
GLFW

Users Guide

API version 2.4
February 14, 2004

c©2002-2004 Marcus Geelnard

Summary

This document is a users guide for theGLFW API that gives a practical introduction to usingGLFW .
For a more detailed description of theGLFW API you should refer to theGLFW Reference Manual.

Trademarks

OpenGL and IRIX are registered trademarks of Silicon Graphics, Inc.
Microsoft, Windows and MS-DOS are registered trademarks of Microsoft Corporation.
Mac OS is a registered trademark of Apple Computer, Inc.
Linux is a registered trademark of Linus Torvalds.
FreeBSD is a registered trademark of Wind River Systems, Inc.
Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of The Open Group.
X Window System is a trademark of The Open Group.
POSIX is a trademark of IEEE.
Truevision, TARGA and TGA are registered trademarks of Truevision, Inc.

All other trademarks mentioned in this document are the property of their respective owners.

i

Contents

1 Introduction 1

2 Getting Started 2
2.1 Initializing GLFW . 2
2.2 Opening An OpenGL Window. 2
2.3 Using Keyboard Input. 3
2.4 Putting It Together: A Minimal GLFW Application. 4

3 Window Operations 5
3.1 Setting Window Properties. 5
3.2 Getting Window Properties. 6
3.3 Buffer Swapping . 8
3.4 Querying Video Modes. 9

4 Input Handling 10
4.1 Event Polling .10
4.2 Keyboard Input. .10

4.2.1 Key state .11
4.2.2 Character input. .11
4.2.3 Key repeat .12
4.2.4 Special system keys. 12

4.3 Mouse Input. .12
4.3.1 Mouse position. .12
4.3.2 Mouse buttons. .13
4.3.3 Mouse wheel. .13
4.3.4 Hiding the mouse cursor. 14

4.4 Joystick Input. .14
4.4.1 Joystick capabilities. 14
4.4.2 Joystick position. 15
4.4.3 Joystick buttons. .15

5 Timing 16
5.1 High Resolution Timer. .16
5.2 Sleep .16

6 Image and Texture Import 18
6.1 Texture Loading. .18
6.2 Image Loading .19

7 OpenGL Extension Support 20
7.1 Compile Time Check. .20

ii

7.2 Runtime Check. .21
7.3 Fetching Function Pointers. 21

7.3.1 Function pointer type definitions. 23

8 Multi Threading 24
8.1 Why Use Multi Threading?. 24

8.1.1 Take advantage of multi processor systems. 24
8.1.2 Avoid unnecessary waiting. 25
8.1.3 Improve real time performance. 25

8.2 How To Use Multi Threading. 25
8.3 Creating Threads. .26
8.4 Data Sharing Using Mutex Objects. 27
8.5 Thread Synchronization Using Condition Variables. 29
8.6 Calling GLFW Functions From Multiple Threads. 31

iii

GLFW Users Guide API version 2.4 Page 1/31

Chapter 1

Introduction

GLFW is a portable API (Application Program Interface) that handles operating system specific tasks
related toOpenGLTM programming. WhileOpenGLTM in general is portable, easy to use and often
results in tidy and compact code, the operating system specific mechanisms that are required to set up
and manage anOpenGLTM window are quite the opposite.GLFW tries to remedy this by providing
the following functionality:

• Opening and managing anOpenGLTM window.

• Keyboard, mouse and joystick input.

• A high precision timer.

• Multi threading support.

• Support for querying and usingOpenGLTM extensions.

• Image file loading support.

All this functionality is implemented as a set of easy-to-use functions, which makes it possible to write
anOpenGLTM application framework in just a few lines of code. TheGLFW API is completely
operating system and platform independent, which makes it very simple to portGLFW based
OpenGLTM applications to a variety of platforms.

Currently supported platforms are:

• Microsoft WindowsR© 95/98/ME/NT/2000/XP/.NET Server.

• Unix R© or Unix-like systems running the X Window SystemTM , e.g. LinuxR©, IRIX R©,
FreeBSDR©, SolarisTM , QNX R© and Mac OSR© X.

