

LLLLiiiibbbbHHHHTTTTTTTTPPPPDDDD
A Library for Embedded Web Servers

API Guide and Reference

Version 1.2

October 2002

Although best efforts have been made to ensure the completeness and accuracy of the material presented in this document,
Hughes Technologies Pty Ltd does not warrant the correctness of the information provided herein.

This software product is distributed under a dual-license scheme that provides the user with a choice of licenses. This
software may be used either under the terms of the GNU Public License (GPL), or the LibHTTPD OEM License. A copy of
both the GPL and the OEM license is included within the software distribution. The GPL is also available from the GNU
Project’s web site at http://www.gnu.org. The LibHTTPD OEM License is available from the Hughes Technologies web site
at http://www.Hughes.com.au.

Copyright © 2001 Hughes Technologies Pty Ltd. All rights reserved.

This document has been designed to be printed on a duplex (double sided) device.

PrefacePrefacePrefacePreface
InInInIntended Audiencetended Audiencetended Audiencetended Audience

This document describes the functionality and programming mechanisms provided by LibHTTPD. Any person
reading this document must be a programmer with a good understanding of the C programming language. All
examples and details pertaining to the API are provided in C. The reader should also have a basic understanding
of the HTTP protocol and of the operation of a web server.

Document ConventionsDocument ConventionsDocument ConventionsDocument Conventions
This manual has been designed to be printed on US Letter paper. While many parts of the world utilise the A4
paper size (Australia included), it is not possible to print A4 formatted documents on US Letter paper without
loss of information. However, printing of US Letter formatted documents on A4 will result in a correct
representation of the document with somewhat larger margins than normal.

Throughout this manual, parts of the text have been flagged with the symbol that appears in the margin opposite
this paragraph. Such pieces of text are viewed as being important. The reader should ensure that paragraphs
marked as important are read even if the entire manual section is only being skimmed. Important sections will
include information such as tips on improving the performance of your applications, or areas where mistakes are
commonly made.

CoCoCoContact Informationntact Informationntact Informationntact Information
Further information about Ember and its related software can be found on the Hughes Technologies World Wide
Web site. The web site includes the latest version of LibHTTPD, documentation, example software, references
to customer sites, and much more. Our web site can be found at

http://www.Hughes.com.au

Product support and information are available over the Internet via electronic mail. For product support, please
contact support@Hughes.com.au and for product information please use info@Hughes.com.au. If required, you may
also use traditional mail using the address below

Postal Mail PO Box 432

Main Beach
Queensland 4217
Australia

This page left intentionally blank

Table of ContentsTable of ContentsTable of ContentsTable of Contents
Introduction.. 1

Overview... 2

API Reference .. 3
General Server Setup Routines...3
Content Definition Routines...5
Connection and Request Handling Routines...7
Response Generation Routines ..8
Form Data / Cookies / Symbol Table Routines..10
Authentication..12
Access Control Lists..13
Miscellaneous Routines ..14

Appendix A – HTTP Response Codes... 15

Appendix B – Common Content Types... 16

Appendix C – IP Addresses and CIDR .. 17

Appendix D – Release History ... 18

Example 1 – Example Server... 19

Example 2 – Fragments ... 21
Fragment 1 : HTTP Basic Authentication ..21
Fragment 2 : Access Control Lists...22

Page 1

IntroductionIntroductionIntroductionIntroduction
With the wide spread availability of web browsers on virtually every conceivable hardware platform, offering
web based access to an application or device is becoming a common requirement. Although there are several
freely available web server implementations, most standard web servers are just too large or inconvenient to use.
Embedding a web server into a device or a stand-alone application requires a light-weight and low overhead
implementation. LibHTTPD provides a solution to this problem.

Included in the library are the following modules:

• An implementation of a subset of HTTP

• A symbol table providing automatic handling of HTML FORM data

• A content management module allowing both static and dynamic (application call-back) content

Using the API routines provided by these modules, an application can provide a complete web based interface to
either itself or the device on which it is running.

Page 2

Overview Overview Overview Overview
LibHTTPD provides you with the tools to incorporate a low overhead web server into your application or device.
Using this library you can provide secure and efficient access to both static and dynamically generated content.
Included in the library are routines that simplify all aspects of the creation and operation of an embedded web
server. The basic series of operations that your application must perform is:

• Create a “web server” instance
• Define the content that is available via the web server
• Receive and interpret an HTTP request received from a browser client
• Process the request and return the required response via HTTP

LibHTTPD provides API routines to handle all the above tasks. A rough outline of the routines and the steps
involved is shown below.

To create a web server instance, your application must call httpdCreate(). If successful, an httpd handle will be
returned. This handle is used in all future interaction with the API library.

If desired, the library will create both error and access logs in a format identical to that used by the Apache web
server. If you wish to generate logs you must call httpdSetAccessLog() and httpdSetErrorLog() to set the
destination of the log information. The default action is to not log access or error information.

