University of Cambridge Computing Service

Specification of the Exim Mail Transfer Agent

by
Philip Hazel

University Computing Service
New Museums Site

Pembroke Street

Cambridge CB2 3QH

United Kingdom

phone: +44 1223 334600
fax: +44 1223 334679
email: phl0 at cus.cam.ac.uk

Edition for Exim 4.40, July 2004

Copyright [University of Cambridge 2004

Contents

1. Introduction

1.1 Exim documentation

1.2 FTP and web sites, and mailing list
1.3 Exim training

1.4 Bug reports

1.5 Where to find the Exim distribution
1.6 Wish list

1.7 Contributed material

1.8 Limitations

1.9 Run time configuration

1.10 Cdlling interface

1.11 Terminology

2. Incorporated code
3. How Exim receives and delivers mail

3.1 Overall philosophy

3.2 Palicy control

3.3 User filters

3.4 Message identification

3.5 Receiving mail

3.6 Handling an incoming message

3.7 Life of a message

3.8 Processing an address for delivery
3.9 Processing an address for verification
3.10 Running an individual router

3.11 Router preconditions

3.12 Delivery in detail

3.13 Retry mechanism

3.14 Temporary delivery failure

3.15 Permanent delivery failure

3.16 Failures to deliver bounce messages

4. Building and installing Exim

4.1 Unpacking

4.2 Multiple machine architectures and operating systems
4.3 DBM libraries

4.4 Pre-building configuration

4.5 Support for iconv()

4.6 Including TLS/SSL encryption support

4.7 Use of tcpwrappers

4.8 Including support for |Pv6

4.9 The building process

4.10 Overriding build-time options for Exim

4.11 OS-specific header files

4.12 Overriding build-time options for the monitor
4.13 Installing Exim binaries and scripts

4.14 Installing info documentation

4.15 Setting up the spool directory

4.16 Testing

4.17 Replacing another MTA with Exim

[i]

OO 0 O ORrERAERDMWNNNDNE -

4.18 Upgrading Exim
4.19 Stopping the Exim daemon on Solaris

5. The Exim command line

5.1 Setting options by program name
5.2 Trusted and admin users
5.3 Command line options

6. The Exim run time configuration file

6.1 Using a different configuration file

6.2 Configuration file format

6.3 File inclusions in the configuration file
6.4 Macros in the configuration file

6.5 Conditional skips in the configuration file
6.6 Common option syntax

6.7 Boolean options

6.8 Integer values

6.9 Octal integer values

6.10 Fixed point number values

6.11 Time interval values

6.12 String values

6.13 Expanded strings

6.14 User and group names

6.15 List construction

6.16 Format of driver configurations

7. The default configuration file

7.1 Main configuration settings
7.2 ACL configuration

7.3 Router configuration

7.4 Transport configuration

7.5 Default retry rule

7.6 Rewriting configuration

7.7 Authenticators configuration

8. Regular expressions

8.1 Testing regular expressions

9. File and database lookups

9.1 Lookup types

9.2 Single-key lookup types

9.3 Query-style lookup types

9.4 Temporary errors in lookups

9.5 Default values in single-key lookups
9.6 Partial matching in single-key 1ookups
9.7 Lookup caching

9.8 Quoting lookup data

9.9 More about dnsdb

9.10 More about LDAP

9.11 Format of LDAP queries

9.12 LDAP quoting

9.13 LDAP connections

9.14 LDAP authentication and control information

9.15 Format of data returned by LDAP
9.16 More about NIS+

26
26

27

27
27
28

46

46
47
47
48
49
49
49
50
50
50
50
50
51
51
51
51

53

53
55
57
59
60
61
61

62
62

65
67
67
68
68
69
69
70
70
71
71
72
73
74
74

9.17 More about MySQL, PostgreSQL, Oracle, and Interbase 75

9.18 Special MySQL features 75
9.19 Special PostgreSQL features 76
10. Domain, host, address, and local part lists 77
10.1 Expansion of lists 77
10.2 Negated items in lists 77
10.3 File names in lists 77
10.4 An Isearch file is not an out-of-line list 78
10.5 Named lists 78
10.6 Named lists compared with macros 79
10.7 Named list caching 79
10.8 Domain lists 80
10.9 Host lists 82
10.10 Specia host list patterns 82
10.11 Host list patterns that match by 1P address 82
10.12 Host list patterns for single-key lookups by host address 83
10.13 Host list patterns that match by host name 84
10.14 Behaviour when an IP address or name cannot be found 85
10.15 Host list patterns for single-key lookups by host name 85
10.16 Host list patterns for query-style lookups 85
10.17 Mixing wildcarded host names and addresses in host lists 86
10.18 Address lists 86
10.19 Case of letters in address lists 88
10.20 Local part lists 89
11. String expansions 90
11.1 Litera text in expanded strings 90
11.2 Character escape sequences in expanded strings 90
11.3 Testing string expansions 90
11.4 Expansion items 90
11.5 Expansion operators 98
11.6 Expansion conditions 102
11.7 Combining expansion conditions 107
11.8 Expansion variables 107
12. Embedded Perl 17
13. Starting the daemon and the use of network interfaces 119
13.1 Starting a listening daemon 119
13.2 Special IP listening addresses 120
13.3 Overriding local_interfaces and daemon_smtp_ports 120
13.4 1Pv6 address scopes 120
13.5 Examples of starting a listening daemon 121
13.6 Recognising the local host 121
13.7 Délivering to a remote host 122
14. Main configuration 123
14.1 Miscellaneous 123
14.2 Exim parameters 123
14.3 Privilege controls 123
14.4 Logging 123
14.5 Frozen messages 124
14.6 Data lookups 124
14.7 Message ids 124

14.8 Embedded Perl Startup 124

[iii]

14.9 Daemon

14.10 Resource control

14.11 Policy controls

14.12 Cadlout cache

1413 TLS

14.14 Loca user handling

14.15 All incoming messages (SMTP and non-SMTP)
14.16 Non-SM TP incoming messages
14.17 Incoming SMTP messages
14.18 SMTP extensions

14.19 Processing messages

14.20 System filter

14.21 Routing and delivery

14.22 Bounce and warning messages
14.23 Alphabetical list of main options

15. Generic options for routers
16. The accept router
17. The dnslookup router
17.1 Effect of qualify_single and search_parents
18. Theipliteral router
19. The iplookup router
20. The manualroute router

20.1 Private options for manualroute
20.2 Routing rules in route_list

20.3 Routing rules in route_data
20.4 Format of the list of hosts

20.5 How the list of hostsis used
20.6 How the options are used

20.7 Manualroute examples

21. The queryprogram router
22. The redirect router

22.1 Redirection data

22.2 Forward files and address verification
22.3 Interpreting redirection data

22.4 Items in a non-filter redirection list
22.5 Redirecting to alocal mailbox

22.6 Specid itemsin redirection lists

22.7 Duplicate addresses

22.8 Repeated redirection expansion

22.9 Errors in redirection lists

22.10 Private options for the redirect router

23. Environment for running local transports

23.1 Uids and gids
23.2 Current and home directories
23.3 Expansion variables derived from the address

24. Generic options for transports
25. Address batching in local transports

[iv]

124
124
125
125
125
126
126
126
126
127
127
127
127
128
128

159
171
172
174
175
176
178

178
179
180
180
180
181
181

184
186

186
186
187
187
187
188
190
190
190
190

197

197
197
198

199
204

26. The appendfile transport

26.1 The file and directory options

26.2 Private options for appendfile

26.3 Operational details for appending

26.4 Operational details for delivery to a new file
26.5 Maildir delivery

26.6 Using tags to record message sizes

26.7 Using a maildirsize file

26.8 Mailstore delivery

26.9 Non-specia new file delivery

27. The autoreply transport

27.1 Private options for autoreply
28. The Imtp transport
29. The pipe transport

29.1 Returned status and data

29.2 How the command is run

29.3 Environment variables

29.4 Private options for pipe

29.5 Using an external local delivery agent

30. The smtp transport

30.1 Multiple messages on a single connection
30.2 Use of the $host variable

30.3 Private options for smtp

30.4 How the value of hosts max_try is used

31. Address rewriting

31.1 Explicitly configured address rewriting

31.2 When does rewriting happen?

31.3 Testing the rewriting rules that apply on input
31.4 Rewriting rules

31.5 Rewriting patterns

31.6 Rewriting replacements

31.7 Rewriting flags

31.8 Flags specifying which headers and envelope addresses to rewrite
31.9 The SMTP-time rewriting flag

31.10 Flags controlling the rewriting process
31.11 Rewriting examples

32. Retry configuration

32.1 Retry rules

32.2 Choosing which retry rule to use
32.3 Retry rules for specific errors
32.4 Retry rule parameters

32.5 Retry rule examples

32.6 Timeout of retry data

32.7 Long-term failures

32.8 Ultimate address timeout

33. SMTP authentication
33.1 Generic options for authenticators
33.2 The AUTH parameter on MAIL commands

[vV]

206

206
207
215
216
217
217
217
218
218

219
219
222
223

223
223
224
225
228

230

230
230
230
236

237

237
237
238
238
239
240
240
240
240
241
241

243

243
244
244
245
246
246
246
247

248

249
250

33.3 Authentication on an Exim server
33.4 Testing server authentication
33.5 Authentication by an Exim client

34. The plaintext authenticator

34.1 Using plaintext in a server

34.2 The PLAIN authentication mechanism

34.3 The LOGIN authentication mechanism

34.4 Support for different kinds of authentication
34.5 Using plaintext in a client

35. The cram_md5 authenticator

35.1 Using cram_md5 as a server
35.2 Using cram_md5 as a client

36. The spa authenticator

36.1 Using spa as a server
36.2 Using spa as a client

37. Encrypted SMTP connections using TL S/SSL

37.1 OpenSSL vs GnuTLS

37.2 Requiring specific ciphersin OpenSSL and GnuTLS

37.3 Configuring an Exim server to use TLS

37.4 Requesting and verifying client certificates

37.5 Revoked certificates

37.6 Configuring an Exim client to use TLS

37.7 Multiple messages on the same encrypted TCP/IP connection
37.8 Certificates and all that

37.9 Certificate chains

37.10 Self-signed certificates

38. Access control lists

38.1 Testing ACLs

38.2 Specifying when ACLs are used
38.3 ACL return codes

38.4 Unset ACL options

38.5 Data for message ACLs

38.6 Data for non-message ACLSs

38.7 Use of the ACL selection options
38.8 Format of an ACL

38.9 ACL variables

38.10 Condition and modifier processing
38.11 ACL modifiers

38.12 ACL conditions

38.13 Using DNS lists

38.14 DNS lists keyed on domain names
38.15 Data returned by DNS lists

38.16 Variables set from DNS lists
38.17 Additional matching conditions for DNS lists
38.18 Negated DNS matching conditions
38.19 DNS lists and IPv6

38.20 Address verification

38.21 Callout verification

38.22 Additional parameters for callouts
38.23 Callout caching

[vi]

250
251
252

253

253
253
254
255
255

257

257
257

259

259
259

260

260
261
262
263
264
264
264
265
265
265

267

267
267
268
268
268
269
269
269
271
272
273
275
278
279
279
279
279
280
281
281
281
282
283

38.24 Sender address verification reporting 283

38.25 Redirection while verifying 284
38.26 Using an ACL to control relaying 284
38.27 Checking arelay configuration 285
39. Adding a local scan function to Exim 286
39.1 Building Exim to use a local scan function 286
39.2 API for local_scan() 286
39.3 Configuration options for local_scan() 288
39.4 Available Exim variables 289
39.5 Structure of header lines 290
39.6 Structure of recipient items 291
39.7 Available Exim functions 291
39.8 More about Exim’'s memory handling 295
40. System-wide message filtering 296
40.1 Specifying a system filter 296
40.2 Testing a system filter 296
40.3 Contents of a system filter 296
40.4 Additional variable for system filters 297
40.5 Defer, freeze, and fail commands for system filters 297
40.6 Adding and removing headers in a system filter 298
40.7 Setting an errors address in a system filter 298
40.8 Per-address filtering 298
41. Customizing bounce and war ning messages 300
41.1 Customizing bounce messages 300
41.2 Customizing warning messages 301
42. Some common configuration requirements 302
42.1 Sending mail to a smart host 302
42.2 Using Exim to handle mailing lists 302
42.3 Syntax errors in mailing lists 302
42.4 Re-expansion of mailing lists 303
42.5 Closed mailing lists 303
42.6 Virtual domains 304
42.7 Multiple user mailboxes 305
42.8 Simplified vacation processing 305
42.9 Taking copies of mail 306
42.10 Intermittently connected hosts 306
42.11 Exim on the upstream server host 306
42.12 Exim on the intermittently connected client host 307
43. SMTP processing 308
43.1 Outgoing SMTP and LMTP over TCP/IP 308
43.2 Errors in outgoing SMTP 309
43.3 Variable Envelope Return Paths (VERP) 310
43.4 Incoming SMTP messages over TCP/IP 311
43.5 Unrecognized SMTP commands 312
43.6 Syntax and protocol errors in SMTP commands 312
43.7 Use of non-mail SMTP commands 313
43.8 The vrry and eExpn commands 313
43.9 The eTrRN command 313
43.10 Incoming local SMTP 314

43.11 Outgoing batched SMTP 314

[vii]

43.12 Incoming batched SMTP 315

44. M essage processing 316
44.1 Line endings 316
44.2 Unqualified addresses 317
44.3 The UUCP From line 317
44.4 Resent- header lines 317
44.5 The Auto-Submitted: header line 318
44.6 The Bcc: header line 318
44.7 The Date: header line 318
44.8 The Delivery-date: header line 318
44.9 The Envelope-to: header line 318
44.10 The From: header line 318
44.11 The Message-1D: header line 319
44.12 The Received: header line 319
44.13 The Return-path: header line 319
44.14 The Sender: header line 319
44.15 Adding and removing header lines 319
44.16 Constructed addresses 320
44.17 Case of local parts 320
44.18 Dots in local parts 320
44.19 Rewriting addresses 321