• Mac OSR© X (Carbon)1

• AmigaOS1

1Only a subset of theGLFW API is supported for this platform at the time of writing.

GLFW Users Guide API version 2.4 Page 2/31

Chapter 2

Getting Started

In this chapter you will learn how to write a simpleOpenGLTM application usingGLFW . We start by
initializing GLFW , then we open a window and read some user keyboard input.

2.1 Initializing GLFW

Before using any of theGLFW functions, it is necessary to callglfwInit . It initializes internal working
variables that are used by otherGLFW functions. The C syntax is:� �
int glfwInit(void)� �
glfwInit returns GL_TRUE if initialization succeeded, or GL_FALSE if it failed.

When your application is done usingGLFW , typically at the very end of the program, you should call
glfwTerminate, which makes a clean up and placesGLFW in a non-initialized state (i.e. it is necessary
to callglfwInit again before using anyGLFW functions). The C syntax is:� �
void glfwTerminate(void)� �
Among other things,glfwTerminate closes theOpenGLTM window unless it was closed manually, and
kills any running threads that were created usingGLFW .

2.2 Opening An OpenGL Window

Opening anOpenGLTM window is done with the functionglfwOpenWindow. The function takes nine
arguments, which are used to describe the following properties of the window to open:

• Window dimensions (width and height) in pixels.

• Color and alpha buffer depth.

• Depth buffer (Z-buffer) depth.

• Stencil buffer depth.

• Fullscreen or windowed mode.

The C language syntax forglfwOpenWindow is:

GLFW Users Guide API version 2.4 Page 3/31

� �
int glfwOpenWindow(int width, int height,

int redbits, int greenbits, int bluebits,
int alphabits, int depthbits, int stencilbits,
int mode)� �

glfwOpenWindow returns GL_TRUE if the window was opened correctly, or GL_FALSE ifGLFW
failed to open the window.

GLFW tries to open a window that best matches the requested parameters. Some parameters may be
omitted by setting them to zero, which will result inGLFW either using a default value, or the related
functionality to be disabled. For instance, ifwidthandheightare both zero,GLFW will use a window
resolution of 640x480. Ifdepthbitsis zero, the opened window may not have a depth buffer.

Themodeargument is used to specify if the window is to be a s.c. fullscreen window, or a regular
window.

If modeis GLFW_FULLSCREEN, the window will cover the entire screen and no window borders will
be visible. If possible, the video mode will be changed to the mode that closest matches thewidth,
height, redbits, greenbits, bluebitsandalphabitsarguments. Furthermore, the mouse pointer will be
hidden, and screensavers are prohibited. This is usually the best mode for games and demos.

If modeis GLFW_WINDOW, the window will be opened as a normal window on the desktop. The
mouse pointer will not be hidden, and screensavers are allowed to be activated.

To close the window, you can either useglfwTerminate, as described earlier, or you can use the more
explicit approach by callingglfwCloseWindow, which has the C syntax:� �
void glfwCloseWindow(void)� �
2.3 Using Keyboard Input

GLFW provides several means for receiving user input, which will be discussed in more detail in
chapter4. One of the simplest ways of checking for keyboard input is to use the functionglfwGetKey:� �
int glfwGetKey(int key)� �
It queries the current status of individual keyboard keys. The argumentkeyspecifies which key to
check, and it can be either an uppercase printable ISO 8859-1 (Latin 1) character (e.g. ‘A’, ‘3’ or ‘.’), or
a special key identifier (see theGLFW Reference Manualfor a list of special key identifiers).
glfwGetKey returns GLFW_PRESS (or 1) if the key is currently held down, or GLFW_RELEASE (or
0) if the key is not being held down. For example:� �
A_pressed = glfwGetKey(’A’);
esc_pressed = glfwGetKey(GLFW_KEY_ESC);� �
In order forglfwGetKey to have any effect, you need to poll for input events on a regular basis. This
can be done in one of two ways:

1. Implicitly by calling glfwSwapBuffersoften.

2. Explicitly by callingglfwPollEventsoften.

GLFW Users Guide API version 2.4 Page 4/31

In general you do not have to care about this, since you will normally callglfwSwapBuffers to swap
front and back rendering buffers every animation frame anyway. If, however, this is not the case, you
should callglfwPollEvents in the order of 10-100 times per second in order forGLFW to maintain an
up to date input state.