The next step is to define the content available via the web server. Unlike other web server environments,
content is only available via LibHTTPD if it has been specifically defined as web content. The library allows for
the following forms of content:

• Static content : HTML stored in static text buffers within the application
• File content : An external file
• Wildcard content : Any file in the specified directory
• Dynamic content : A callback to a C function that generates the desired output

Once the content has been defined, the application enters a tight loop that handles the web requests. Each
iteration of the loop will call the following API routines

httpdGetConnection() - Accept an HTTP connection
httpdReadRequest() - Read and pre-process the HTTP request
httpdProcessRequest() - Generate the required output
httpdEndRequest() - Disconnect the HTTP session and cleanup

When httpdProcessRequest() is called, the library will identify what content has been requested by the client,
determine if that content is available from the server, and undertake whatever tasks are required to send the
requested content to the client. The server may simply read and transmit the contents of a file or it may perform a
callback to a user provided C function.

To use LibHTTPD in your application you must include the httpd.h header file in your source. The header is
installed in /usr/local/include by a default installation. You will also need to link against libhttpd.a which is
installed in /usr/local/lib by default. You can do that by adding the following to you link stag

-L /usr/local/lib -lhttpd

Page 3

API ReferenceAPI ReferenceAPI ReferenceAPI Reference

General Server Setup RoutinesGeneral Server Setup RoutinesGeneral Server Setup RoutinesGeneral Server Setup Routines
The routines in this section relate to the creation and basic configuration of the web server instance. All details
relating to a web serer instance are maintained in a single structure known as the server handle. Once a server
handle is created, various aspects of it’s configuration can be set. The server handle is used in all other calls to
API routines.

Because the server handle contains all relevant information about the HTTP Server, it’s content, and any
requests being processed by the server, it is possible to create multiple servers in a single process. Naturally, the
different servers would need to be configured to use either different IP addresses of different TCP ports.
However, this library does not provide any non-blocking IO operations for server handles.

httpdCreate ()
httpd * httpdCreate (host , port)

char * host
int port

httpdCreate() is used to create an new web server instance. The returned handle is used for all further
interaction with the API library that pertains to the web server created by this function. The host argument, if
provided, defines a single IP Address to which the server will bind. If NULL is provided as the argument then
the server will bind to all addresses available on the host machine. The port parameter is the numeric TCP port
on which the server will listen. The predefined constant HTTP_PORT can be used if the server is to run on the
default web server port (i.e. TCP port 80)

Example :
server = httpdCreate(“192.168.1.1”, HTTP_PORT);
if (server == NULL)
 perror (“Couldn’t create HTTP server”);

server2 = httpdCreate (NULL , 2048);

httpdSetAccessLog()
httpdSetAccessLog (server, fp)

httpd *server;
FILE *fp;

Each valid HTTP request processed can result in a “Common Log Format” log entry being created.
httpdSetAccessLog() is used to specify the file into which the log entries are written. The fp argument must be
a file pointer, as created by calling fopen(), that is open for write access. You can specify a standard file
pointer, such as stdout or stderr if you wish.

Example :
fp = fopen (“/tmp/access.log”, “a”);
httpdSetAccessLog (server, fp);

Page 4

httpdSetErrorLog()
httpdSetErrorLog (server, fp)

httpd *server;
FILE *fp;

Each time an invalid HTTP request is received, the library can generate an error log entry. To specify the
destination of the logging you must call httpdSetErrorLog() with an open file pointer (see httpdSetAccessLog)

Example :
httpdSetErrorLog (server, stderr);

httpdSetFileBase()
httpdSetErrorLog (server, path)

httpd *server;
char *path;

To simplify the definition of file content, a “file base” can be set for the server. If set, any relative paths used to
define the location of the file associated with a content entry will be relative to the file base. Using a file base
can allow you to have greater flexibility over the physical, on-disk location of your file content. If all file
content is defined using a relative path, the library will always search for it using the file base to determine the
actual file path. Simply altering the file base definition will allow you to relocate your entire web content tree
without modifying any of the file path definitions.

Example :
httpdSetFileBase (server, “/usr/local/www-pages”);

Page 5

Content Definition RoutinesContent Definition RoutinesContent Definition RoutinesContent Definition Routines
The content that is to be made available via the web server is defined using the API routines listed below. A
content entry (such as an HTML page) is defined using a location and a name. The location specifies the
directory within the URL tree in which the content resides, and the name specifies the name to associate with the
content. For example, a URL path of /graphics/logos/hughes.gif would be specified using directory of
/graphics/logos and a name of hughes.gif. Each URL requested is split into it’s directory and name values. The
content tree is then searched for a entry matching the specified directory and name pair. If none exists a 404 File
Not Found error is returned.

When content is registered with the library, it is possible to specify that it is an index entry. An index entry is the
content entry that is returned to the client if the client specifies the name of a directory rather than a actual file
within that directory. On most web server implementations, a file called index.html is regarded as the index
entry for a directory. Within LibHTTPD’s content tree, any item can be flagged as the index entry for the
directory in which it resides. Naturally, defining more than one index entry makes no sense and the results of
doing such are undefined.

The programmer may also associate a “preload function” with any piece of content. If a requested content entry
has been defined with a preload function, the function is executed prior to the content being sent to the client. If
the preload function returns a negative value then the request is aborted and the content is not returned. If a zero
value is returned then the content is sent to the client as usual. A preload function can be of use when restricting
access to the contents of the web server. If the server is not to be accessed outside business hours, or if only
certain network addresses are allowed to use the server, then a preload function can be used to test for these
conditions for all content requests.

httpdAddCContent()
httpdAddCContent (server, dir, name, indexFlag, preload, functPtr)

httpd *server;
char *dir, *name;
int indexFlag, (*)()preload;
void (*)() functPtr;

If the content referenced by dir/name is to be returned to the client then the function referenced by functPtr will
be called with a single argument of the server handle pointer.