45. Log files 322
45.1 Where the logs are written 322
45.2 Logging to local files that are periodically ‘cycled’ 323
45.3 Datestamped log files 323
45.4 Logging to syslog 324
45,5 Log line flags 325
45.6 Logging message reception 325
45.7 Logging deliveries 326
45.8 Discarded deliveries 326
45.9 Deferred deliveries 327
45.10 Delivery failures 327
45.11 Fake deliveries 327
45.12 Completion 327
45.13 Summary of Fieldsin Log Lines 327
45.14 Other log entries 328
45.15 Reducing or increasing what is logged 328
45.16 Message log 332

46. Exim utilities 333
46.1 Finding out what Exim processes are doing (exiwhat) 333
46.2 Selective queue listing (exiqgrep) 333
46.3 Summarising the queue (exigsumm) 334
46.4 Extracting specific information from the log (exigrep) 334
46.5 Selecting messages by various criteria (exipick) 335
46.6 Cycling log files (exicyclog) 335
46.7 Mail statistics (eximstats) 335
46.8 Checking access policy (exim_checkaccess) 338
46.9 Making DBM files (exim_dbmbuild) 339
46.10 Finding individual retry times (exinext) 339
46.11 Hints database maintenance (exim_dumpdb, exim_fixdb, exim_tidydb) 340

46.12 Mailbox maintenance (exim_lock) 341

[Viii]

47. The Exim monitor 343

47.1 Running the monitor 343
47.2 The stripcharts 343
47.3 Main action buttons 344
47.4 The log display 344
47.5 The queue display 345
47.6 The queue menu 345
48. Security considerations 348
48.1 Building a more ‘hardened’ Exim 348
48.2 Root privilege 348
48.3 Running Exim without privilege 349
48.4 Delivering to local files 351
48.5 |Pv4 source routing 351
48.6 The VRFY, EXPN, and ETRN commands in SMTP 351
48.7 Privileged users 351
48.8 Spool files 351
48.9 Use of argv[0] 351
48.10 Use of %f formatting 352
48.11 Embedded Exim path 352
48.12 Use of sprintf() 352
48.13 Use of debug_printf() and log_write() 352
48.14 Use of strcat() and strepy() 352
49. Format of spool files 353
49.1 Format of the -H file 353
50. Adding new drivers or lookup types 357

Index 359

[iX]

1. Introduction

If 1 have seen further it is by standing on the shoulders of giants. (Isaac Newton)

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to
the Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AlIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HP-UX, IRIX,
MIPS RISCOS, NetBSD, OpenBSD, QNX, SCO, SCO SVR4.2 (aka UNIX-SV), Solaris (aka
SunOS5), SUNOHA4, Trub4-Unix (formerly Digital UNIX, formerly DEC-OSF1), Ultrix, and Unixware.
Some of these operating systems are no longer current and cannot easily be tested, so the configuration
files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about running
Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which | have started recording
the names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.40 of Exim. Substantive changes from the
4.30 edition are marked by bars in the right-hand margin in the PostScript, PDF, and plain text
versions of the document, and by green text in the HTML version, as shown by this paragraph.
Changes are not marked in the Texinfo version, because Texinfo doesn't support change bars. Minor
corrections and rewordings are not marked.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An ‘easier’ discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server, published by UIT Cambridge
(http://www.uit.co.uk/exim-book/).

Exim 4.40 [1] introduction (1)

This book aso contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have
changed in Exim 4.)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. However, specifications of new features that are not yet in this manual are placed in
the file doc/NewStuff in the Exim distribution. All changes to the program (whether new features, bug
fixes, or other kinds of change) are noted briefly in the file called doc/Changel og.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other filesin the doc directory are:

OptionLists.txt list of al options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 aman page of Exim’'s command line options
filter.txt specification of the filter language
pcrepattern.txt specification of PCRE regular expressions
pcretest.txt specification of the PCRE testing program
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4

The main specification and the specification of the filtering language are also available in other formats
(HTML, PostScript, PDF, and Texinfo). Section 1.5 below tells you how to get hold of these.

1.2 FTP and web sites, and mailing list

The primary distribution site for Exim is an FTP site, whose contents are described in Where to find
the Exim distribution below. In addition, there is a web site at http://www.exim.org by courtesy of
Energis Squared, formerly Planet Online Ltd, who are situated in the UK. The site is mirrored in a
number of other countries; links to the mirrors are listed on the home page. The web site contains the
Exim distribution, and you can also find the documentation and the FAQ online there, as well as other
relevant material.

Energis Squared also provide resources for the following mailing lists:

exim-users@exim.org general discussion list
exim-announce@exim.org moderated, low volume announcements list

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. The eximrusers mailing list is also forwarded to
http://www.egroups.com/list/exim-users, an archiving system with searching capabilities.

1.3 Exim training

From time to time (approximately annualy at the time of writing), lecture-based training courses are
run by the author of Exim in Cambridge, UK. Details can be found on the web site http://www-
tus.csx.cam.ac.uk/cour ses/exim/.

1.4 Bug reports

Reports of obvious bugs should be emailed to bugs@exim.org. However, if you are unsure whether
some behaviour is a bug or not, the best thing to do is to post a message to the exim-users mailing list
and have it discussed.

1.5 Where to find the Exim distribution
The master ftp site for the Exim distribution is

ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim

Exim 4.40 [2] introduction (1)

Within that directory there are subdirectories called exim3 (for previous Exim 3 distributions), exim4
(for the latest Exim 4 distributions), and Testing for occasional testing versions. Those mirror sites that
| know about are listed in the file

ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim/Mirrors
In the exim4 subdirectory, the current release can aways be found in files called

exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The two files contain identical data; the
only difference is the type of compression. The .bz2 file is usually a lot smaler than the .gz file. The
distributions are signed with Philip Hazel’'s GPG key. The corresponding public key is available from a
number of keyservers, and there is also a copy in the file:

ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim/Public-K ey
The signatures for the tar bundles are in:

exim-n.nn.tar.gz.sig
exim-n.nn.tar.bz2.sig

When there is only a small amount of change from one release to the next, a patch file may be
provided, with a final component name of the form

exim-patch-n.nn-m.mm.gz

For each released version, the log of changes is made separately available in the directory
ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim/Changel ogs

so that it is possible to find out what has changed without having to download the entire distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 as well as .gz forms.

The FAQ is available for downloading in two different formats from

ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim/exim4/FAQ.txt.gz
ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim/exim4/FAQ.html .tar.gz

The first of these is a single ASCII file that can be searched with a text editor. The second is a
directory of HTML files, normally accessed by starting at index.html. The HTML version of the FAQ
(which is also included in the HTML documentation tarbundle) includes a keyword-in-context index,
which is often the most convenient way of finding your way around.

1.6 Wish list

A wish list is maintained, containing ideas for new features that have been submitted. From time to
time the file is exported to the ftp site:

ftp://ftp.csx.cam.ac.uk/pub/softwar e/femail/exim/exim4/WishL st
Items are removed from the list if they get implemented.

Exim 4.40 [3] introduction (1)

1.7 Contributed material
At the ftp site, there is a directory called

ftp://ftp.csx.cam.ac.uk/pub/softwar e/femail/exim/exim4/Contrib/

which contains miscellaneous files contributed to the Exim community by Exim users. There is also a
collection of contributed configuration examples in

ftp://ftp.csx.cam.ac.uk/pub/softwar e/email/exim/exim4/config.samples.tar.gz
These samples are referenced from the FAQ.

1.8 Limitations

e Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822
domain format only. It cannot handle UUCP ‘bang paths’, though simple two-component bang
paths can be converted by a straightforward rewriting configuration. This restriction does not
prevent Exim from being interfaced to UUCP as a transport mechanism, provided that domain
addresses are used.

e Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

* The only external transport currently implemented is an SMTP transport over a TCP/IP network
(using sockets, including support for IPv6). However, a pipe transport is available, and there are
facilities for writing messages to files and pipes, optionaly in batched SMTP format; these
facilities can be used to send messages to some other transport mechanism such as UUCR,
provided it can handle domain-style addresses. Batched SMTP input is also catered for.

* Eximis not designed for storing mail for dial-in hosts. When the volumes of such mail are large,
it is better to get the messages ‘delivered’ into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

» Although Exim does have some facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages.

1.9 Run time configuration

Exim’s run time configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and is
described in chapter 7 below.

1.10 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages on the queue) do so in Exim’'s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’'s command line administration options.

Exim 4.40 [4] introduction (1)

1.11 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message. The term bounce is commonly used for this action, and the error reports are often called
bounce messages. This is a convenient shorthand for ‘delivery failure error report’. Such messages
have an empty sender address in the message's envelope (see below) to ensure that they cannot
themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the addresses
in the envelope. An MTA uses these addresses for delivery, and for returning bounce messages, not the
addresses that appear in the header lines.

The header of a message is the first part of a message's text, consisting of a number of lines, each of
which has a name such as From:, To:, Qubject:, etc. Long header lines can be split over severa text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to a remote host.

Return path is another name that is used for the sender address in a message's envelope.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAS. However, in Exim’'s case the reality is more like a pool than a
gueue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAS, and also relates to the
command rung, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages on its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a ‘spool directory’ by some people. In the Exim documen-
tation, ‘spool’ is always used in the first sense.

Exim 4.40 [5] introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright 0 2003 University of Cambridge. The source is
distributed in the directory src/pcre. However, this is a cut-down version of PCRE. If you want
to use the PCRE library in other programs, you should obtain and install the full version from
ftp://ftp.csx.cam.ac.uk/pub/softwar e/programming/pcre.

Support for the cdb (Constant DataBase) lookup method is provided by code contributed by
Nigel Metheringham of Planet Online Ltd. which contains the following statements:

Copyright O 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This code implements Dan Bernstein’'s Constant DataBase (cdb) spec. Information, the spec and sample code for cdb can be obtained from
http://www.pobox.com/~djb/cdb.html. This implementation borrows some code from Dan Bernstein's implementation (which has no license restrictions

applied to it).

The implementation is completely contained within the code of Exim. It does not link against an
external cdb library.

Client support for Microsoft’'s Secure Password Authentication is provided by code contributed
by Marc Prud’ hommeaux. Server support was contributed by Tom Kistner. This includes code
taken from the Samba project, which is released under the Gnu GPL.

Support for caling the Cyrus pwcheck and saslauthd daemons is provided by code taken from
the Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice
appears below, in accordance with the conditions expressed therein.

Copyright 0 2001 Carnegie Mellon University. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documen-

tation and/or other materials provided with the distribution.

3. The name ‘Carnegie Mellon University’ must not be used to endorse or promote products derived from this software without prior written

permission. For permission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

4. Redistributions of any form whatsoever must retain the following acknowledgment:

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

Exim 4.40 [6] incorporated code (2)

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

e The Exim Monitor program, which is an X-Window application, includes modified versions of
the Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology, Cambridge,
Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that
the names of Digital or MIT not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Exim 4.40 [7] incorporated code (2)

3. How Exim receives and delivers malil

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and are
handling a general mix of mail. In such circumstances, most messages can be delivered immediately.
Consequently, Exim does not maintain independent queues of messages for specific domains or hosts,
though it does try to send several messages in a single SMTP connection after a host has been down,
and it a'so maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAS that are connected to the Internet. Perhaps their
most important job is to stop MTAS being abused as ‘open relays by misguided individuals who send
out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible facilities
for specifying policy controls on incoming mail:

* Exim 4 (unlike previous versions of Exim) implements policy controls on incoming SMTP mail
by means of Access Control Lists (ACLS). Each list is a series of statements that may either grant
or deny access. ACLs can be used at severa places in the SMTP dialogue while receiving a
message. However, the most common places are after each rcpt command, and at the very end of
the message. The sysadmin can specify conditions for accepting or rejecting individual recipients
or the entire message, respectively, at these two points (see chapter 38). Denial of access results
in an SMTP error code.

* An ACL is aso available for locally generated, non-SMTP messages. In this case, the only
available actions are to accept or deny the entire message.

* When a message has been received, either from a remote host or from the local host, but before
the final acknowledgement has been sent, a locally supplied C function called local_scan() can be
run to inspect the message and decide whether to accept it or not (see chapter 39). If the message
is accepted, the list of recipients can be modified by the function.

« After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter 40). This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
forward files in their home directories. See chapter 22 (about the redirect router) for the configur-
ation needed to support this, and the separate document entitled Exim's interfaces to mail filtering for
user details. Two different kinds of filtering are available:

» Sievefilters are written in the standard filtering language that is defined by RFC 3028.

* Exim filters are written in a syntax that is unique to Exim, but which is more powerful than
Sieve, which it pre-dates.

User filters are run as part of the routing process, described below.

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16VDhn- 0001bo- D3. Each part is a sequence of
letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct file names, and the names of
files in those systems are not case-sensitive.

Exim 4.40 [8] receiving & delivering mail (3)

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

e The first six characters of the message id are the time at which the message started to be
received, to a granularity of one second. That is, this field contains the number of seconds since
the start of the epoch (the normal Unix way of representing the date and time of day).

« After the first hyphen, the next six characters are the id of the process that received the message.
e There are two different possibilities for the final two characters:

(& If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of /2000 of a second, but for systems that must use base 36 instead of
base 62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(b) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will aready have ticked while the message was being received.

3.5 Receiving mail
The only way Exim can receive mail from a remote host is using SMTP over TCP/IP, in which case

the sender and recipient addresses are tranferred using SMTP commands. However, from a locally
running process (such as a user’'s MUA), there are severa possibilities:

» |If the process runs Exim with the -bm option, the message is read non-interactively (usualy via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

» |If the process runs Exim with the -bS option, the message is also read non-interactively, but in
this case the recipients are listed at the start of the message in a series of SMTP rRcPT commands,
terminated by a pata command. This is so-called ‘batch SMTP format, but it isn't really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

e |If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the
Exim process. This is ‘real’ SMTP and is handled in the same way as SMTP over TCP/IP. For
example, the ACLs for SMTP commands are used for this form of submission.