2.4 Putting It Together: A Minimal GLFW Application

Now that you know how to initializeGLFW , open a window and poll for keyboard input, let us
exemplify this with a simpleOpenGLTM program. In the following example some error-checking has
been omitted for the sake of brevity:� �
#include <GL/glfw.h>

int main(void)
{

int running = GL_TRUE;

// Initialize GLFW
glfwInit();

// Open an OpenGL window
if (!glfwOpenWindow(300,300, 0,0,0,0,0,0, GLFW_WINDOW))
{

glfwTerminate();
return 0;

}

// Main loop
while (running)
{

// OpenGL rendering goes here...
glClear(GL_COLOR_BUFFER_BIT);

// Swap front and back rendering buffers
glfwSwapBuffers();

// Check if ESC key was pressed or window was closed
running = !glfwGetKey(GLFW_KEY_ESC) &&

glfwGetWindowParam(GLFW_OPENED);
}

// Close window and terminate GLFW
glfwTerminate();

// Exit program
return 0;

}� �
The program opens a 300x300 window and runs in a loop until the escape key is pressed, or the window
was closed. All theOpenGLTM “rendering” that is done in this example is to clear the window.

GLFW Users Guide API version 2.4 Page 5/31

Chapter 3

Window Operations

In this chapter, you will learn more about window relatedGLFW functionality, including: setting and
getting window properties, buffer swap control and video mode querying.

3.1 Setting Window Properties

In the previous chapter theglfwOpenWindow function was described, which specifies the sizes of the
color, alpha, depth and stencil buffers. It is also possible to request an accumulator buffer, auxiliary
buffers and stereo rendering by using theglfwOpenWindowHint function:� �
void glfwOpenWindowHint(int target, int hint)� �
Thetargetargument can be one of the constants listed in table3.1, andhint is the value to assign to the
specified target.

For a hint to have any effect, theglfwOpenWindowHint function must be called before opening the
window with theglfwOpenWindow function.

To request an accumulator buffer, set the GLFW_ACCUM_x_BITS targets to values greater than zero
(usually eight or sixteen bits per component). To request auxiliary buffers, set the
GLFW_AUX_BUFFERS target to a value greater than zero. To request a stereo rendering capable
window, set the GLFW_STEREO target to GL_TRUE.

The GLFW_REFRESH_RATE target should be used with caution, since it may result in suboptimal
operation, or even a blank or damaged screen.

Besides the parameters that are given with theglfwOpenWindow andglfwOpenWindowHint
functions, a few more properties of a window can be changed after the window has been opened,
namely the window title, window size, and window position.

To change the window title of an open window, use theglfwSetWindowTitle function:� �
void glfwSetWindowTitle(const char *title)� �
title is a null terminated ISO 8859-1 (8-bit Latin 1) string that will be used as the window title. It will
also be used as the application name (for instance in the application list when usingALT+TABunder
Windows, or as the icon name when the window is iconified under the X Window System). The default
window name is “GLFW Window”, which will be used unlessglfwSetWindowTitle is called after the
window has been opened.

GLFW Users Guide API version 2.4 Page 6/31

To change the size of a window, callglfwSetWindowSize:� �
void glfwSetWindowSize(int width, int height)� �
Wherewidthandheightare the new dimensions of the window.

To change the position of a window, callglfwSetWindowPos:� �
void glfwSetWindowPos(int x, int y)� �
Wherex andy are the new desktop coordinates of the window. This function does not have any effect
when in fullscreen mode.

3.2 Getting Window Properties

When opening a window, the opened window will not necessarily have the requested properties, so you
should always check the parameters that your application relies on (e.g. number of stencil bits) using
glfwGetWindowParam, which has the C syntax:� �
int glfwGetWindowParam(int param)� �
The argumentparamcan be one of the tokens listed in table3.2, and the return value is an integer
holding the requested value.