Example :
void index_callbackl (server)
 httpd *server;
{
 httpdOutput(server, “<HTML><BODY>Hello There</BODY></HTML>\n”);
}

httpdAddCContent(server, “/”, “index.html”, HTTP_TRUE, NULL, index_callback);

httpdAddFileContent()
httpdAddFileContent (server, dir, name, indexFlag, preload, path)

httpd *server;
char *dir, *name;
int indexFlag, (*) () preload;
char *path;

httpdAddFileContent() adds an external file as a content entry. The path argument is the filesystem path to the
file in question (not anything to do with the URL path). If the path begins with a / then it is assumed to be a
complete file path. If not, it is assumed to be a path relative to the file base path (see httpdSetFileBase)

Example :
httpdAddFileContent(server, “/”, “index.html”, HTTP_TRUE, NULL, “/usr/local/www/index.html”);

Page 6

httpdAddStaticContent()
httpdAddStaticContent (server, dir, name, indexFlag, preload, buf)

httpd *server;
char *dir, *name;
int indexFlag, (*)() preload;
char *buf;

httpdAddStaticContent() adds an internal text buffer as an HTML content entry.

Example :
#define index_content “<HTML><BODY>Hello There</BODY></HTML>\n”
httpdAddStaticContent(server, “/”, “index.html”, HTTP_TRUE, NULL, index_content);

httpdAddWildcardContent()
httpdAddWildcardContent (server, dir, preload, path)

httpd *server;
char *dir;
int (*) ()preload;
char *path;

httpdAddWilcardContent() instructs LibHTTPD that it may scan the directory specified by the path argument
for any requested files from the dir URL path directory. If, for example, a directory existed that contained all the
images associated with your HTML pages, adding a Wilcard Content entry for that directory would allow any
image to be retrieved without the need for a specific File Content entry for each file.

Example :

 httpdAddWildcardContent(server,“/graphics”, NULL, “/usr/local/www/graphics”);

httpdAddCWildcardContent()
httpdAddCWildcardContent (server, dir, preload, functPtr)

httpd *server;
char *dir;
int (*) ()preload;
void (*)() functPtr;

httpdAddCWilcardContent() registers a C function callback to be executed when any file within the specified
directory is requested. It is the responsibility of the C function to determine the URL that was requested (using
httpdRequestPath() for example) and taking the appropriate action.

Example :

 httpdAddCWildcardContent(server,“/users”, NULL, send_user_info);

Page 7

Connection and Request Handling RoutinesConnection and Request Handling RoutinesConnection and Request Handling RoutinesConnection and Request Handling Routines
The basic operation of a web server is a tight loop of repeated request handling. The routines covered in this
section are used to accept and process HTTP requests within the request loop. Each loop iteration includes

• Accepting a TCP/IP connection from the browser client
• Reading and interpreting the HTTP request sent by the client
• Processing the request and returning any resulting data
• Cleaning up and terminating the connection

httpdGetConnection ()
int httpdGetConnection (server , timeout)

httpd *server;
struct timeval *timeout;

httpGetConnection() is used to accept an incoming HTTP connection request. The timeout argument is used to
specify the maximum time that the routine will wait for an incoming connection. If a NULL pointer is provided,
the routine will block until a connection is accepted. If a non-null value is provided, the tv_sec and tv_usec
fields specify the max wait time. If both fields are set to 0 then the routine will just poll to see if there are any
connections waiting, accept one if there are, and return immediately.

Note : This API function changed in version 1.2 of the library. Prior versions did not include the timeout
parameter. The return value semantics have also changed. A negative return indicates and error. A zero return
indicates a timeout. A return value of 1 indicates that a connection has been accepted.

httpdReadRequest ()
int httpdReadRequest (server)

httpd *server;

httpdReadRequest() reads the HTTP request from the client connections and stores any form data the is sent as
part of the request. Details of the request and the symbol table containing the request data are stored within the
server handle. If an error is encountered during the reading of the request, a negative value is returned.

httpdProcessRequest ()
httpdProcessRequest (server)

httpd *server;

When httpdProcessRequest() is called, it evaluates the request, locates the requested content, and responds to the
client. If the content entry is static or file based content, the information is sent directly to the client. If it’s
dynamic content, the C function specified during the content definition is called to generate the response.

httpdEndRequest ()
httpdEndRequest (server)

httpd *server;

httpdEndRequest() must be called when the current request information is no longer required. It frees allocated
memory buffers, clears out the symbol table, closes the client network connection, and performs any other
cleanup that is required before a new request can be handled.

Page 8

Response Generation RoutinesResponse Generation RoutinesResponse Generation RoutinesResponse Generation Routines
When delivering static or file based content as a response to a request from a browser, the library takes care of
all the behind the scenes work involved with sending a valid HTTP response. If the content being requested is to
be generated dynamically via a C function callback, it is the C function code that is responsible for generating all
the output. To simplify the process of generating dynamic HTTP responses, LibHTTPD provides a range of
response generation routines.