* A loca process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specialy. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP mAIL
command is ignored. However, the system administrator may allow certain users (‘trusted users’) to
specify a different sender address unconditionally, or all users to specify certain forms of different
sender address. The -f option or the SMTP maiL command is used to specify these different addresses.
See section 5.2 for details of trusted users, and the untrusted_set_sender option for a way of allowing
untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if one is defined. Messages received using SMTP (either over TCP/IP, or interacting with
aloca process) can be checked by a number of ACLs that operate at different times during the SMTP

Exim 4.40 [9] receiving & delivering mail (3)

session. Either individua recipients, or the entire message, can be rejected if local policy requirements
are not met. The local_scan() function (see chapter 39) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followed by - H for the file
containing the envelope and header, and - D for the data file.

By default all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets very large; to improve performance in such cases, the split_spool_directory option can be used.
This causes Exim to split up the input files into 62 sub-directories whose names are single letters or
digits.

The envelope information consists of the address of the message’'s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 49.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 31) is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is aso possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 15 and 24).

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originaly created it. In cases
when delivery cannot proceed — for example, when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked ‘frozen’ on the spool, and no more deliveries are
attempted.

An administrator can ‘thaw’ such messages when the problem has been corrected, and can also freeze
individual messages by hand if necessary. In addition, an administrator can force a delivery error,
causing a bounce message to be sent.

There is an option called auto_thaw, which can be used to cause Exim to retry frozen messages after
a certain time. When this is set, no message will remain on the queue for ever, because the delivery
timeout will eventually be reached. Delivery failure reports (bounce messages) that reach this timeout
are discarded. There is also an option called timeout_frozen_after, which discards frozen messages
after a certain time.

While Exim is working on a message, it writes information about each delivery attempt to the main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter
45). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator, and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a

Exim 4.40 [10] receiving & delivering mail (3)

journal file, whose name is the message id followed by - J. At the end of a delivery run, if there are
some addresses |eft to be tried again later, the first spool file (the - H file) is updated to indicate which
these are, and the journa file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool file has been
updated, the journa is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is specified in the run time configuration is an instance of that particular driver type.
Multiple instances are alowed; for example, you can set up several different smtp transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A router is a driver that operates on an address, either determining how its delivery should happen, by
routing it to a specific transport, or converting the address into one or more new addresses (for
example, via an aias file). A router may aso explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be passed
to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. As a ssimple example, the diagram below illustrates how
each recipient address in a message is processed in a small configuration of three routers that are
configured in various ways.

To make this a more concrete example, we'll describe it in terms of some actua routers, but
remember, this is only an example. You can configure Exim’s routers in many different ways, and
there may be any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specialy by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typicaly, this
is arouter that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is queued for a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The example pictured could be a configuration of this type. The second and third routers can only be
run for addresses for which the preconditions for the first router are not met. If one of these
preconditions checks the domain, the second and third routers are run only for domains that are
somehow special to the local host.

The second router does redirection — also known as aiasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

Exim 4.40 [11] receiving & delivering mail (3)

address
Jj new addresses
first router yes run
conditions ok? first router accept
no :Lfail
gueue for
address bounces transport
second router yes run redirect
conditions ok? second router
no decline | fail address
bounces
third router yes run
conditions ok? third router accept
no decline ‘
gueue for
transport
Nno more routers
address bounces

Routing an address

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The fina router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,
or it may look up the local part in afile or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and -bvs
command line options.

When an address is being verified, the routers are run in ‘verify mode’. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such a router, causing it to be skipped in verify mode.

Exim 4.40 [12] receiving & delivering mail (3)

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

e accept: The router accepts the address, and either queues it for a transport, or generates one or
more ‘child’ addresses. Processing the original address ceases, unless the unseen option is set on
the router. This option can be used to set up multiple deliveries with different routing (for
example, for keeping archive copies of messages). When unseen is set, the address is passed to
the next router. Normally, however, an accept return marks the end of routing.

If child addresses are generated, Exim checks to see whether they are duplicates of any existing
recipient addresses. During this check, local parts are treated as case-sensitive. Duplicate
addresses are discarded. Each of the remaining child addresses is then processed independently,
starting with the first router by default. It is possible to change this by setting the redirect_router
option to specify which router to start at for child addresses. Unlike pass router (see below) the
router specified by redirect_router may be anywhere in the router configuration.

* pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be
changed by setting the pass_router option. However, (unlike redirect_router) the named router
must be below the current router (to avoid loops).

e decline: The router declines to accept the address because it does not recognize it a al. By
default, the address is passed to the next router, but this can be prevented by setting the no_more
option. When no_moreis set, al the remaining routers are skipped.

» fail: The router determines that the address should fail, and queues it for the generation of a
bounce message. There is no further processing of the original address unless unseen is set on
the router.

» defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

» eror: There is some error in the router (for example, a syntax error in its configuration). The
action is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is ‘unrouteable address’, but you
can set your own message by making use of the cannot_route message option. This can be set for
any router; the value from the last router that ‘saw’ the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a ‘fail’
facility for this purpose.

3.11 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter 15.

» The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or
suffix) is not present, the router is skipped. These conditions are tested first. When an affix is
present, it is removed from the local part before further processing, including the evaluation of
any other conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing
it for delivery (or testing its delivery routing). If the verify option is set false, the router is

Exim 4.40 [13] receiving & delivering mail (3)

skipped when Exim is verifying an address. Setting the verify option actually sets two options,
verify_sender and verify_recipient, which independently control the use of the router for sender
and recipient verification. You can set these options directly if you want a router to be used for
only one type of verification.

If the address test option is set false, the router is skipped when Exim is run with the -bt option
to test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this.

Certain routers can be explicitly skipped when running the routers to check an address given in
the SMTP expn command (see the expn option).

If the domains option is set, the domain of the address must be in the set of domains that it
defines.

If the local_parts option is set, the local part of the address must be in the set of local parts that
it defines. If local_part_prefix or local_part_suffix is in use, the prefix or suffix is removed
from the local part before this check. If you want to do precondition tests on local parts that
include affixes, you can do so by using a condition option (see below) that uses the variables
$local_part, $local_part_prefix, and $local_part_suffix as necessary.

If the check_local _user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
$local_user_gid; these values can be used in the remaining preconditions.

If the router_home directory option is set, it is expanded at this point, because it overrides
the value of $home. If this expansion were left till later, the value of $home as set by
check _local_user would be used in subsequent tests. Having two different values of $home in
the same router could lead to confusion.

If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chap-
ter 11.

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.12 Délivery in detail
When a message is to be delivered, the sequence of eventsis as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients
to the message, replace the recipients, discard the message, cause a new message to be generated,
or cause the message delivery to fail. The format of the system filter file is the same as for Exim
user filter files, described in the separate document entitled Exim's interfaces to mail filtering.
(Note: Sieve cannot be used for system filter files) Some additiona features are available in
system filters — see chapter 40 for details. Note that a message is passed to the system filter only
once per delivery attempt, however many recipients it has. However, if there are several delivery
attempts because one or more addresses could not be immediately delivered, the system filter is
run each time. The filter condition first_delivery can be used to detect the first run of the system
filter.

Exim 4.40 [14] receiving & delivering mail (3)

» Each recipient address is offered to each configured router in turn, subject to its preconditions,
until one is able to handle it. If no router can handle the address, that is, if they al decline, the
address is failed. Because routers can be targeted at particular domains, several locally handled
domains can be processed entirely independently of each other.

e A router that accepts an address may set up a local or a remote transport for it. However, the
transport is not run at this time. Instead, the address is placed on alist for the particular transport,
to be run later. Alternatively, the router may generate one or more new addresses (typically from
dias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that
was processed by itself.

¢ When al the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

» Each local delivery to afile or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (‘the Exim user’), but in this case, several remote deliveries
can be run in parallel. The maximum number of simultaneous remote deliveries for any one
message is set by the remote_max_parallel option. The order in which deliveries are done is not
defined, except that all local deliveries happen before any remote deliveries.

* When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
trangport. If there was a previous failure, Exim does not attempt a new delivery until the retry
time for the address is reached. However, this happens only for delivery attempts that are part of
a queue run. Local deliveries are aways attempted when delivery immediately follows message
reception, even if retry times are set for them. This makes for better behaviour if one particular
message is causing problems (for example, causing quota overflow, or provoking an error in a
filter file).

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter 32 for details of retry strategies.

« |f there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

« |If one or more addresses suffered a temporary failure, the message is left on the queue, to be
tried again later. Delivery of these addresses is said to be deferred.

* When all the recipient addresses have either been delivered or bounced, handling of the message
is complete. The spool files and message log are deleted, though the message log can optionally
be preserved if required.

3.13 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue runners at regular intervals, or use some other means (such as cron) to start them. If you do
not arrange for queue runners to be run, messages that fail temporarily at the first attempt will remain
on your queue for ever. A queue runner process works it way through the queue, one message at a
time, trying each delivery that has passed its retry time. You can run several queue runners at once.

Exim 4.40 [15] receiving & delivering mail (3)

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
32). These rules also specify when Exim should give up trying to deliver to the address, at which point
it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.14 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.15 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 41 for details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the maiL command.
However, when an address is expanded via a forward or alias file, an aternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
42.2) it is common to direct bounce messages to the manager of the list.

3.16 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a
permanent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of
an administrator. There are options which can be used to make Exim discard such failed messages, or
to keep them for only a short time (see timeout_frozen_after and ignore_bounce _errors_after).

Exim 4.40 [16] receiving & delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when upacked, creates a directory with the
name of the current release (for example, exim-4.40) into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU Genera Public Licence

M akefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
(O] OS-gpecific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the src directory, and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symboalic links to the sources are installed in this directory, which is where the actual building takes
place.

In most cases, Exim can discover the machine architecture and operating system for itself, but the
defaults can be overridden if necessary.

4.3 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution,
the DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they
contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardised on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens afile caled dbmfile, there are four possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

Exim 4.40 [17] building/installing (4)

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the file name is used unmodified.

(3) The Berkeley DB package, if caled via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer’s interface is somewhat different to the traditional ndom interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB
package. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a
while, but the latest versions are now numbered 4.x. Maintenance of some of the earlier releases
has ceased. All versions of Berkeley DB can be obtained from

http://lwww.d eepycat.com/
(6) Yet another DBM library, called tdb, has become available from
http://download.sour cefor ge.net/tdb
It has its own interface, and also operates on a single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set use pB in an appropriate configuration file
(typically Local/M akefile). For example:

USE_DB-=yes

Similarly, for gdbm you set use_cpem, and for tdb you set use Tpe. An error is diagnosed if you set
more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting use pe as their default, and the
configuration files for Cygwin set use_Gpem. Anything you set in Local/M akefile, however, overrides
these system defaults.

As well as setting use_ DB, USE_GDBM, Or USE TDB, it may aso be necessary to set pemLIB, tO cause
inclusion of the appropriate library, as in one of these lines:

DBMLIB = -1db
DBMLIB = -1tdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in pewmLiB, as in this
example:

| NCLUDE=-1/usr/local/include/db-4.1
DBM.I B=/usr/l ocal /1ib/db-4.1/1i bdb. a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

4.4 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name L ocal/M akefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of al the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/M akefile, then read it and edit it appropriately.

Exim 4.40 [18] building/installing (4)

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time configuration file (coNFIGURE_FILE), the directory in which Exim binaries will
be installed (BIN_DIRECTORY), and the identity of the Exim user (Exim_user and maybe exim_GRouP as
well). The value of conrFiGURE FILE can in fact be a colon-separated list of file names; Exim uses the
first of them that exists.

There are a few other parameters that can be specified either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim's spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that you
specify them in Local/Makefile instead of at run time, so that errors detected early in Exim's
execution (such as a malformed configuration file) can be logged.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
L ocal/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
L ocal/eximon.conf can be empty, but it must exist.

This is al the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default or
by operating-system-specific configuration files, for example to change the name of the C compiler,
which defaults to gcc. See section 4.10 below for details of how to do this.

4.5 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and trandates them into a specified character set (default 1SO-8859-1).
The trandlation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from http://www.gnu.or g/softwar e/libiconv/) can be installed on
such systems to remedy this deficiency, as well as on systems that do not supply iconv() at all. After
installing libiconv, you should add

HAVE | CONV=yes
to your L ocal/M akefile and rebuild Exim.

4.6 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the starTTLs command as per RFC
2487. 1t can aso support legacy clients that expect to start a TLS session immediately on connection
to a non-standard port (see the -tls-on-connect command line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL isinstalled, you should set

SUPPORT_TLS=yes
TLS LIBS=-1ssl -lcrypto

in Local/Makefile. You may aso need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS LI BS=-L/usr/local/openssl/lib -Issl -lcrypto
TLS_ | NCLUDE=-1/usr /1 ocal / openssl /i ncl ude/

If GnuTLS isinstalled, you should set

Exim 4.40 [19] building/installing (4)

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS LIBS=-Ignutls -Itasnl -|gcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files.
For example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS LIBS=-L/usr/gnu/lib -Ignutls -Itasnl -Igcrypt
TLS | NCLUDE=-1/usr/gnu/incl ude

You do not need to set TLs INcLUDE if the relevant directory is already specified in iNcLuDE. Details of
how to configure Exim to make use of TLS are given in chapter 37.

4.7 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim's own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in L ocal/M akefile, arrange for the file tcpd.h to be available at compile time, and
also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS ExIM. For example, if tcpwrappers isinstalled in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0O -1l /usr/local/include
EXTRALI BS_EXI M=-L/usr/local/lib -Iwap

in Local/M akefile. The name to use in the tcpwrappers control filesis ‘exim’. For example, the line
exim: LOCAL 192.168.1. .friendly.domain.exanple

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. Consult the
tcpwrappers documentation for further details.