Another useful function isglfwSetWindowSizeCallback, which specifies a user function that will be
called every time the window size has changed. The C syntax is:� �
void glfwSetWindowSizeCallback(GLFWwindowsizefun cbfun)� �
The user functionfunshould be of the type:� �
void GLFWCALL fun(int width, int height)� �
The first argument passed to the user function is the width of the window, and the second argument is
the height of the window. Here is an example of how to use a window size callback function:� �
int WinWidth, WinHeight;

void GLFWCALL WindowResize(int width, int height)
{

WinWidth = width;
WinHeight = height;

}

int main(void)
{

...
glfwSetWindowSizeCallback(WindowResize);
...

}� �

GLFW Users Guide API version 2.4 Page 7/31

Name Default Description
GLFW_REFRESH_RATE 0 Vertical monitor refresh rate in Hz (only used

for fullscreen windows). Zero means system
default.

GLFW_ACCUM_RED_BITS 0 Number of bits for the red channel of the ac-
cumulator buffer.

GLFW_ACCUM_GREEN_BITS 0 Number of bits for the green channel of the
accumulator buffer.

GLFW_ACCUM_BLUE_BITS 0 Number of bits for the blue channel of the ac-
cumulator buffer.

GLFW_ACCUM_ALPHA_BITS 0 Number of bits for the alpha channel of the
accumulator buffer.

GLFW_AUX_BUFFERS 0 Number of auxiliary buffers.
GLFW_STEREO GL_FALSE Specify if stereo rendering should be sup-

ported (can be GL_TRUE or GL_FALSE).

Table 3.1: Targets forglfwOpenWindowHint

Name Description
GLFW_OPENED GL_TRUE if window is opened, else GL_FALSE.
GLFW_ACTIVE GL_TRUE if window has focus, else GL_FALSE.
GLFW_ICONIFIED GL_TRUE if window is iconified, else GL_FALSE.
GLFW_ACCELERATED GL_TRUE if window is hardware accelerated, else

GL_FALSE.
GLFW_RED_BITS Number of bits for the red color component.
GLFW_GREEN_BITS Number of bits for the green color component.
GLFW_BLUE_BITS Number of bits for the blue color component.
GLFW_ALPHA_BITS Number of bits for the alpha buffer.
GLFW_DEPTH_BITS Number of bits for the depth buffer.
GLFW_STENCIL_BITS Number of bits for the stencil buffer.
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz. Zero indicates an unknown

or a default refresh rate.
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the accumulator buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the accumulator

buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the accumulator buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the accumulator

buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO GL_TRUE if stereo rendering is supported, else GL_FALSE.

Table 3.2: Window parameters forglfwGetWindowParam

GLFW Users Guide API version 2.4 Page 8/31

Using a callback function for getting the window size is mostly useful for windowed applications, since
the window size may be changed at any time by the user. It can also be used to determine the actual
fullscreen resolution.

An alternative to using a callback function for getting the window size, is to use the function
glfwGetWindowSize:� �
void glfwGetWindowSize(int *width, int *height)� �
Thewidthandheightarguments are filled out with the current window dimensions.

3.3 Buffer Swapping

GLFW windows are always double buffered. That means that you have two rendering buffers; a front
buffer and a back buffer. The front buffer is the buffer that is being displayed, and the back buffer is not
displayed.OpenGLTM lets you select which of these two buffers you want to render to (with the
glDrawBuffer command), but the default (and preferred) rendering buffer is the back buffer. This way
you will avoid flickering and artifacts caused by graphics being only partly drawn at the same time as
the video raster beam is displaying the graphics on the monitor.

When an entire frame has been rendered to the back buffer, it is time to swap the back and the front
buffers in order to display the rendered frame, and begin rendering a new frame. This is done with the
commandglfwSwapBuffers. The C syntax is:� �
void glfwSwapBuffers(void)� �
Besides swapping the front and back rendering buffers,glfwSwapBuffersalso callsglfwPollEvents1.
This is to ensure frequent polling of events, such as keyboard and mouse input, and window reshaping
events.