Although a complete understanding of the HTTP protocol is not required, a basic understanding of the protocol
is necessary. Any response sent by a web server to a browser client must be a complete HTTP response. An
HTTP response is comprised of two sections, the headers and the body. A line containing nothing but a new line
character is used to signify the end of the headers and the start of the body.

The first line of the header section contains the response code. There are many valid response codes defined in
the HTTP standard. A list of the responses is provided in Appendix A. Also contained within the headers is a
content type definition. The content type tells the browser how to interpret the response body (i.e. it is HTML
text or a JPEG image for example). A list of commonly used content types is shown in Appendix B.

The library provides you with routines to set a response code, to set a content type, and to add any further header
lines that you may wish to include in your response. However, if you just wish to generate a normal HTML
response you do not have to worry about it. The library will generate a default set of headers for you. The
routines previously mentioned can be used to modify or augment the standard headers if you need to. If you do
not then you need not worry about them.

It should be noted that if you do not specifically generate the HTTP headers then they will be generated for you
when you first call httpdOutput() or httpdPrintf(). Naturally, once the headers have been sent, using the library
routines to modify them has no effect. It should also be noted that all header and response information is reset to
it’s default value for each request received by the library. If you want to provide a specific header in every
response then you will have to add it manually when each request is processed.

httpdOutput ()
httpdOutput (server, buffer)

httpd *server;
char *buffer

httpdOutput() is used to send the contents of the provided text buffer to the client browser. If the output text
includes variables (specified using $varname syntax), and those variables exist in the current request symbol
table, then the variable references are replaced by the current variable values. More details on variables can be
found in the Form Data / Symbol Table section of this manual.

Example :
httpdOutput (server, “Hello $name. Welcome to the test server”);

httpdPrintf ()
httpdPrintf (server, format, arg, arg, …)

httpd *server;
char *format;

httpdPrintf() is used to generate output using a format string and a variable length list of format arguments. The
result of using this function is the same as performing a normal C printf() directed at the client browser. Unlike
httpdOutput() any variable references contained in the format string ARE NOT expanded.

Example :
httpdPrintf(server, “Hello %s. Welcome to the server running in process number %d”

username, getpid());

Page 9

httpdSetContentType ()
httpdSetContentType(server, type)

httpd *server;
char *type

If you need to generate a response containing something other than HTML text then you will need to use this
routine. A call to this routine will override the default content type for the current request. When the HTTP
headers are generated, the specified content type information will be used.

Example :
httpdSetContentType (server, “image/jpeg”);

httpdSetResponse ()
httpdSetResponse(server, responseInfo)

httpd *server;
char *responseInfo;

This routine is used to override the default response code returned to a client browser. By default, an HTTP
Response code of 200 (successful request) is returned to the browser. If you wish to return a different response
code then this routine must be called with the new response information before the headers are sent to the client.

Example :
httpdSetResponse (server, “301 Moved Permanently”);

httpdAddHeader ()
httpdAddHeader(server, header)

httpd *server;
char *header;

If you need to add a header line to the set of headers being returned to the client it can be done using
httpdAddHeader.

Example :
httpdSetResponse (server, “307 Temporary Redirect”);
httpdAddHeader (server, “Location: http://www.foo.com/some/new/location”);

httpdSendHeaders()
httpdSendHeaders(server)

httpd *server;

If you use neither httpdOutput nor httpdPrintf to generate your dynamic content then you will need to send the
HTTP headers manually. You can do that by simply calling httpdSendHeaders (). Once the headers have been
sent (either manually by calling httpdSendHeaders, or automatically via httpdOutput or httpdPrintf) the library
will not send them again for the current request.

Example :
httpdSetContentType (server, “image/jpeg”);
httpdSendHeaders (server);
generateJpegData(server);

Page 10

Form Data / Cookies / Symbol Table RoutinesForm Data / Cookies / Symbol Table RoutinesForm Data / Cookies / Symbol Table RoutinesForm Data / Cookies / Symbol Table Routines
If a request containing user supplied data (usually the result of filling in a form) or cookies is received by the
server during a call to httpdReadRequest(), the data is extracted from the request and loaded into a symbol table.
The symbol table will exist for the duration of the current request and will be cleared as soon as the request has
been completed (i.e. when httpEndRequest() is called). Each entry in the symbol table contains a name field
and a value field. The entry also contains a nextValue field, which is defined as a pointer to another symbol
table entry. If the nextValue field is not NULL it points to the head of a list of subsequent values for the current
variable. A variable may have multiple values if it is the result of a multi-select element in an HTML form.

As was mentioned in the explanation of the httpdOutput() routine, the contents of the symbol table are
automatically used by some response generation routines. You can also manually access the contents of the
symbol table from your own dynamic content functions. If, for example, you want to store the contents of an
HTML Form into a database, you would need to extract the form field values from the symbol table in your C
function. The routines listed below allow you to access the symbol table’s contents in a few different ways.

httpVar * httpdGetVariableByName ()
httpdGetVariableByName(server, varName)

httpd *server;
char *varName;

This routine will search the symbol table for an entry that matches the name provided. If one is found, the
symbol table entry (i.e. a pointer to a httpVar structure) is returned. If the named entry cannot be found a NULL
is returned.