4.8 Including support for 1Pv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPVe=YES in
L ocal/M akefile causes the IPv6 code to be included; it may also be necessary to set ipve INCLUDE and
IPV6_LIBS ON systems where the IPv6 support is not fully integrated into the normal include and library
files.

IPv6 is still changing rapidly. Two different types of DNS record for handling IPv6 addresses have
been defined. AAAA records are aready in use, and are currently seen as the ‘mainstream’, but
another record type called A6 is being argued about. Its status is currently ‘experimental’. Exim has
support for A6 records, but this is included only if you set supPoRT_Ae=YES in L ocal/M akefile.

4.9 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

Warning: The -j (paralel) flag must not be used with make; the building process fails if it is set.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,

Exim 4.40 [20] building/installing (4)

and finaly Exim itself. The command make makefile can be used to force a rebuild of the make file in
the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems are
covered.

4.10 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make
instructions. If a value is set more than once, the last setting overrides any previous ones. This
provides a convenient way of overriding defaults. The files that are concatenated are, in order:

OS/M akefile-Default

OS/M akefile-<ostype>

L ocal/M akefile

L ocal/M akefile-<ostype>

L ocal/M akefile-<archtype>

L ocal/M akefil e-<ostype>-<archtype>
OS/M akefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. L ocal/M akefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables ExiM_OSTYPE OF EXIM_ARCHTYPE iS
set, their values are used, thereby providing a means of forcing particular settings. Otherwise, the
scripts try to get values from the uname command. If this fails, the shell variables ostype and
ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to produce the standard
names that Exim expects. You can run these scripts directly from the shell in order to find out what
values are being used on your system.

OS/M akefile-Default contains comments about the variables that are set therein. Some (but not all)
are mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/M akefile-<ostype>) to see what the default
values are.

If you need to change any of the vaues that are set in OSMakefile-Default or in
OS/M akefile-<ostype>, or to add any new definitions, you do not need to change the original files.
Instead, you should make the changes by putting the new values in an appropriate Local file. For
example, when building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly
DEC-OSF1) operating system, it is necessary to specify that the C compiler is called cc rather than
gce. Also, the compiler must be called with the option -std1, to make it recognize some of the features
of Standard C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you
should create a file called L ocal/M akefile-OSF1 containing the lines

CC=cc

CFLAGS=-stdl

If you are compiling for just one operating system, it may be easier to put these lines directly into
L ocal/M akefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All the
different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for L ocal/M akefile are:

Exim 4.40 [21] building/installing (4)

LOOKUP_LDAP=yes
LOOKUP_NI S=yes
LOOKUP_NI SPLUS=yes

and similar settings apply to the other lookup types. They are al listed in src/EDITME. In most cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
in the case of cdb, which isincluded in the binary only if

LOOKUP_CDB=yes

is set, the code is entirely contained within Exim, and no external include files or libraries are required.
When a lookup type is not included in the binary, attempts to configure Exim to use it cause run time
configuration errors.

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXI M_PERL=perl .o
must be defined in L ocal/M akefile. Details of this facility are given in chapter 12.

The location of the X11 libraries is something that varies a lot between operating systems, and of
course there are different versions of X11 to cope with. Exim itself makes no use of X11, but if you
are compiling the Exim monitor, the X11 libraries must be available. The following three variables are
set in OS/M akefile-Default:

X11=/ usr/ X11R6
XI NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=- L$(X11)/1i b

These are overridden in some of the operating-system configuration files. For example, in
OS/M akefile-SUnOS5 there is

X11=/usr/ openw n
XI NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=-L$(X11)/1ib -R$(X11)/1ib

If you need to override the default setting for your operating system, place a definition of al three of
these variables into your L ocal/M akefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called EXTRALIBS,
which appears in al the link commands, but by default is not defined. In contrast, EXTRALIBS EXIM iS
used only on the command for linking the main Exim binary, and not for any associated utilities.
There is also pemLiB, which appears in the link commands for binaries that use DBM functions (see
also section 4.3). Finaly, there is exTrALIBS_ExIMON, Which appears only in the link step for the Exim
monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, L ocal/M akefile or L ocal/eximon.conf) before rebuilding.

4.11 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are system-
specific C header files that should not normally need to be changed. There is a list of macro settings
that are recognized in the file OS/os.configuring, which should be consulted if you are porting Exim
to a new operating system.

4.12 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

Exim 4.40 [22] building/installing (4)

OS/eximon.conf-Default
OS/eximon.conf-<ostype>

L ocal/eximon.conf

L ocal/eximon.conf-<ostype>

L ocal/eximon.conf-<archtype>

L ocal/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by eximon_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of Loc_DEPTH at run time.

4.13 Installing Exim binaries and scripts

The command make install runs the exim install script with no arguments. The script copies binaries
and utility scripts into the directory whose name is specified by the BIN_DIRECTORY setting in
L ocal/M akefile.

Exim’s run time configuration file is named by the conFIGURE_FILE setting in Local/Makefile. If this
names a single file, and the file does not exist, the default configuration file src/configure.default is
copied there by the installation script. If a run time configuration file already exists, it is left alone. If
CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by svstem_aLiases FILE in Local/M akefile (/etc/aliases by default). If the system aliases file does not
exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’'s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

The install script copies files only if they are newer than the files they are going to replace. The Exim
binary is required to be owned by root and have the setuid bit set, for normal configurations.
Therefore, you must run make install as root so that it can set up the Exim binary in this way.
However, in some special situations (for example, if a host is doing no local deliveries) it may be
possible to run Exim without making the binary setuid root (see chapter 48 for details).

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDI R=/ sone/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name is
modified.) For backwards compatibility, rRooT is used if DESTDIR iS not set, but this usage is deprecated.

Running make install does not copy the Exim 4 conversion script convert4r4, or the pcretest test
program. You will probably run the first of these only once (if you are upgrading from Exim 3), and
the second isn't really part of Exim. None of the documentation files in the doc directory are copied,
except for the info files when you have set INFO_DIRECTORY, as described in section 4.14 below.

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example exim-4.40-1. The script then arranges for a symbolic

Exim 4.40 [23] building/installing (4)

link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make | NSTALL ARG=-n install

The contents of the variable INsTALL_ARG are passed to the installation script. You do not need to be
root to run this test. Alternatively, you can run the installation script directly, but this must be from
within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunCS5-5.5. 1-sparc; ../scripts/eximinstall -n)
There are two other options that can be supplied to the installation script.

* -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

* -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make | NSTALL_ARG=-no_symink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make | NSTALL_ARG=' -no_sym ink exim install

4.14 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source of
Exim’s documentation is not included in the main distribution. Instead it is available separately from
the ftp site (see section 1.5).

If you have defined INFo_DIRECTORY in Local/M akefile and the Texinfo source of the documentation is
found in the source tree, running make install automatically builds the info files and installs them.

4.15 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.16 Testing

Having installed Exim, you can check that the run time configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your paTH
environment variable:

exim-bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exi m - bt <local username>
should verify that it recognizes alocal mailbox, and
exi m - bt <remote address>

Exim 4.40 [24] building/installing (4)

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exi m-v postnaster @our. domai n. exanpl e
From user @our. domai n. exanpl e

To: postmaster @our. domai n. exanpl e
Subj ect: Testing Exim

This is a test nessage.
"D
The -v option causes Exim to output some verification of what it is doing. In this case you should see

copies of three log lines, one for the message’'s arrival, one for its delivery, and one containing
‘Completed.

If you encounter problems, look at Exim's log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim’'s spool, you can force a delivery with
debugging turned on by a command of the form

exim-d - M <message-id>

You must be root or an ‘admin user’ in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the ‘sticky bit’ set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the ‘sticky bit" on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fentl() locking instead. However, you should do
this only if al user agents also use fentl() locking. For further discussion of locking issues, see
chapter 26.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is aready running Exim can most easily be done by building a
binary with a different coNnFIGURE_FILE setting. From within the run time configuration, all other file
and directory names that Exim uses can be altered, in order to keep it entirely clear of the production
version.

4.17 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is either /usr/sbin/sendmail, or
lusr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

Exim 4.40 [25] building/installing (4)

sendmai | [usr/eximbin/exim

send- mai | [usr/eximbin/exim
mai | g [usr/eximbin/exim-bp
newal i ases fusr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
‘live’. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim's interface to
mail filtering available to them.

4.18 Upgrading Exim

If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAS, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-exec itself, and thereby
pick up the new binary. You do not need to stop processing mail in order to install a new version of
Exim.

4.19 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solarisis

/etc/init.d/ sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text ‘sendmail’; this is not present because the actual
program name (that is, ‘exim’) is given by the ps command with these options. A solution is to replace
the line that finds the process id with something like

pi d=' cat /var/spool /exi m exi m daenon. pi d*
to obtain the daemon’s pid directly from the file that Exim savesit in.

Note, however, that stopping the daemon does not ‘stop Exim’. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

Exim 4.40 [26] building/installing (4)

5. The Exim command line

Exim’'s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailg, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolicaly linked to /usr/sbin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name runq it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias file.
Exim does not have the concept of a single alias file, but can be configured to run a given command if
called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases ‘Exim user’ and ‘Exim group’ mean the user and group defined by
EXIM_USER and exiM_GRouP in L ocal/M akefile or set by the exim_user and exim_group options. These
do not necessarily have to use the name ‘exim’.

e The trusted users are root, the Exim user, any user listed in the trusted_users configuration
option, and any user whose current group or any supplementary group is one of those listed in
the trusted_groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading ‘From ’ line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and
-f options below). See the untrusted_set_sender option for a way of permitting non-trusted users
to set envelope senders. For a trusted user, there is never any check on the contents of the From:
header line, and a Sender: line is never added. Furthermore, any existing Sender: line in
incoming local (non-TCP/IP) messages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’'s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other
values that are available to trusted users.

e The admin users are root, the Exim user, and any user that is a member of the Exim group or of
any group listed in the admin_groups configuration option. The current group does not have to
be one of these groups.

Exim 4.40 [27] command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the
full information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of
messages on its queue is restricted to admin users. However, this restriction can be relaxed by
setting the prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin
users unless queue list_requires_admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter 6.

5.3 Command line options
The command options are described in alphabetical order below.

--help

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they
begin with hyphens.

This option causes Exim to output a few sentences stating what it is. The same output is
generated if the Exim binary is called with no options and no arguments.

-B<type>

-bd

-bdf

-be

This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores
this option.

This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd
option is combined with the -g<time> option, to specify that the daemon should aso initiate
periodic queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v
(verifying) options are set, the daemon does not disconnect from the controlling terminal.
When running this way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’'s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only
on specific interfaces. Chapter 13 contains a description of the options that control this.

When a listening daemon is started without the use of -oX (that is, without overriding the
normal configuration), it writes its process id to a file called exim-daemon.pid in Exim’'s
spool directory. This location can be overridden by setting PiD_FILE PATH in Local/M akefile.
The file is written while Exim is still running as root.

When -oX is used on the command line to start a listening daemon, the process id is not
written to the normal pid file path. However, -oP can be used to specify a path on the
command line if a pid file is required.

The sicHuP signal can be used to cause the daemon to re-exec itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means of the
.Include facility, is changed, and also whenever a new version of Exim is installed. It is not
necessary to do this when other files that are referenced from the configuration (for example,
adlias files) are changed, because these are reread each time they are used.

This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary
users from using this mode to read otherwise inaccessible files. If no arguments are given,
Exim runs interactively, prompting for lines of data. Long expressions can be split over

Exim 4.40 [28] command line (5)

several lines by using backdash continuations. As in Exim’'s run time configuration,
whitespace at the start of continuation lines is ignored.

Each argument or data line is passed through the string expansion mechanism, and the result
is output. Variable values from the configuration file (for example, $qualify_domain) are
available, but no message-specific values (such as $domain) are set, because no message is
being processed.

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system
filter. The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in
the filter, an empty file can be supplied. If a system filter file is being tested, -bF should be
used instead of -bf. If the test file does not begin with one of the special lines

Eximfilter
Sieve filter

it is taken to be anormal .forward file, and is tested for validity under that interpretation. See
sections 22.4 to 22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of
filter testing are given in the separate document entitled Exim's interfaces to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a‘From ' line
at the start of the test message. Various parameters that would normally be taken from the
envelope recipient address of the message can be set by means of additional command line
options. These are:

-bfd <domain> default is the qualify domain
-bfl <local_part> default is the logged in user
-bfp <local_part_prefix> default is null
-bfs <local_part_suffix> default is null

The local part should aways be set to the incoming address with any prefix or suffix stripped,
because that is how it appears to the filter when a message is actually being delivered.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard
input and output. The IP address may include a port number at the end, after a full stop. For
example:

exim-bh 10.9.8.7.1234
exim-bh fe80::a00: 20ff: fe86: a061. 5678

Comments as to what is going on are written to the standard error file. These include lines
beginning with ‘LOG’ for anything that would have been logged. This facility is provided
for testing configuration options for incoming messages, to make sure they implement the
required policy. For example, you can test your relay controls using -bh.

Warning 1: You cannot test features of the configuration that rely on ident (RFC 1413)
calouts. These cannot be done when testing using -bh because there is no incoming SMTP
connection.

Warning 2: Address verification callouts (see section 38.21) are also skipped when testing
using -bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of
the real log files. There may be pauses when DNS (and other) lookups are taking place, and

Exim 4.40 [29] command line (5)

of course these may time out. The -oMi option can be used to specify a specific IP interface
and port if thisis important.

The exim_checkaccess utility is a ‘ packaged’ version of -bh whose output just states whether
a given recipient address from a given host is acceptable or not. See section 46.8.

-bhc <IP address>

-bi

-bm

-bng

This option operates in the same way as -bh, except that address verification calouts are
performed if required. This includes consulting and updating the callout cache database.

