
in determining the method names, so get attribute NAME and set attribute NAME are created.

Factory Methods If an element of a complex type is a complex type itself, then a conveniece factory method is
created to get an instance of that types holder class. The factory method is named, newANAME, so wsreq has a
factory method, new_Options.

2.1. wsdl2py 5

Properties Python class properties are created for each element of the complex type. They are mapped to the
corresponding getter and setter for that element. To avoid name collisions the properties are named, PNAME,
where the first letter of the type’s pname attribute is capitalized. In our running example, wsreq has class prop-
erty, Options, which calls functions get_element__Options and set_element__Options under
the hood.

<xsd:complexType name=’WolframSearchOptions’>
<xsd:sequence>
<xsd:element name=’Query’ minOccurs=’0’ maxOccurs=’1’ type=’xsd:string’/>
<xsd:element name=’Limit’ minOccurs=’0’ maxOccurs=’1’ type=’xsd:int’/>

</xsd:sequence>
<xsd:attribute name=’timeout’ type=’xsd:double’ />

</xsd:complexType>
<xsd:element name=’WolframSearch’>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=’Options’ minOccurs=’0’ maxOccurs=’1’ type=’ns1:WolframSearchOptions’/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Create a request object to operation WolframSearch
to be used as an example below
from WolframSearchService_services import *

port = WolframSearchServiceLocator().getWolframSearchmyPortType()
wsreq = WolframSearchRequest()

6 Chapter 2. WSDL/XMLSchema python code generation

sample usage of the generated code

get an instance of a Options holder class using factory method
opts = wsreq.new_Options()
wsreq.Options = opts

assign values using the properties or methods
opts.Query = ’Newton’
opts.set_element__Limit(10)

don’t forget the attribute
opts.set_attribute_timeout(1.0)

At this point the serialized wsreq object would resemble this:
<WolframSearch>
<Options timeout="1.0" xsi:type="tns:WolframSearchOptions">
<Query xsi:type="xsd:string">Newton</Query>
<Limit xsi:type="xsd:double">10.0</Limit>
</Options>
</WolframSearch>

ready call the remote operation
wsresp = port.WolframSearch(wsreq)

returned WolframSearchResponse type holder also has conveniences
print ’SearchTime:’, wsresp.Result.SearchTime

2.2 Code Generation from WSDL and XML Schema

This section covers wsdl2py, the second way ZSI provides to access WSDL services. Given the path to
a WSDL service, two files are generated, a ’service’ file and a ’types’ file, that one can then use to ac-
cess the service. As an example, we will use the search service provided by Wolfram Research Inc. c©,
http://webservices.wolfram.com/wolframsearch/, which provides a service for searching the popular MathWorld site,
http://mathworld.wolfram.com/, among others.

wsdl2py --complexType --url=http://webservices.wolfram.com/services/SearchServices/WolframSearch2.wsdl

Run the above command to generate the service and type files. wsdl2py uses the name attribute of the wsdl:service
element to name the resulting files. In this example, the service name is WolframSearchService. Therefore the files
WolframSearchService services.py and WolframSearchService services types.py should be generated.

The ’service’ file contains locator, portType, and message classes. A locator instance is used to get an instance of a
portType class, which is a remote proxy object. Message instances are sent and received through the methods of the
portType instance.

The ’types’ file contains class representations of the definitions and declarations defined by all schema instances
imported by the WSDL definition. XML Schema attributes, wildcards, and derived types are not fully handled.

2.2. Code Generation from WSDL and XML Schema 7

2.2.1 Example Use of Generated Code

The following shows how to call a proxy method for WolframSearch. It assumes wsdl2py has already been run as
shown in the section above. The example will be explained in greater detail below.

import the generated class stubs
from WolframSearchService_services import *

get a port proxy instance
loc = WolframSearchServiceLocator()
port = loc.getWolframSearchmyPortType()

create a new request
req = WolframSearchRequest()
req.Options = req.new_Options()
req.Options.Query = ’newton’

call the remote method
resp = port.WolframSearch(req)

print results
print ’Search Time:’, resp.Result.SearchTime
print ’Total Matches:’, resp.Result.TotalMatches
for hit in resp.Result.Matches.Item:

print ’--’, hit.Title

Now each section of the code above will be explained.

from WolframSearchService_services import *

We are primarily interested in the service locator that is imported. The binding proxy and classes for all the messages
are additionally imported. Look at the WolframSearchService services.py file for more information.

loc = WolframSearchServiceLocator()
port = loc.getWolframSearchmyPortType()

Using an instance of the locator, we fetch an instance of the port proxy which is used for invoking the remote methods
provided by the service. In this case the default location specified in the wsdlsoap:address element is used. You
can optionally pass a url to the port getter method to specify an alternate location to be used. The portType - name
attribute is used to determine the method name to fetch a port proxy instance. In this example, the port name is
WolframSearchmyPortType, hence the method of the locator for fetching the proxy is getWolframSearchmyPortType.

The first step in calling WolframSearch is to create a request object corresponding to the input message of the method.
In this case, the name of the message is WolframSearchRequest. A class representing this message was imported from
the service module.

req = WolframSearchRequest()
req.Options = req.new_Options()
req.Options.Query = ’newton’

Once a request object is created we need to populate the instance with the information we want to use in our request.

8 Chapter 2. WSDL/XMLSchema python code generation

This is where the --complexType option we passed to wsdl2py will come in handy. This caused the creation of
functions for getting and setting elements and attributes of the type, class properties for each element, and conve-
nience functions for creating new instances of elements of complex types. This functionality is explained in detail in
subsection 2.1.3.

Once the request instance is populated, calling the remote service is easy. Using the port proxy we call the method we
are interested in. An instance of the python class representing the return type is returned by this call. The resp object
can be used to introspect the result of the remote call.

resp = port.WolframSearch(req)

Here we see that the response message, resp, represents type WolframSearchReturn. This object has one element,
Result which contains the search results for our search of the keyword, newton.

print ’Search Time:’, resp.Result.SearchTime
...

Refer to the wsdl for WolframSearchService for more details on the returned information.

2.3 Advanced Usage Patterns

Not done.

2.3. Advanced Usage Patterns 9

	1 Introduction
	1.1 How to Read this Document

	2 WSDL/XMLSchema python code generation
	2.1 wsdl2py
	2.1.1 Command Line Flags
	General Flags
	Typecode Extensions (Stable)
	Development Extensions (Unstable)
	Customizations (Unstable)

	2.1.2 Basics of Code Generation
	client stub module
	types module
	understanding the generated typecodes

	2.1.3 Typecode Extensions
	--complexType

	2.2 Code Generation from WSDL and XML Schema
	2.2.1 Example Use of Generated Code

	2.3 Advanced Usage Patterns