Example :
varPtr = httpdGetVariableByName (server, “username”);
if (varPtr != NULL)

uname = varPtr->value ;

httpVar * httpdGetVariableByPrefix ()
httpdGetVariableByPrefixe(server, prefix)

httpd *server;
char *prefix;

If a range of variables exist with a known prefix, the first matching variable can be found using this routine.

httpVar * httpdGetNextVariableByPrefix ()
httpdGetNextVariableByPrefixe(varPtr, prefix)

httpVar *varPtr;
char *prefix;

This routine is used to find subsequent variables in the symbol table that have a name beginning with the
specified prefix..

Example :
varPtr = httpdGetVariableByPrefix (server, “hughes_”);
while (varPtr != NULL)
{
 printf(“Name = %s, Value = %s \n”, varPtr->name, varPtr->value;
 varPtr = httpdGetNextVariableByPrefix (varPtr, “hughes_”);
}

Page 11

httpVar * httpdGetVariableByPrefixedName ()
httpdGetVariableByPrefixedName(varPtr, prefix, remainder)

httpVar *varPtr;
char *prefix, *remainder;

If an application knows a variable’s prefix and the rest of the variable name, it can use this routine to access the
variable rather than having to merge the values and use httpdGetVariableByName(). This is a convenience
routine and offers no functionality beyond that offered by httpdGetVariableByName()

Example :
prefixPtr = httpdGetVariableByName (server, “multi-select-values”);
while (prefixPtr != NULL) {
 prefix = prefixPtr->value;
 varPtr = httpdGetVariableByPrefixedName(server, prefix, “_username”);
 printf(“%s_username = %s\n”, prefix, varPtr->value;
 prefixPtr = prefixPtr->nextValue;
}

httpdAddVariable()
httpdAddVariable(server, name, value)

httpd *server;
char *name, *value;

An application may need to add one or more standard variables to the symbol table for later use in httpdOutput()
strings or other methods of dynamic content generation. A variable can be added to the symbol table using the
httpdAddVariable() routine.

Example :
httpdAddVariable(server, “background_color”, “#FFFF30”);
httpdOutput(server, “<BODY BGCOLOR=$background_color>\n”);

httpdDumpVariables()
httpdDumpVariables(server)

httpd *server;

If an applications wants to see that contents of a symbol table, it can dump the entire table to the server process’s
standard output using the httpdDumpVariables() routines. This routine is intended for debugging purposes only.

httpdSetCookie()
httpdSetCookie(server, name, value)

httpd *server;
char *name, *value;

To add a cookie to the HTTP response, simply call this routine with the name and value of the cookie. There is
no httpdGetCookie() equivalent routines as cookies are automatically presented as variables in the symbol table.

Page 12

AuthenticationAuthenticationAuthenticationAuthentication
LibHTTPD provides routines to interface with the basic authentication mechanism provided by HTTP. When a
web browser initially receives an authentication request for a particular realm it will prompt the user for a
username and password. It will then re-request the same URL but include the authentication details. From then
on, it will respond automatically with the provided username and password each time it receives a request for
that realm.

LibHTTPD provides two routines that an application can use to manage authentication. httpdAuthenticate() is
used to fetch a username and password pair from the client browser. httpdForceAuthenticate() is used if the
details provided are not acceptable to the application.

Code fragments covering the use of these API routines are provided in the appendix of this document.

httpdAuthenticate()
httpdAuthenticate(server, realm)

httpd *server;
char *realm;

httpdAuthenticate() will either extract the username and password information from an HTTP request, or if no
authentication is available, respond to the client with the appropriate headers to force it to send authentication
information.

If httpdAuthenticate() returns a zero value it has not received authentication information from the browser. In
such a situation a response indication that authentication is required has been generated and the application
should ignore the request. If it returns a non-zero value then authentication information was included with the
request. httpdAuthenticate() has decoded the information and stored it in the server handle. The application can
access it using server->request.authUser and server->request.authPassword

httpdForceAuthenticate()
httpdAuthenticate(server, realm)

httpd *server;
char *realm;

If your application has extracted the users username and password using httpdAuthenticate() but has decided to
reject the password then you must force the client browser to re-authenticate. Calling httpdAuthenticate() again
will only extract the same details. In such a situation the application must call httpdForceAuthenticate() to
force the browser to re-prompt the user for the authentication details.

Page 13

Access Control ListsAccess Control ListsAccess Control ListsAccess Control Lists
Access control lists allow a mechanism for restricting access to the httpd server contents based on network
address. LibHTTPD provides for both server wide ACL (known as the Default ACL) and application ACLs. If a
Default ACL is defined it is applied to all HTTPD requests automatically. The host application does not need to
perform and additional testing or error generation. However, an application may only wish to apply an ACL test
to a certain section of it’s content, or apply different ACLs to different sections of the content. In such situations
the application must check the request against the appropriate ACL. This may be performed individually for
each content entry or as part of a shared preload function.