Sendmail interprets the -bi option as a request to rebuild its aias file. Exim does not have the
concept of a single dias file, and so it cannot mimic this behaviour. However, cals to
lusr/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files,
so the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to
the command as an argument. The command set by bi_command may not contain arguments.
The command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if
this is required. If the bi_command option is not set, caling Exim with -bi is a no-op.

This option runs an Exim receiving process that accepts an incoming, locally-generated
message on the current input. The recipients are given as the command arguments (except
when -t is also present — see below). Each argument can be a comma-separated list of RFC
2822 addresses. This is the default option for selecting the overall action of an Exim call; it is
assumed if no other conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the
values of the qualify_domain or qualify_recipient options, as appropriate. The -bng option
(see below) provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP
ACL. See chapter 38 for details. The return code is zero if the message is successfully
accepted. Otherwise, the action is controlled by the -oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility
with Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GVl 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to
appear at the start of the message. There appears to be no authoritative specification of the
format of this line. Exim recognizes it by matching against the regular expression defined by
the uucp_from_pattern option, which can be changed if necessary. The specified sender is
treated as if it were given as the argument to the -f option, but if a -f option is also present,
its argument is used in preference to the address taken from the message. The caller of Exim
must be a trusted user for the sender of a message to be set in this way.

By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification
applies both to addresses in envelopes, and addresses in header lines. Sender addresses are
qualified using qualify_domain, and recipient addresses using qualify_recipient (which
defaults to the value of qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably
do not want to qualify unqualified addresses in header lines. (Such lines will be present only
if you have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all qualification of unqualified addresses in messages that orig-
inate on the local host. When this is used, unqualified addresses in the envelope provoke
errors (causing message rejection) and unqualified addresses in header lines are |eft alone.

Exim 4.40 [30] command line (5)

-bP

_bp

-bpa

If this option is given with no arguments, it causes the values of all Exim’'s main configur-
ation options to be written to the standard output. The values of one or more specific options
can be requested by giving their names as arguments, for example:

exim-bP qualify_domai n hol d_donai ns

However, any option setting that is preceded by the word *hide’ in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

nmysql _servers = <val ue not di spl ayabl e>

If configure file is given as an argument, the name of the run time configuration file is
output. If alist of configuration files was supplied, the value that is output here is the name of
the file that was actually used.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are
written in a sub-directory of the spool directory caled log, and the pid file is written directly
into the spool directory.

If -bP isfollowed by a name preceded by +, for example,
exi m -bP +l ocal dommi ns

it searches for a matching named list of any type (domain, host, address, or local part) and
outputs what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim-bP transport |ocal _delivery

The generic driver options are output first, followed by the driver’s private options. A list of
the names of drivers of a particular type can be obtained by using one of the words
router_list, transport_list, or authenticator _list, and a complete list of al drivers with their
option settings can be obtained by using routers, transports, or authenticators.

This option requests a listing of the contents of the mail queue on the standard output. If the
-bp option is followed by alist of message ids, just those messages are listed. By default, this
option can be used only by an admin user. However, the queue_list_requires admin option
can be set false to alow any user to see the queue.

Each message on the queue is displayed as in the following example:

25m 2. 9K 0t 5C6f - 0000c8- 00 <al i ce@wonderl and. fi ct. exanpl e>
red. ki ng@ ooki ng-gl ass. fict.exanple
<other addresses>

The first line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is
empty, and appears as ‘<>’. If the message was submitted locally by an untrusted user who
overrode the default sender address, the user’s login name is shown in parentheses before the
sender address. If the message is frozen (attempts to deliver it are suspended) then the text
‘»+x frozen =+’ is displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on
subsequent lines. Those addresses to which the message has already been delivered are
marked with the letter D. If an origina address gets expanded into several addresses via an
alias or forward file, the origina is displayed with a D only when deliveries for all of its child
addresses are compl ete.

This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations.
These addresses are flagged with *+D’ instead of just ‘D’.

Exim 4.40 [31] command line (5)

-bpc

-bpr

-bpra
-bpru
-bpu

-brt

-brw

-bS

-bs

This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue list_requires_admin is set false.

This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in a way that doesn’t need the sorting.

This option is a combination of -bpr and -bpa.
This option is a combination of -bpr and -bpu.

This option operates like -bp but shows only undelivered top-level addresses for each mess-
age displayed. Addresses generated by aliasing or forwarding are not shown, unless the
message was deferred after processing by a router with the one_time option set.

This option is for testing retry rules, and it must be followed by up to three arguments. It
causes Exim to look for a retry rule that matches the values and to write it to the standard
output. For example:

exim-brt bach. conp. nus. exanpl e
Retry rule: *.conp.nus.exanple F,2h,15m F, 4d, 30m

See chapter 32 for a description of Exim’s retry rules. The first argument, which is required,
can be a complete address in the form local_part@domain, or it can be just a domain name.
The second argument is an optional second domain name; if no retry rule is found for the first
argument, the second is tried. This ties in with Exim's behaviour when looking for retry rules
for remote hosts — if no rule is found that matches the host, one that matches the mail domain
is sought. The final argument is the name of a specific delivery error, as used in setting up
retry rules, for example ‘quota_3d'.

This option is for testing address rewriting rules, and it must be followed by a single
argument, consisting of either a local part without a domain, or a complete address with a
fully qualified domain. Exim outputs how this address would be rewritten for each possible
place it might appear. See chapter 31 for further details.

This option is used for batched SMTP input, which is an aternative interface for non-
interactive local message submission. A number of messages can be submitted in a single run.
However, despite its name, this is not realy SMTP input. Exim reads each message's
envelope from SMTP commands on the standard input, but generates no responses. If the
caller istrusted, or untrusted_set_sender is set, the senders in the SMTP mAIL commands are
believed; otherwise the sender is aways the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can
be checked using the non-SMTP ACL (see chapter 38). Unqualified addresses are automati-
caly qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnqg
option is used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QuIT quits, ignoring the rest of the standard inpuit.

If any error is encountered, reports are written to the standard output and error streams, and
Exim gives up immediately. The return code is O if no error was detected; it is 1 if one or
more messages were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section 43.12.

This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter 38) are applied.

Exim 4.40 [32] command line (5)

-bt

-bVv

-bv

Some user agents use this interface as a way of passing locally-generated messages to the
MTA. In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the
senders of messages are taken from the SMTP maiL commands. Otherwise the content of
these commands is ignored and the sender is set up as the caling user. Unqualified addresses
are automatically qualified using qualify_domain and qualify_recipient, as appropriate, un-
less the -bnq option is used.

The -bs option is aso used to run Exim from inetd, as an alternative to using a listening
daemon. Exim can distinguish the two cases by checking whether the standard input is a
TCP/IP socket. When Exim is called from inetd, the source of the mail is assumed to be
remote, and the comments above concerning senders and qualification do not apply. In this
situation, Exim behaves in exactly the same way as it does when receiving a message via the
listening daemon.

This option runs Exim in address testing mode, in which each argument is taken as an address
to be tested for deliverability. The results are written to the standard output. If a test fails, and
the caller is not an admin user, no details of the failure are output, because these might
contain sensitive information such as usernames and passwords for database |ookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested. Each address is handled as if it were the recipient address
of a message (compare the -bv option). It is passed to the routers and the result is written to
the standard output. However, any router that has no_address test set is bypassed. This can
make -bt easier to use for genuine routing tests if your first router passes everything to a
scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code O is given only when all
addresses succeed.

Warning: -bt can only do relatively smple testing. If any of the routers in the configuration
makes any tests on the sender address of a message, you can use the -f option to set an
appropriate sender when running -bt tests. Without it, the sender is assumed to be the calling
user at the default qualifying domain. However, if you have set up (for example) routers
whose behaviour depends on the contents of an incoming message, you cannot test those
conditions using -bt. The -N option provides a possible way of doing such tests.

This option causes Exim to write the current version number, compilation number, and
compilation date of the exim binary to the standard output. It aso lists the DBM library thisis
being used, the optional modules (such as specific lookup types), the drivers that are included
in the binary, and the name of the run time configuration file that isin use.

This option runs Exim in address verification mode, in which each argument is taken as an
address to be verified. During normal operation, verification happens mostly as a consequence
processing a verify condition in an ACL (see chapter 38). If you want to test an entire ACL,
see the -bh option.

If verification fails, and the caller is not an admin user, no details of the failure are output,
because these might contain sensitive information such as usernames and passwords for
database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified. Verification differs from address testing (the -bt option)
in that routers that have no_verify set are skipped, and if the address is accepted by a router
that has fail_verify set, verification fails. The address is verified as a recipient if -bv is used;
to test verification for a sender address, -bvs should be used.

If the -v option is not set, the output consists of a single line for each address, stating whether
it was verified or not, and giving a reason in the latter case. Otherwise, more details are given
of how the address has been handled, and in the case of address redirection, all the generated

Exim 4.40 [33] command line (5)

addresses are also considered. Without -v, generating more than one address by redirection
causes verification to end sucessfully.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at
least one could not be resolved for some reason. Return code O is given only when all
addresses succeed.

If any of the routers in the configuration makes any tests on the sender address of a message,
you should use the -f option to set an appropriate sender when running -bv tests. Without it,
the sender is assumed to be the calling user at the default qualifying domain.

-bvs This option acts like -bv, but verifies the address as a sender rather than a recipient address.
This affects any rewriting and qualification that might happen.
-C <fileist>

This option causes Exim to find the run time configuration file from the given list instead of
from the list specified by the conFIGURE_FILE compile-time setting. Usually, the list will consist
of just a single file name, but it can be a colon-separated list of names. In this case, the first
file that exists is used. Failure to open an existing file stops Exim from proceeding any further
along the list, and an error is generated.

When this option is used by a caller other than root or the Exim user, and the list is different
from the compiled-in list, Exim gives up its root privilege immediately, and runs with the real
and effective uid and gid set to those of the caller. However, if ALT_CONFIG_ROOT_ONLY iS
defined in Local/M akefile, root privilege is retained for -C only if the caller of Exim is root.
This option is not set by default.

Setting ALT_CONFIG_ROOT_ONLY locks out the possibility of testing a configuration using -C
right through message reception and delivery, even if the caller is root. The reception works,
but by that time, Exim is running as the Exim user, so when it re-execs to regain privilege for
the delivery, the use of -C causes privilege to be lost. However, root can test reception and
delivery using two separate commands (one to put a message on the queue, using -odg, and
another to do the delivery, using -M).

If ALT_conFIG_PREFIX IS defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the file nhame must not
contain the sequence / . . / . However, if the value of the -C option is identical to the value of
CONFIGURE_FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no
default setting for ALT_coNFIG_PREFIX; When it is unset, any file name can be used with -C.

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to which
only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but
cannot be used for test deliveries, unless the caller is privileged, or unless it is an exotic
configuration that does not require privilege. No check is made on the owner or group of the
files specified by this option.

-D<macro>=<value>

This option can be used to override macro definitions in the configuration file (see section
6.4). However, like -C, if it is used by an unprivileged caler, it causes Exim to give up its
root privilege. If bisaBLE_D_opTION is defined in Local/M akefile, the use of -D is completely
disabled, and its use causes an immediate error exit.

The entire option (including equals sign if present) must all be within one command line item.
-D can be used to set the value of a macro to the empty string, in which case the equals sign
is optional. These two commands are Ssynonymous:

exim-DABC ...
exim-DABC= ...

Exim 4.40 [34] command line (5)

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces
are permitted around the macro name and the equals sign. For example:

exim’-D ABC = sonet hi ng’
-D may be repeated up to 10 times on a command line.

-d<debug options>

This option causes debugging information to be written to the standard error stream. It is
restricted to admin users because debugging output may show database queries that contain
password information. Also, the details of users filter files should be protected. When -d is
used, -v is assumed. If -d is given on its own, a lot of standard debugging data is output. This
can be reduced, or increased to include some more rarely needed information, by following -d
with a string made up of names preceded by plus or minus characters. These add or remove
sets of debugging data, respectively. For example, -d+filter adds filter debugging, wheress -d-
all+filter selects only filter debugging. The available debugging categories are:

acl ACL interpretation

aut h authenticators

del i ver general delivery logic

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments for execv() calls

expand detailed debugging for string expansions
filter filter handling

hi nt s_I ookup hints data lookups
host _| ookup all types of name-to-1P address handling

i dent ident lookup

interface lists of local interfaces

lists matching things in lists

| oad system load checks

| ocal _scan can be used by local_scan() (see chapter 39)
| ookup general lookup code and all lookups
menory memory handling

pid add pid to debug output lines
process_i nf o setting info for the process log
queue_run gueue runs

receive general message reception logic

resol ver turn on the DNS resolver’s debugging output
retry retry handling

rewite address rewriting

route address routing

ti mestanp add timestamp to debug output lines

tls TLSlogic

transport transports

uid changes of uid/gid and looking up uid/gid
verify address verification logic

al | all of the above, and also -v

The r esol ver option produces output only if the DNS resolver was compiled with beBuG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging
output from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omits expand, filter,interface, | oad, menory,
pi d, resol ver, and ti nmest anp. However, the pi d selector is forced when debugging is
turned on for a daemon, which then passes it on to any re-executed Exims. Exim aso
automatically adds the pid to debug lines when several remote deliveries are run in parallel.

Exim 4.40 [35] command line (5)

-dropcr

The ti mest anp selector causes the current time to be inserted at the start of all debug
output lines. This can be useful when trying to track down delays in processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v is used.

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and
LF characters in incoming messages. What happens now is described in section 44.1.

This option specifies that an incoming message is a locally-generated delivery failure report.
It is used internally by Exim when handling delivery failures and is not intended for external
use. Its only effect is to stop Exim generating certain messages to the postmaster, as otherwise
message cascades could occur in some situations. As part of the same option, a message id
may follow the characters -E. If it does, the log entry for the receipt of the new message
contains the id, following ‘R=", as a cross-reference.

There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq.
Exim treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>

This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the user’s gecos entry from the password data is used.
As users are generally permitted to alter their gecos entries, no security considerations are
involved. White space between -F and the <string> is optional.