An ACL is defined as a list of access control entries. Each entry specifies a range of network addresses and an
action. The list is checked sequentially and the first entry that matches the IP address is used. If no matches are
found then a default DENY is returned.

httpdAddAcl()
httpdAddAcl(server, acl, cidrAddr, action)

httpd *server;
httpAcl *acl;
char *cidrAddr;
int action

httpdAddAcl() is used to add and access control entry to an access control list. If the ACL parameter is
specified as NULL then a new access list is returned. If the ACL parameter is an existing access list then the
new entry as added to the end of the list. The entry specifies and address range and an action. The address range
is specified in the form of a CIDR network block. For an introduction to CIDR block notation, see the appendix
section of this document. The action parameter of this API routines specifies that what action should be taken if
the IP address of the requesting client is in the address range specified by the CIDR block. The options are
either HTTP_ACL_PERMIT or HTTP_ACL_DENY.

httpdSetDefaultAcl()
httpdSetDefaultAcl(server, acl)

httpd *server;
httpAcl *acl;

Once an ACL has been defined it can be applied to every HTTP access by setting it as the Default ACL. If a
Default ACL has been set, the source IP Address of every HTTP request is checked against the ACL before
control is passed to the application. If the access is denied then httpGetConnection() will fail and return a return
code of –2.

httpdCheckAcl()
httpdCheckAcl(server, acl)

httpd *server;
httpAcl *acl;

If an application requires more sophisticated access control handling then the basic functionality provided by the
Default ACL may not be enough. An application can by perform it’s own ACL checking using the
httpdCheckAcl() API routine. When called with an appropriate access list, the routine will return either
HTTP_ACL_PERMIT or HTTP_ACL_DENY depending on the results of the ACL evaluation. An application
may choose to perform ACL checks using this mechanism from a preload function shared by many content items
defined in the server.

Page 14

 Miscellaneous Routines Miscellaneous Routines Miscellaneous Routines Miscellaneous Routines

httpdUrlEncode()
char * httpdUrlEncode(buf)

char *buf;

Given a text buffer, the data will be encoded into a form suitable for use as part of a URL (i.e. spaces and other
offending characters are converted into their alternate form). The modified data is returned to the calling
function.

httpdRequestMethod()
int httpdRequestMethod(server)

httpd *server;

When called, this routine returns an integer value representing the method of the current request. The value can
be one of those listed in the httpd.h header file, including HTTP_GET and HTTP_POST

httpdRequestMethodName()
char *httpdRequestMethodName(server)

httpd *server;

Rather that returning a numeric value as httpdRequestMethod() does, this routines will return the name of the
request method (e.g. GET or POST etc).

httpdRequestPath()
char *httpdRequestPath(server)

httpd *server;

When called after a request has been received, this function will return the URL path of the request.

httpdRequestContentType()
char *httpdRequestContentType(server)

httpd *server;

This routine will return the content type of the current request if it was included in the request information.

httpdRequestContentLength()
int httpdRequestContentLength(server)

httpd *server;

This routines will return the content length of any data sent with the current request.

Page 15

Appendix A Appendix A Appendix A Appendix A –––– HTTP Response Codes HTTP Response Codes HTTP Response Codes HTTP Response Codes

Informational 1xx

100 Continue
101 Switching Protocols

Successful 2xx
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content

Redirection 3xx
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
306 (Unused)
307 Temporary Redirect

Client Error 4xx

400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed

Server Error 5xx
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

Page 16

Appendix B Appendix B Appendix B Appendix B –––– Common Content Types Common Content Types Common Content Types Common Content Types

HTML Text text/html
Plain Text text/plain
Rich Text Document text/rtf

GIF Image image/gif
JPEG Image image/jpeg
PNG Image image/png
TIFF Image image/tiff

PDF Document application/pdf
Postscript Document application/postscript
Comma Separated Values application/csv

Page 17

Appendix C Appendix C Appendix C Appendix C –––– IP Addresses and CIDR IP Addresses and CIDR IP Addresses and CIDR IP Addresses and CIDR
The CIDR addressing standard was originally designed to remove the strict “class” structure from IP network
allocation. The original IP address specification allowed for only for 3 sizes of IP networks to be defined: A
class, B class, and C class. C class networks contained 256 IP addresses, a B class network contained 256 C
class networks, and an A class network contained 256 B class networks. Allocating less the 256 addresses was
not possible. Similarly, if you wanted to allocate 16 C class networks you would either need to define all 16 C
classes or define a single B class and waste the other 240 C classes defined by the B class.

CIDR is an abbreviation of Classless Inter-Domain Routing and is a solution to the problem outlined above.
Rather than having fixed classes, CIDR allows an allocation of any logical size by specifying a starting address
and a number of bits in the subnet mask. The length of the subnet mask is specified as a number after a /
character added to the end of the IP address.

In the class based scheme, a C class network had a netmask of 255.255.255.0. Remembering that each segment
of the netmask represents an 8 bit integer value, this mask is 24 bits in length (3 * 8). That is, if the value of
255.255.255.0 was written in binary, the number would be 24 ones followed by 8 zeros. In CIDR terminology, a
network of that size is specified as a /24. If you wanted to specify a range of addresses from 10.1.1.0 to
10.1.1.255 then you could write it as 10.1.1.0/24 (being the “C class” network starting at 10.1.1.0). Similarly, if
you wanted to specify the address range of 192.168.1.0 to 192.168.1.127 you would use 192.168.1.0/25 (half the
size of a /24 starting at address 0).

The table below shows more details of CIDR lengths.

CIDR Block Prefix # Equivalent Class C # of Host Addresses
/32 1 address
/31 2 addresses
/30 1/64th of a Class C 4 addresses
/29 1/32nd of a Class C 8 addresses
/28 1/16th of a Class C 16 addresses
/27 1/8th of a Class C 32 addresses
/26 1/4th of a Class C 64 addresses
/25 1/2 of a Class C 128 addresses
/24 1 Class C 256 addresses
/23 2 Class C 512 addresses
/22 4 Class C 1,024 addresses
/21 8 Class C 2,048 addresses
/20 16 Class C 4,096 addresses
/19 32 Class C 8,192 addresses
/18 64 Class C 16,384 addresses
/17 128 Class C 32,768 addresses
/16 256 Class C (1 B class) 65,536 addresses
/15 512 Class C 131,072 addresses
/14 1,024 Class C 262,144 addresses
/13 2,048 Class C 524,288 addresses

Page 18

Appendix D Appendix D Appendix D Appendix D –––– Release History Release History Release History Release History
Listed below is the release history of this library. It shows the changes that have been made to this software in
each release.

Version 1.2 16 Oct 2002
• Added host and port command line options to test server code

• Added httpdAuthenticate and httpdForceAuthenticate to the API library to support Basic HTTP authentication.

• NOTE : Added a timeout arg to the httpdGetConnection() api call. If the arg is non-null then it is passed to

select as the max time we are prepared to wait for a connection. A null value will force it to block and a non-
null value with the fields set to 0 will force a poll (just like select). httpdGetConnect() now returns -1 on error, 0
on timeout, 1 if a connection was accepted.

• Added version.c and version/vendor globals to the library

• Added api routine httpdFreeVariables() that interfaces with the internal code that clears the symbol table.

The table is automatically cleared when httpdEndRequest() is called but this allows the application to do it if
needed.

• Added IP Access Control List support via the httpdAddAcl(), httpdSetDefaultAcl() and httpdCheckAcl() API

routines. An ACL is constructed by specifying address block / action pairs where an address block is
specified in CIDR notation (e.g. 10.1.1.0/24) and the action is either a permit or deny.

Version 1.1 15 Mar 2002
• Added httpdAddCWildcardContent() API function and associated backend code.

• Corrected an error in the documentation of httpdAddWildcardContent()

Version 1.0 4 Mar 2002
• Initial Release.

Page 19

Example 1 Example 1 Example 1 Example 1 –––– Examp Examp Examp Example Server le Server le Server le Server
#include <stdio.h>
#include "httpd.h"

/*
** This is a static page of HTML. It is loaded into the content
** tree using httpdAddStaticContent().
*/
#define test1_html "<HTML><BODY>This is just a test</BODY>"

/*
** Below are 2 dynamic pages, each generated by a C function. The first
** is a simple page that offers a little dynamic info (the process ID)
** and then sets up a test link and a simple form.
**
** The second page processes the form. As you can see, you can access
** the form data from within your C code by accessing the symbol table
** using httpdGetVariableByName() (and other similar functions). You
** can also include variables in the string passed to httpdOutput() and
** they will be expanded automatically.
*/
void index_html(server)
 httpd *server;
{
 httpdPrintf(server, "Welcome to the httpd server running in process number %d<P>\n", getpid());
 httpdPrintf(server, "Click here to view a test page<P>\n");
 httpdPrintf(server, "<P><FORM ACTION=test2.html METHOD=POST>\n");
 httpdPrintf(server, "Enter your name <INPUT NAME=name SIZE=10>\n");
 httpdPrintf(server, "<INPUT TYPE=SUBMIT VALUE=Click!><P></FORM>\n");
 return;
}

void test2_html(server)
 httpd *server;
{
 httpVar *variable;

 /*
 ** Grab the symbol table entry to see if the variable exists
 */
 variable = httpdGetVariableByName(server, "name");
 if (variable == NULL)
 {
 httpdPrintf(server,"Missing form data!");
 return;
 }

 /*
 ** Use httpdOutput() rather than httpdPrintf() so that the variable
 ** embedded in the text is expanded automatically
 */
 httpdOutput(server,"Hello $name");
}

Page 20

int main(argc, argv)
 int argc;
 char *argv[];
{
 httpd *server;

 /*
 ** Create a server and setup our logging
 */
 server = httpdCreate(NULL,80);
 if (server == NULL)
 {
 perror("Can't create server");
 exit(1);
 }
 httpdSetAccessLog(server, stdout);
 httpdSetErrorLog(server, stderr);

 /*
 ** Setup some content for the server
 */
 httpdAddCContent(server,"/", "index.html", HTTP_TRUE, NULL, index_html);
 httpdAddCContent(server,"/", "test2.html", HTTP_FALSE, NULL, test2_html);
 httpdAddStaticContent(server, "/", "test1.html", HTTP_FALSE,NULL, test1_html);

 /*
 ** Go into our service loop
 */
 while(1 == 1)
 {
 if (httpdGetConnection(server) < 0)
 continue;
 if(httpdReadRequest(server) < 0)
 {
 httpdEndRequest(server);
 continue;
 }
 httpdProcessRequest(server);
 httpdEndRequest(server);
 }
}

Page 21

Example 2 Example 2 Example 2 Example 2 –––– Fragments Fragments Fragments Fragments