-f <address>

-G

This option sets the address of the envelope sender of a locally-generated message (also
known as the return path). The option can normally be used only by a trusted user, but
untrusted _set sender can be set to alow untrusted users to use it. In the absence of -f, or if
the caller is not alowed to use it, the sender of a local message is set to the caller’s login
name at the default qualify domain.

There is one exception to the restriction on the use of -f: an empty sender can be specified by
any user, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them,
as in these examples of shell commands:

exim-f '<>' user @onmai n
exim-f "" user @omain

In addition, the use of -f is not restricted when testing a filter file with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to
send anonymous mail. Exim still checks that the From: header refers to the local user, and
if it does not, it adds a Sender: header, though this can be overridden by setting
no_local_from_check.

White space between -f and the <address> is optiona (that is, they can be given as two
arguments or one combined argument). The sender of a locally-generated message can aso be
set (when permitted) by an initia ‘From ’ line in the message — see the description of -bm
above — but if -f is also present, it overrides ‘From’.

This is a Sendmail option which is ignored by Exim.

-h <number>

This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it
overrides the *hop count’ obtained by counting Received: headers.)

Exim 4.40 [36] command line (5)

This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. | can find no documentation for this option in
Solaris 2.4 Sendmail, but the mailx command in Solaris 2.4 uses it. See also -ti.

-M <message id> <message id> ...

This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings
of queue_domains, queue_smtp_domains, and hold_domains are ignored. Retry hints for
any of the addresses are overridden — Exim tries to deliver even if the normal retry time has
not yet been reached. This option requires the caller to be an admin user. However, there is an
option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

-Mar <messageid> <address> <address> ...

This option requests Exim to add the addresses to the list of recipients of the message (‘ar’
for ‘add recipients’). The first argument must be a message id, and the remaining ones must
be email addresses. However, if the message is active (in the middle of a delivery attempt), it
is not altered. This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>

-MCA

-MCP

“MCQ

-MCS

-MCT

This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection,
which is passed as the standard input. Details are given in chapter 43. This must be the final
option, and the caller must be root or the Exim user in order to use it.

This option is not intended for use by external calers. It is used internally by Exim in
conjunction with the -MC option. It signifies that the connection to the remote host has been
authenti cated.

This option is not intended for use by external calers. It is used internally by Exim in
conjunction with the -MC option. It signifies that the server to which Exim is connected
supports pipelining.

<process id> <pipe fd>

This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -M C option when the original delivery was started by a queue runner. It
passes on the process id of the queue runner, together with the file descriptor number of an
open pipe. Closure of the pipe signals the final completion of the sequence of processes that
are passing messages through the same SMTP connection.

This option is not intended for use by external callers. It is used internally by Exim in
conjunction with the -M C option, and passes on the fact that the SMTP size option should be
used on messages delivered down the existing connection.

This option is not intended for use by external calers. It is used internally by Exim in
conjunction with the -MC option, and passes on the fact that the host to which Exim is
connected supports TLS encryption.

-Mc <message id> <message id> ...

This option requests Exim to run a delivery attempt on each message in turn, but unlike the
-M option, it does check for retry hints, and respects any that are found. This option is not
very useful to external calers. It is provided mainly for internal use by Exim when it needs to
re-invoke itself in order to regain root privilege for a delivery (see chapter 48). However, -Mc
can be useful when testing, in order to run a delivery that respects retry times and other
options such as hold_domains that are overridden when -M is used. Such a delivery does not
count as a queue run. If you want to run a specific delivery as if in a queue run, you should
use -q with a message id argument. A distinction between queue run deliveries and other
deliveries is made in one or two places.

-Mes <message id> <address>

This option reguests Exim to change the sender address in the message to the given address,

Exim 4.40 [37] command line (5)

which must be a fully qualified address or ‘<>’ (‘es’ for ‘edit sender’). There must be exactly
two arguments. The first argument must be a message id, and the second one an email
address. However, if the message is active (in the middle of a delivery attempt), its status is
not altered. This option can be used only by an admin user.

-Mf <message id> <message id> ...
This option requests Exim to mark each listed message as ‘frozen’. This prevents any delivery
attempts taking place until the message is ‘thawed’, either manually or as a result of the
auto_thaw configuration option. However, if any of the messages are active (in the middle of
a delivery attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
This option requests Exim to give up trying to deliver the listed messages, including any that
are frozen. However, if any of the messages are active, their status is not altered. For non-
bounce messages, a delivery error message is sent to the sender, containing the text ‘cancelled
by administrator’. Bounce messages are just discarded. This option can be used only by an
admin user.

-Mmad <message id> <messageid> ...
This option requests Exim to mark all the recipient addresses in the messages as already
delivered (‘mad’ for ‘mark all delivered’). However, if any message is active (in the middle
of a delivery attempt), its status is not atered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as already delivered (‘md’ for ‘mark
delivered’). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner.
If the message is active (in the middle of a delivery attempt), its status is not altered. This
option can be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce
messages are sent; each message is simply forgotten. However, if any of the messages are
active, their status is not altered. This option can be used only by an admin user or by the
user who originally caused the message to be placed on the queue.

-Mt <message id> <message id> ...
This option requests Exim to ‘thaw’ any of the listed messages that are ‘frozen’, so that
delivery attempts can resume. However, if any of the messages are active, their status is not
altered. This option can be used only by an admin user.

-Mvb <message id>
This option causes the contents of the message body (-D) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvh <message id>
This option causes the contents of the message headers (-H) spool file to be written to the
standard output. This option can be used only by an admin user.

-Mvl <message id>
This option causes the contents of the message log spool file to be written to the standard
output. This option can be used only by an admin user.

-m This is apparently a synonym for -om that is accepted by Sendmail, so Exim treats it that
way too.

-N This is a debugging option that inhibits delivery of a message at the transport level. It implies
-v. Exim goes through many of the motions of delivery — it just doesn’t actually transport the
message, but instead behaves as if it had successfully done so. However, it does not make any
updates to the retry database, and the log entries for deliveries are flagged with ‘*>' rather
than ‘=>".

Exim 4.40 [38] command line (5)

-Nn

Because -N discards any message to which it applies, only root or the Exim user are allowed
to use it with -bd, -g, -R or -M. In other words, an ordinary user can use it only when
supplying an incoming message to which it will apply. Although transportation never fails
when -N is set, an address may be deferred because of a configuration problem on a transport,
or a routing problem. Once -N has been used for a delivery attempt, it sticks to the message,
and applies to any subsequent delivery attempts that may happen for that message.

This option is interpreted by Sendmail to mean ‘no aliasing’. It is ignored by Exim.

-O <data>

This option is interpreted by Sendmail to mean ‘set option‘. It is ignored by Exim.

-0A <file name>

This option is used by Sendmail in conjunction with -bi to specify an alternative alias file
name. Exim handles -bi differently; see the description above.

-o0B <n>

-odb

-odf

-odi

-odq

-odgs

This is a debugging option which limits the maximum number of messages that can be
delivered down one SMTP connection, overriding the value set in any smtp transport. If <n>
is omitted, the limit is set to 1.

This option applies to all modes in which Exim accepts incoming messages, including the
listening daemon. It requests ‘background’ delivery of such messages, which means that the
accepting process automatically starts delivery process for each message received, but does
not wait for the delivery process to complete. This is the default action if none of the -od
options are present.

If one of the queueing options in the configuration file (queue_only or queue only file, for
example) is in effect, -odb overrides it if queue_only_override is set true, which is the
default setting. If queue_only_override is set false, -odb has no effect.

This option requests ‘foreground’ (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is
automatically started to deliver the message, and Exim waits for it to complete before
proceeding. However, like -odb, this option has no effect if queue_only_override is false and
one of the queueing options in the configuration file is in effect.

This option is synonymous with -odf. It is provided for compatibility with Sendmail.

This option applies to al modes in which Exim accepts incoming messages, including the
listening daemon. It specifies that the accepting process should not automatically start a
delivery process for each message received. Messages are placed on the queue, and remain
there until a subsequent queue runner process encounters them. There are severa configur-
ation options (such as queue only) that can be used to queue incoming messages under
certain conditions. This option overrides al of them and also -odgs. It always forces
gueueing.

This option is a hybrid between -odb/-odi and -odg. However, like -odb and -odi, this option
has no effect if queue only override is false and one of the queueing options in the
configuration file is in effect.

When -odqgs does operate, a delivery process is started for each incoming message, in the
background by default, but in the foreground if -odi is also present. The recipient addresses
are routed, and local deliveries are done in the normal way. However, if any SMTP deliveries
are required, they are not done at this time, so the message remains on the queue until a
subsequent queue runner process encounters it. Because routing was done, Exim knows which
messages are waiting for which hosts, and so a number of messages for the same host can be
sent in a single SMTP connection. The queue_smtp_domains configuration option has the
same effect for specific domains. See aso the -qq option.

If an error is detected while a non-SMTP message is being received (for example, a mal-
formed address), the error is reported to the sender in a mail message. Provided this error

Exim 4.40 [39] command line (5)

message is successfully sent, the Exim receiving process exits with a return code of zero. If
not, the return code is 2 if the problem is that the original message has no recipients, or 1 any
other error. This is the default -oex option if Exim is called as rmail.

-oem This is the same as -oee, except that Exim always exits with a non-zero return code, whether
or not the error message was successfully sent. This is the default -oex option, unless Exim is
called as rmail.

-0ep If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for al errors.

-oeq This option is supported for compatibility with Sendmail, but has the same effect as -oep.
-oew This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-0i This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though
Exim does no specia processing for other lines that start with a dot. This option is set by
default if Exim is called as rmail. See aso -ti.

-oitrue This option is treated as synonymous with -oi.

-oMa <host address>
A number of options starting with -oM can be used to set values associated with remote hosts
on locally-submitted messages (that is, messages not received over TCP/IP). These options
can be used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing
options. In other circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end,
after a full stop (period). For example:

exim-bs -oMa 10.9.8.7.1234

An dternative syntax is to enclose the IP address in sguare brackets, followed by a colon and
the port number:

exim-bs -oMa [10.9.8.7]:1234

The IP address is placed in the $sender_host_address variable, and the port, if present, in
$sender_host_port.

-oMaa <name>
See -oM a above for general remarks about the -oM options. The -oM aa option sets the value
of $sender_host_authenticated (the authenticator name). See chapter 33 for a discussion of
SMTP authentication.

-oMai <string>
See -oMa above for genera remarks about the -oM options. The -oMai option sets the value
of $authenticated_id (the id that was authenticated). This overrides the default value (the
caller’s login id) for messages from local sources. See chapter 33 for a discussion of
authenticated ids.

-oMas <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_sender. It overrides the sender address that is
created from the caller’s login id for messages from local sources. See chapter 33 for a
discussion of authenticated senders.

-oMi <interface address>
See -oMa above for general remarks about the -oM options. The -oMi option sets the IP
interface address value. A port number may be included, using the same syntax as for -oMa.
The interface address is placed in $interface address and the port number, if present, in
Sinterface port.

Exim 4.40 [40] command line (5)

-oMr <protocol name>
See -oMa above for genera remarks about the -oM options. The -oMr option sets the
received protocol value in $received_protocol. However, this applies only when -bs is not
used. For interactive SMTP input, the protocol is determined by whether eHLo or HELO IS
used, and is always either ‘local-esmtp’ or ‘local-smtp’. For -bS (batch SMTP) however, the
protocol can be set by -oMr.

-oMs <host name>
See -oMa above for general remarks about the -oM options. The -oM s option sets the sender
host name in $sender_host_name. When this option is present, Exim does not attempt to
look up a host name from an IP address; it uses the name it is given.

-oMt <ident string>
See -oMa above for general remarks about the -oM options. The -oMt option sets the sender
ident value in $sender _ident. The default setting for local callers is the login id of the calling
process.

-om In Sendmail, this option means ‘me too’, indicating that the sender of a message should
receive a copy of the message if the sender appears in an alias expansion. Exim always does
this, so the option does nothing.

-00 This option is ignored. In Sendmail it specifies ‘old style headers’, whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option
specifies the file to which the process id of the daemon is written. When -oX is used with
-bd, or when -g with a time is used without -bd, this is the only way of causing Exim to
write a pid file, because in those cases, the normal pid file is not used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will
wait forever for the standard input. The value can also be set by the receive_timeout option.
The format used for specifying times is described in section 6.11.

-0s <time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each
SMTP command and block of data The value can also be set by the smtp_receive timeout
option; it defaults to 5 minutes. The format used for specifying times is described in section
6.11.

-ov This option has exactly the same effect as -v.

-oX <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It
controls which ports and interfaces the daemon uses. Details of the syntax, and how it
interacts with configuration file options, are given in chapter 13. When -oX is used to start a
daemon, no pid file is written unless -oP is also present to specify a pid file name.

-pd This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12).
It overrides the setting of the perl_at_start option, forcing the starting of the interpreter to
occur as soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivaent to

-oM <rval> -oMs <sval>
It sets the incoming protocol and host name (for trusted callers). The host name and its colon
can be omitted when only the protocol is to be set. Note the Exim already has two private

Exim 4.40 [41] command line (5)

options, -pd and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol
value of p or s using this option (but that does not seem a real limitation).

-q This option is normally restricted to admin users. However, there is a configuration option
caled prod_requires_ admin which can be set false to relax this restriction (and also the
same requirement for the -M, -R, and -S options).

The -q option starts one queue runner process. This scans the queue of waiting messages, and
runs a delivery process for each one in turn. It waits for each delivery process to finish before
starting the next one. A delivery process may not actually do any deliveries if the retry times
for the addresses have not been reached. Use -gf (see below) if you want to override this. If
the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process
terminates. In other words, a single pass is made over the waiting mail, one message at a
time. Use -g with a time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn't very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up
aremote MTA, other messages to the same MTA have a chance of getting through if they get
tried first.

It is possible to cause the messages to be processed in lexical message id order, which is
essentialy the order in which they arrived, by setting the queue_run_in_order option, but
this is not recommended for normal use.

-g<dgflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are
all optional, but if more than one is present, they must appear in the correct order. Each flag
is described in a separate item below.

-qg... An option starting with -qqg requests a two-stage queue run. In the first stage, the queue is
scanned as if the queue_smtp_domains option matched every domain. Addresses are routed,
local deliveries happen, but no remote transports are run. The hints database that remembers
which messages are waiting for specific hosts is updated, as if delivery to those hosts had
been deferred. After this is complete, a second, normal queue scan happens, with routing and
delivery taking place as normal. Messages that are routed to the same host should mostly be
delivered down a single SMTP connection because of the hints that were set up during the
first queue scan. This option may be useful for hosts that are connected to the Internet
intermittently.

-q[qli...
If thei flag is present, the queue runner runs delivery processes only for those messages that

haven't previously been tried. (i stands for ‘initial delivery’.) This can be helpful if you are
putting messages on the queue using -odg and want a queue runner just to process the new
messages.

-q[a][i]f...
If one f flag is present, a delivery attempt is forced for each non-frozen message, whereas
without f only those non-frozen addresses that have passed their retry times are tried.

-q[q] [i]ff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[al] [fLf]]I
The | (the letter ‘ell’) flag specifies that only local deliveries are to be done. If a message
requires any remote deliveries, it remains on the queue for later delivery.

-gq<dgflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically
less than a given value by following the -q option with a starting message id. For example:

Exim 4.40 [42] command line (5)

exi m-q Ot 5C6f-0000c8-00

Messages that arrived earlier than Ot 5C6f - 0000c8- 00 are not inspected. If a second
message id is given, messages whose ids are lexically greater than it are also skipped. If the
same id is given twice, for example,

exi m-qg Ot 5C6f-0000c8-00 Ot 5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry datais
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note
that the selection mechanism does not affect the order in which the messages are scanned.
There are also other ways of selecting specific sets of messages for delivery in a queue run —
see -R and -S.

-g<gflags><time>

When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in
section 6.11). This form of the -q option is commonly combined with the -bd option, in
which case a single daemon process handles both functions. A common way of starting up a
combined daemon at system boot time is to use a command such as

[usr/eximbin/exim-bd -q30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every
30 minutes.

When a daemon is started by -q with a time value, but without -bd, no pid file is written
unless one is explicitly requested by the -oP option.

-gR<rsflags> <string>

This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<rsflags> <string>

This option is synonymous with -S.

-R<rsflags> <string>

The <rsflags> may be empty, in which case the white space before the string is optional,
unless the string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space
isrequired if <rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single
gueue run, except that, when scanning the messages on the queue, Exim processes only those
that have at least one undelivered recipient address containing the given string, which is
checked in a case-independent way. If the <rsflags> start with r, <string> is interpreted as a
regular expression; otherwise it is aliteral string.

Once a message is selected, all its addresses are processed. For the first selected message,
Exim overrides any retry information and forces a delivery attempt for each undelivered
address. This means that if delivery of any address in the first message is successful, any
existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected
messages, the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just
the first; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain
after a host has been down for some time. When the SMTP command ETRN is accepted by its
ACL (see chapter 38), its default effect is to run Exim with the -R option, but it can be
configured to run an arbitrary command instead.

This is a documented (for Sendmail) obsolete alternative name for -f.

Exim 4.40 [43] command line (5)

-S<rsflags> <string>

This option acts like -R except that it checks the string against each message’s sender instead
of against the recipients. If -R is also set, both conditions must be met for a message to be
selected. If either of the options has f or ff in its flags, the associated action is taken.

-Tqt <times>

-ti

This an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normally. It alows for the setting up of explicit ‘queue times' so that various
warning/retry features can be tested.

When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc: header
lines in the message instead of from the command arguments. The addresses are extracted
before any rewriting takes place.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from
the headers. This is compatible with Smail 3 and in accordance with the documented behav-
iour of several versions of Sendmail, as described in man pages on a number of operating
systems (e.g. Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add
argument addresses to those obtained from the headers, and the O'Reilly Sendmail book
documents it that way. Exim can be made to add argument addresses instead of subtracting
them by setting the option extract_addresses remove_arguments false.

If a Bce: header line is present, it is removed from the message unless there is no To: or Cc:,
in which case a Bcc: line with no data is created. This is necessary for conformity with the
original RFC 822 standard; the requirement has been removed in RFC 2822, but that is till
very new.

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-
To:, Resent-Cc:, and Resent-Bcc: header lines instead of from To:, Cc:, and Bcc:. This is for
compatibility with Sendmail and other MTAS. (Prior to release 4.20, Exim gave an error if -t
was used in conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent
severa times). The RFC also specifies that they should be added at the front of the message,
and separated by Received: lines. It is not at al clear how -t should operate in the present of
multiple sets, nor indeed exactly what constitutes a ‘set’. In practice, it seems that MUAs do
not follow the RFC. The Resent- lines are often added at the end of the header, and if a
message is resent more than once, it is common for the origina set of Resent- headers to be
renamed as X-Resent- when a new set is added. This removes any possible ambiguity.

This option is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect

This option is available when Exim is compiled with TLS support. It makes it possible to
support legacy clients that do not support the starTTLS command, but instead expect to start
up a TLS session as soon as a connection to the server is established. These clients use a
specia port (usualy called the ‘ssmtp’ port) instead of the normal SMTP port 25. The -tls-
on-connect option can be used to run Exim in this way from inetd, and it can also be used to
run a special daemon that operates in this manner (use -oX to specify the port). However,
although it is possible to run one daemon that listens on severa ports, it is not possible to
have some of them operate one way and some the other. With only a few clients that need the
legacy support, a convenient approach is to use a daemon for normal SMTP (with or without
staRTTLS) and inetd with -tls-on-connect for the legacy clients.

Sendmail uses this option for ‘initial message submission’, and its documentation states that
in future releases, it may complain about syntacticaly invalid messages rather than fixing
them when this flag is not set. Exim ignores this option.

Exim 4.40 [44] command line (5)

-v This option causes Exim to write information to the standard error stream, describing what it
is doing. In particular, it shows the log lines for receiving and delivering a message, and if an
SMTP connection is made, the SMTP dialogue is shown. Some of the log lines shown may
not actually be written to the log if the setting of log_selector discards them. Any relevant
selectors are shown with each log line. If none are shown, the logging is unconditional .

-X AlX uses -x for a private purpose (‘mail from a local mail program has National Language
Support extended characters in the body of the mail item’). It sets -x when calling the MTA
from its mail command. Exim ignores this option.

Exim 4.40 [45] command line (5)

6. The Exim run time configuration file

Exim uses a single run time configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

The name of the configuration file is compiled into the binary for security reasons, and is specified by
the conFIGURE_FILE compilation option. In most configurations, this specifies a single file. However, it
is permitted to give a colon-separated list of file names, in which case Exim uses the first existing file
in the list.

The run time configuration file must be owned by root or by the user that is specified at compile time
by the exim_user option, or by the user that is specified at compile time by the CONFIGURE OWNER
option (if set). The configuration file must not be world-writeable or group-writeable, unless its group
is the one specified at compile time by the Exim_croup option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the run time configuration file has an easy way to run commands as root. If you make your
mail administrators members of the Exim group, but do not trust them with root, make sure that the
run time configuration is not group writeable.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. If conFiGURE FILE defines just one file name, the installation process copies the
default configuration to a new file of that name if it did not previoudy exist. If CONFIGURE FILE iS
a list, no default is automatically installed. Chapter 7 is a ‘walk-through’ discussion of the default
configuration.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is also written to the panic log.

6.1 Using a different configuration file

A one-off aternate configuration can be specified by the -C command line option, which may specify
asinglefile or alist of files. However, when -C is used, Exim gives up its root privilege, unless called
by root or the Exim user (or unless the argument for -C is identica to the built-in value from
CONFIGURE _FILE). -C is useful mainly for checking the syntax of configuration files before installing
them. No owner or group checks are done on a configuration file specified by -C.

The privileged use of -C by the Exim user can be locked out by setting ALT_CONFIG_ROOT ONLY in
L ocal/M akefile when building Exim. However, if you do this, you also lock out the possibility of
testing a configuration using -C right through message reception and delivery, even if the caller isroot.
The reception works, but by that time, Exim is running as the Exim user, so when it re-execs to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message on the queue, using -odq, and
another to do the delivery, using -M).

If ALT_conFig_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any file
named in a -C command line option must start. In addition, the file nhame must not contain the
sequence / . . / . There is no default setting for ALT_conFiG_PREFIX; When it is unset, any file name can
be used with -C.

One-off changes to a configuration can be specified by the -D command line option, which defines and
overrides values for macros used inside the configuration file. However, like -C, the use of this option
by a non-privileged user causes Exim to discard its root privilege. If pisaBLE_D_oprTION is defined in
L ocal/M akefile, the use of -D is completely disabled, and its use causes an immediate error exit.

Some sites may wish to use the same Exim binary on different machines that share a file system,
but to use different configuration files on each machine. If coNFIGURE FILE_USE NODE is defined in
L ocal/M akefile, Exim first looks for a file whose name is the configuration file name followed by a

Exim 4.40 [46] configuration file (6)

dot and the machine's node name, as obtained from the uname() function. If this file does not exist, the
standard name is tried. This processing occurs for each file name in the list given by coNFIGURE_FILE OF
-C.

In some esoteric situations different versions of Exim may be run under different effective uids and the
CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word ‘begin’ followed by the name of the part. The
optional parts are:

* ACL: Access control lists for controlling incoming SMTP mail.

» authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP autH command (see chapter 33).

» routers: Configuration settings for the router drivers. Routers process addresses and determine
how the message is to be delivered.

» transports: Configuration settings for the transport drivers. Transports define mechanisms for
copying messages to destinations.

* retry: Retry rules, for use when a message cannot be immediately delivered.

» rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery.

* local_scan: Private options for the local_scan() function. If you want to use this feature, you
must set

LOCAL_SCAN_HAS_OPTI ONS=yes

in Local/Makefile before building Exim. Full details of the local_scan() facility are given in
chapter 39.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: a # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Trailing white space after the
backslash is ignored, and leading white space at the start of continuation lines is also ignored.
Comment lines beginning with # (but not empty lines) may appear in the middle of a sequence of
continuation lines.

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 38,
32, and 31, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.6 onwards. Before that, the inclusion, macro,
and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other files inside Exim’s run time configuration file by using this syntax:

. i ncl ude <file name>
or
.include_if_exists <file name>

Exim 4.40 [47] configuration file (6)

on a line by itself. Double quotes round the file name are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent files.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_l ookup = a.b.c \
.include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
file asif they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If aline in the main part of the configuration (that is, before the first ‘begin’ line) begins with an upper
case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not al be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and has
leading and trailing white space removed. Quotes are not removed. The replacement text can never
end with a backslash character, but this doesn’t seem to be a serious limitation.

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the
macro name; if there are several macros, the line is scanned for each in turn, in the order in which
they are defined. The replacement text is not re-scanned for the current macro, though it is scanned for
subsequently defined macros. For this reason, a macro name may not contain the name of a previously
defined macro as a substring. You could, for example, define

ABCD XYZ = <<sonet hi ng>>
ABCD = <<sonet hing el se>>

but putting the definitions in the opposite order would provoke a configuration error.

Macro expansion is applied to individua lines from the file, before checking for line continuation or
file inclusion (see below). If aline consists solely of a macro name, and the expansion of the macro is
empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
. i ncl ude line.

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALI AS QUERY = sel ect mail box from user where \
| ogi n=${ quot e_nysql : $l ocal _part};

This can then be used in aredirect router setting like this:
data = ${| ookup nysql { ALI AS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists — see section 10.5.

Macros in the configuration file can be overridden by the -D command line option, but Exim gives up
its root privilege when -D is used, unless called by root or the Exim user.

Exim 4.40 [48] configuration file (6)

6.5 Conditional skipsin the configuration file

You can use the directives . i fdef, .ifndef,.elifdef,.elifndef,.else,and.endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

i fdef AAA

nmessage_size limt = 50M
.el se

message_size limt = 100M
.endif

sets a message size limit of 50M if the macro AAA is defined, and 100M otherwise. If there is more
than one macro named on the line, the condition is true if any of them are defined. That is, it isan ‘or’
condition. To obtain an *and’ condition, you need to use nested . i f def s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition ‘there was a macro substitution in this line’ will aways be true.

Text following . el se and . endi f isignored, and can be used as comment to clarify complicated
nestings.

6.6 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting is on a line by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qual i fy_domai n = nmydomai n. exanpl e. com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word ‘hide’. For example:

hi de nysql _servers = | ocal host/users/adm n/ secr et -password
For non-admin users, such options are displayed like this:
nmysql _servers = <val ue not di spl ayabl e>
If ‘hide’ is used on adriver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.7 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specifying
such options: with and without a data value. If the option name is specified on its own without data,
the switch is turned on; if it is preceded by ‘no_’ or ‘not_’ the switch is turned off. However, boolean
options may optionally be followed by an equals sign and one of the words ‘true’, ‘false’, ‘yes, or
‘no’, as an aternative syntax. For example, the following two settings have exactly the same effect:

gueue_only
gueue_only = true

The following two lines also have the same (opposite) effect:
no_queue_only
gueue_only = fal se

Exim 4.40 [49] configuration file (6)

You can use whichever syntax you prefer.

6.8 Integer values

If an integer data item starts with the characters ‘Ox’, the remainder of it is interpreted as a
hexadecimal number. Otherwise, it is treated as octal if it starts with the digit O, and decimal if not. If
an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M, it
is multiplied by 1024x1024.

When the values of integer option settings are output, values which are an exact multiple of 1024 or
1024x1024 are sometimes, but not always, printed using the letters K and M. The printing style is
independent of the actual input format that was used.