Fragment 1 : HTTP Basic AuthenticationFragment 1 : HTTP Basic AuthenticationFragment 1 : HTTP Basic AuthenticationFragment 1 : HTTP Basic Authentication
httpdAuthenticate is used to request a username and password from the client browser. If your application does
not want to accept the username and password, and force a re-authenticate from the browser, the it can call
httpdForceAuthenticate

/*
** Example 1 : Just pop-up a login box and get a username and password from a C callback
*/
void login_html(server)
 httpd *server;
{
 if (httpdAuthenticate(server, "LibHTTPD Test") == 0)
 return;
 httpdPrintf(server, "Your username is '%s'<P>\n",
 server->request.authUser);
 httpdPrintf(server, "Your password is '%s'<P>\n",
 server->request.authPassword);
 httpdOutput(server,
 "Click here to force reauthentication");
 httpdOutput(server, ". Use a username = test password = 123");
}

/*
** Example 2 : Grab a username and password and fail the authentication attempt if
** the username and password don’t match certain values. This routine is designed
** to be installed as a preload function for a range of content elements
*/

int preload_authenticate(server)
 httpd *server;
{
 /* get a username and password */

if (httpdAuthenticate(server, "LibHTTPD Test") == 0)
 {
 httpdOutput(server, "Authentication failure(1).");
 return(-1);
 }

 /* Check the username and force reauthentication on failure */
 if (strcmp(server->request.authUser, "test") != 0 ||
 strcmp(server->request.authPassword, "123") != 0)
 {
 httpdForceAuthenticate(server, "LibHTTPD Test");
 httpdOutput(server, "Authentication failure (2).");
 return(-1);
 }
 return(0);
}

Page 22

Fragment 2 : Access Control ListsFragment 2 : Access Control ListsFragment 2 : Access Control ListsFragment 2 : Access Control Lists
A default access list is applied to every request received by LibHTTPD automatically. If your application
requires fine grained access control (such as different ACLs depending on the URL being accessed) then the
application must manually check the appropriate ACL before the request is processed.

/*
** Example 1 : A default ACL. Note that the ACL entry is NULL on the first call to
** httpdAddAcl(). This initialises the list. Remember that there is a default DENY
** everything ACL rule at the end of an ACL.
*/

/*
** An access list that accepts connections from anything inside the 10.0.0.0 network,
** except from address 10.1.1.0 to 10.1.1.255 and 10.1.5.0 to 10.1.5.255. Everything
** else is denied by default
*/
acl = httpdAddAcl(server, NULL, “10.1.1.0/24”, HTTP_ACL_DENY);
acl = httpdAddAcl(server, acl, “10.1.5.0/24”, HTTP_ACL_DENY);
acl = httpdAddAcl(server acl, “10.0.0.0/8”, HTTP_ACL_ACCEPT);

httpdSetDefaultAcl(server, acl);

/*
** Example 2 : Apply a specific ACL in a preload function. This one denies access to
** addresses 10.1.1.0 to 10.1.1.127 and permits anything else.
*/
int preload_acl_check (server)
 httpd *server;
{
 static httpAcl *acl = NULL;

 /*
 ** Setup the ACL if this is the first time we’ve been called
 */
 if (acl == NULL)
 {

acl = httpdAddAcl(server, NULL, “10.1.1.0/25”, HTTP_ACL_DENY);
acl = httpdAddAcl(server, acl, “0.0.0.0/0”, HTTP_ACL_PERMIT);

 }

 /*
 ** Check this request against the ACL
 */
 if (httpdCheckAcl(server, acl) == HTTP_ACL_DENY)
 {
 return(-1);
 }
 else
 {
 return(0);
 }
}

	Introduction
	Overview
	API Reference
	General Server Setup Routines
	httpdCreate ()
	httpdSetAccessLog()
	httpdSetErrorLog()
	httpdSetFileBase()

	Content Definition Routines
	httpdAddCContent()
	httpdAddFileContent()
	httpdAddStaticContent()
	httpdAddWildcardContent()
	httpdAddCWildcardContent()

	Connection and Request Handling Routines
	httpdGetConnection ()
	httpdReadRequest ()
	httpdProcessRequest ()
	httpdEndRequest ()

	Response Generation Routines
	httpdOutput ()
	httpdPrintf ()
	httpdSetContentType ()
	httpdSetResponse ()
	httpdAddHeader ()
	httpdSendHeaders()

	Form Data / Cookies / Symbol Table Routines
	httpVar * httpdGetVariableByName ()
	httpVar * httpdGetVariableByPrefix ()
	httpVar * httpdGetNextVariableByPrefix ()
	httpVar * httpdGetVariableByPrefixedName ()
	httpdAddVariable()
	httpdDumpVariables()
	httpdSetCookie()

	Authentication
	httpdAuthenticate()
	httpdForceAuthenticate()

	Access Control Lists
	httpdAddAcl()
	httpdSetDefaultAcl()
	httpdCheckAcl()

	Miscellaneous Routines
	httpdUrlEncode()
	httpdRequestMethod()
	httpdRequestMethodName()
	httpdRequestPath()
	httpdRequestContentType()
	httpdRequestContentLength()

	Appendix A – HTTP Response Codes
	Appendix B – Common Content Types
	Appendix C – IP Addresses and CIDR
	Appendix D – Release History
	Example 1 – Example Server
	Example 2 – Fragments
	Fragment 1 : HTTP Basic Authentication
	Fragment 2 : Access Control Lists