6.9 Octal integer values

The value of an option specified as an octal integer is always interpreted in octal, whether or not it
starts with the digit zero. Such options are always output in octal.

6.10 Fixed point number values

A fixed point number consists of a decimal integer, optionally followed by a decimal point and up to
three further digits.

6.11 Time interval values

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

seconds

minutes

hours

days

weeks

For example, *3h50m’ specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
‘90m’ instead of ‘1h30m’.

sasgow

6.12 String values

If a string data item does not start with a double-quote character, it is taken as consisting of the
remainder of the line plus any continuation lines, starting at the first character after any leading white
space, with trailing white space characters removed, and with no interpretation of the characters in the
string. Because Exim removes comment lines (those beginning with #) at an early stage, they can
appear in the middle of a multi-line string. The following settings are therefore equivalent:

trusted_users = uucp: mai l

trusted_users uucp:\

This coment line is ignored

mai |

If astring does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

\\ single backslash
\n newline

\'r carriage return
\'t tab

\ <octal digits> up to 3 octal digits specify one character
\ x<hex digits> up to 2 hexadecimal digits specify one character

Exim 4.40 [50] configuration file (6)

If a backdash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert specid
characters, or if you need to specify a value with leading or trailing spaces. These cases are rare, SO
guoting is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting
was required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.13 Expanded strings

Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape character
for the expander, so any backdashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.14 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that can
be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.15 List construction

The data for some configuration options is a colon-separated list of items. Many of these options are
shown with type ‘string list’ in the descriptions later in this document. Others are listed as ‘domain
list’, “host list’, ‘address list’, or ‘local part list’. Syntactically, they are al the same; however, those
other than ‘string list’” are subject to particular kinds of interpretation, as described in chapter 10.

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_users setting in section 6.12 above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

| ocal interfaces = 127.0.0.1 : ::::1

contains two |P addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1. IPv6 addresses are
going to become more and more common as the new protocol gets more widely deployed. Doubling
their colons is an unwelcome chore, so a mechanism was introduced to allow the separator character to
be changed. If a list begins with a left angle bracket, followed by any punctuation character, that
character is used instead of colon as the list separator. For example, the list above can be rewritten to
use a semicolon separator like this:

| ocal interfaces = <; 127.0.0.1 ; ::1

This facility applies to all lists, with the exception of the list in log_file path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

6.16 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In each
part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance name>:
<option>

<option>

Exim 4.40 [51] configuration file (6)

In the following example, the instance name is localuser, and it is followed by three options settings:

| ocal user:
driver = accept
check | ocal _user
transport = | ocal _delivery

For each driver instance, you specify which Exim code module it uses — by the setting of the driver
option — and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use the smtp driver; if you want to deliver to a
local file you would use the appendfile driver. Each of the drivers is described in detail in its own
separate chapter later in this manual.

You can have several routers, transports, or authenticators that are based on the same underlying driver
(each must have a different name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of option: generic and private. The generic
options are those that apply to al drivers of the same type (that is, al routers, al transports or all
authenticators). The driver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they al have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver aways be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the same
type. A router and a transport (for example) can each have the same name, but no two router instances
can have the same name. The name of a driver instance should not be confused with the name of the
underlying driver module. For example, the configuration lines:

renot e_snt p:
driver = sntp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

speci al _snt p:
driver = sntp
port = 1234
comrand_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings for
any particular driver instance, including all the defaulted values, can be extracted by making use of the
-bP command line option.

Exim 4.40 [52] configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter ‘walks
through’ the default configuration, giving brief explanations of the settings. Detailed descriptions of the
options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at al in the default configuration.

7.1 Main configuration settings

The main (global) configuration option settings must aways come first in the file. The first thing you'll
see in the file, after some initial comments, is the line

primary_host nane =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domai nlist | ocal _donains = @
domai nlist relay_to_domains =
host | i st relay fromhosts = 127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.5).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host. There is just one item in this list, the string
‘@'. Thisis a special form of entry which means ‘the name of the local host’. Thus, if the local host is
caled a.host.example, mail to any.user @a.host.example is expected to be delivered locally. Because
the local host's name is referenced indirectly, the same configuration file can be used on different
hosts.

The second line defines a domain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list called relay_from_hosts. This list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to submit
mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to submit
messages for relaying.

Just to be sure there’s no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next configuration line is a genuine option setting:
acl _smp_rcpt = acl _check_rcpt

This option specifies an Access Control List (ACL) which is to be used during an incoming SMTP
sesson for every recipient of a message (every rcpet command). The name of the list is
acl_check rcpt, and we will come to its definition below, in the ACL section of the configuration.

Exim 4.40 [53] default configuration (7)

ACLs control which recipients are accepted for an incoming message — if a configuration does not
provide an ACL to check recipients, no SMTP mail can be accepted.

Two commented-out options settings are next:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the first
one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a ‘domain literal’ (an IP address) instead of a named domain.

allow domain literals

The RFCs till require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their 1P addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where domain
literals are still useful.

The next configuration line is a kind of trigger guard:
never _users = root

It specifies that no delivery must ever be run as the root user. The normal convention is to set up root
as an dias for the system administrator. This setting is a guard against dlips in the configuration. The
list of users specified by never_usersis not, however, the complete list; the build-time configuration in
L ocal/M akefile has an option called Fixep_NEVER_USERS specifying a list that cannot be overridden.
The contents of never _users are added to this list. By default Fixep_NEVER_USERS also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host's identity is its IP address. The next configuration line,

host | ookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you fedl it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on ‘nearby’ networks. Note that it is not
always possible to find a host name from an |P address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfcl413 hosts = *
rfcl4l3 query timeout = 30s

These settings cause Exim to make ident callbacks for al incoming SMTP calls. You can limit the
hosts to which these calls are made, or change the timeout that is used. If you set the timeout to zero,
al ident calls are disabled. Although they are cheap and can provide useful information for tracing
problem messages, some hosts and firewalls have problems with ident calls. This can result in a
timeout instead of an immediate refused connection, leading to delays on starting up an incoming
SMTP session.

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two com-
mented-out options:

sender _unqualified hosts =
recipient_unqualified hosts =

Exim 4.40 [54] default configuration (7)

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The percent_hack_domains option is a'so commented out:
percent _hack_domai ns =

It provides a list of domains for which the ‘percent hack’ is to operate. Thisis an almost obsolete form
of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The last two settings in the main part of the default configuration are concerned with messages that
have been ‘frozen’ on Exim's queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the origina message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

i gnore_bounce_errors_after = 2d
ti meout _frozen_ after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days on the
gueue. The second specifies that any frozen message (whether a bounce message or not) is to be timed
out (and discarded) after a week. In this configuration, the first setting ensures that no failing bounce
message ever lasts a week.

7.2 ACL configuration
In the default configuration, the ACL section follows the main configuration. It starts with the line

begi n acl

and it contains the definition of one ACL called acl_check rcpt that was referenced in the setting of
acl_smtp_rcpt above. This ACL is used for every rcpr command in an incoming SMTP message.
Each rcPr command specifies one of the message’s recipients. The ACL statements are considered in
order, until the recipient address is either accepted or rejected. The rceT command is then accepted or
rejected, according to the result of the ACL processing.

acl _check_rcpt:
This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.
accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn't actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message didn't come
from a remote host. The colon is important. Without it, the list itself is empty, and can never match
anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAS operate in this manner.

deny domai ns
| ocal _parts

+l ocal _domai ns

LT rr[@]]

| +| ocal _donai ns

AT 2 M @8] o ARV

These statements are concerned with local parts that contain any of the characters ‘@', ‘%', ‘!", ‘/", ‘[,
or dots in unusual places. Although these characters are entirely legal in local parts (in the case of ‘@’
and leading dots, only if correctly quoted), they do not commonly occur in Internet mail addresses.

deny domai ns
| ocal _parts

The first three have in the past been associated with explicitly routed addresses (percent is till
sometimes used — see the percent_hack_domains option). Addresses containing these characters are

Exim 4.40 [55] default configuration (7)

regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in the local_domains domain list. The ‘+' character is used to indicate a reference to a
named list. In this configuration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the first statement uses two regular expressions to block local parts that begin
with a dot or contain ‘@', ‘%', ‘!’, */’, or ‘|". If you have local accounts that include these characters,
you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because
they have been encountered in practice. (Consider local parts constructed as ‘first-initial.second-
initial .family-name’ when applied to someone like the author of Exim, who has no second initial.)
However, a local part starting with a dot or containing ‘/../ can cause trouble if it is used as part of a
file name (for example, for a mailing list). This is aso true for local parts that contain slashes. A pipe
symbol can aso be troublesome if the local part is incorporated unthinkingly into a shell command
line.

The second rule above applies to al other domains, and is less strict. This alows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but alows these characters within the local part.
However, the sequence ‘/../" is barred. The use of ‘@', ‘%', and ‘!" is blocked, as before. The
motivation here is to prevent your users (or your users viruses) from mounting certain kinds of attack
on remote sites.

accept local _parts
domai ns

post mast er
+|l ocal _donai ns

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The ‘+' character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the
subsequent tests. This can be helpful while sorting out problems in cases where the subsequent tests
are incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, but callouts can be used for more verification if required.
Section 38.20 discusses the details of address verification.

deny nmessage = rejected because $sender _host _address is \
in a black list at $dnslist_domai n\n\

$dnsl i st _text

dnslists = bl ack.list.exanple

#

warn nmessage = X-Warning: $sender _host_address is \

in a black list at $dnslist_domain

| og_nessage = found in $dnslist_donmain

dnslists = bl ack.list.exanple

Exim 4.40 [56] default configuration (7)

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second merely inserts a warning header line.

accept domains +l ocal _domai ns

endpass
nessage = unknown user
verify = recipi ent

This statement accepts the incoming recipient address if its domain is one of the local domains, but
only if the address can be verified. Verification of local addresses normally checks both the local part
and the domain. The endpass line needs some explanation: if the condition above endpass fails, that
is, if the address is not in alocal domain, control is passed to the next ACL statement. However, if the
condition below endpass fails, that is, if a recipient in a local domain cannot be verified, access is
denied and the recipient is rejected. The message modifier provides a customized error message for the
failure.

accept domains +rel ay_t o_domai ns

endpass
nmessage = unr out eabl e address
verify = recipi ent

This statement accepts the incoming recipient address if its domain is one of the domains for which
this host is a relay, but again, only if the address can be verified.

accept hosts = +relay_from hosts

Control reaches this statement only if the recipient’s domain is neither a local domain, nor a relay
domain. The statement accepts the address if the message is coming from one of the hosts that are
defined as being allowed to relay through this host. Recipient verification is omitted here, because in
many cases the clients are dumb MUASs that do not cope well with SMTP error responses. If you are
actually relaying out from MTAS, you should probably add recipient verification here.

accept authenticated = *

Control reaches here for attempts to relay to arbitrary domains from arbitrary hosts. The statement
accepts the address only if the client host has authenticated itself. The default configuration does not
define any authenticators, which means that no client can in fact authenticate. You will need to add
authenticator definitions if you want to make use of this ACL statement.

deny nmessage = relay not permtted

The final statement denies access, giving a specific error message. Reaching the end of the ACL also
causes access to be denied, but with the generic message ‘administrative prohibition’.

7.3 Router configuration
The router configuration comes next in the default configuration, introduced by the line

begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_ literal:

driver = ipliteral

domai ns = ! +|l ocal _domai ns
transport = renote_sntp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the form user@[10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literals in the main part of the configuration.

Exim 4.40 [57] default configuration (7)

dnsl ookup:
driver = dnsl ookup
domains = ! +l ocal donmi ns
transport = renote_sntp
ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
no_nor e

The first uncommented router handles addresses that do not involve any local domains. This is
specified by the line

domains = ! +l ocal donmi ns

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is dnslookup, and is specified by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that is in
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtp transport, as specified by the transport option. If the router does not find the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore_target_hosts option specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host hames whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these |P addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system al i ases:
driver = redirect

all ow fail
al | ow_defer
data = ${| ookup{$l ocal _part}lsearch{/etc/aliases}}

user = exim
file_transport
pi pe_transport

address _file
addr ess_pi pe

Control reaches this and subsequent routers only for addresses in the local domains. This router checks
to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/etc/aliases is a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting
SYSTEM_ALIASES FILE in Local/M akefile before building Exim.

Exim 4.40 [58] default configuration (7)

user f orwar d:
driver = redirect
check | ocal _user
file = $hone/.forward
no_verify
no_expn
check_ancest or

allowfilter
file_transport address _file
pi pe_transport addr ess_pi pe
reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but this
time it is looking for forwarding data set up by individual users. The check_local_user setting means
that the first thing it does is to check that the local part of the address is the login name of alocal user.
If it is not, the router is skipped. When a local user is found, the file called .forward in the user’'s
home directory is consulted. If it does not exist, or is empty, the router declines. Otherwise, the
contents of .forward are interpreted as redirection data (see chapter 22 for more details).

Traditional .forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, if allow _filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with ‘#Exim filter’ or ‘#Sieve
filter’, respectively. User filtering is discussed in the separate document entitled Exim's interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP expn command. There are two reasons for doing this:

(1) Whether or not alocal user has a .forward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an expn command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read users’ .forward
files at this time.

The setting of check_ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding — see section 22.5).

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to afile, or to a pipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a. not her @l sewher e. exanpl e, /hone/spqr/archive
the delivery to /home/spqr/archive is done by running the address_file transport.

| ocal user:
driver = accept
check | ocal _user
transport = | ocal _delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and queuing it for the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced.

7.4 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

Exim 4.40 [59] default configuration (7)

begin transports
One remote transport and four local transports are defined.

renot e_snt p:
driver = sntp

This transport is used for delivering messages over SMTP connections. All its options are defaulted.
The list of remote hosts comes from the router.

| ocal _delivery:
driver = appendfile
file = /var/mail/$l ocal _part
del i very_dat e_add
envel ope_t o_add
return_path_add

group = mai

node = 0660

This appendfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user,