Sometimes it can be useful to select when the buffer swap will occur. With the function
glfwSwapInterval it is possible to select the minimum number of vertical retraces the video raster line
should do before swapping the buffers:� �
void glfwSwapInterval(int interval)� �
If interval is zero, the swap will take place immediately whenglfwSwapBuffers is called, without
waiting for a vertical retrace (also known as “vsync off”). Otherwise at leastinterval retraces will pass
between each buffer swap (also known as “vsync on”). Using a swap interval of zero can be useful for
benchmarking purposes, when it is not desirable to measure the time it takes to wait for the vertical
retrace. However, a swap interval of 1 generally gives better visual quality.

It should be noted that not allOpenGLTM implementations and hardware support this function, in
which caseglfwSwapInterval will have no effect. Sometimes it is only possible to affect the swap
interval through driver settings (e.g. the display settings under Windows, or as an environment variable
setting under Unix).

1This behavior can be disabled by callingglfwDisablewith the argument GLFW_AUTO_POLL_EVENTS.

GLFW Users Guide API version 2.4 Page 9/31

3.4 Querying Video Modes

AlthoughGLFW generally does a good job at selecting a suitable video mode for you when you open a
fullscreen window, it is sometimes useful to know exactly which modes are available on a certain
system. For example, you may want to present the user with a list of video modes to select from. To get
a list of available video modes, you can use the functionglfwGetVideoModes:� �
int glfwGetVideoModes(GLFWvidmode *list, int maxcount)� �
The argumentlist is a vector of GLFWvidmode structures, andmaxcountis the maximum number of
video modes that your vector can hold.glfwGetVideoModeswill return the actual number of video
modes detected on the system.

The GLFWvidmode structure looks like this:� �
typedef struct {

int Width, Height; // Video resolution
int RedBits; // Red bits per pixel
int GreenBits; // Green bits per pixel
int BlueBits; // Blue bits per pixel

} GLFWvidmode;� �
Here is an example of retrieving all available video modes:� �
int nummodes;
GLFWvidmode list[200];
nummodes = glfwGetVideoModes(list, 200);� �
The returned list is sorted, first by color depth (RedBits + GreenBits + BlueBits), and then by
resolution (Width×Height), with the lowest resolution, fewest bits per pixel mode first.

To get the desktop video mode, use the functionglfwGetDesktopMode:� �
void glfwGetDesktopMode(GLFWvidmode *mode)� �
The function returns the resolution and color depth of the user desktop in the mode structure. Note that
the user desktop mode is independent of the current video mode if aGLFW fullscreen window has
been opened.

GLFW Users Guide API version 2.4 Page 10/31

Chapter 4

Input Handling

In this chapter you will learn how to use keyboard, mouse and joystick input, using either polling or
callback functions.

4.1 Event Polling

The first thing to know about input handling inGLFW is that all keyboard and mouse input is collected
by checking for input events. This has do be done manually by calling eitherglfwPollEventsor
glfwSwapBuffers (which implicitly callsglfwPollEvents for you). Normally this does not have to be a
concern, sinceglfwSwapBuffers is called every frame, which should be often enough (about 10-100
times per second for a normalOpenGLTM application). One exception is when rendering is paused,
and then the program waits for input to begin animation again. In this caseglfwPollEventshas to be
called repeatedly until any new input events arrive.

If it is not desirable thatglfwPollEvents iscalled implicitly fromglfwSwapBuffers, call glfwDisable
with the argument GLFW_AUTO_POLL_EVENTS.

Note that event polling is not needed for joystick input, since all relevant joystick state is gathered every
time a joystick function is called.

4.2 Keyboard Input

GLFW gives three options for getting keyboard input:

• Manually polling the state of individual keys.

• Automatically receive new key state for any key, using a callback function.

• Automatically receive characters, using a callback function.

Depending on what the keyboard input will be used for, either of the methods may be more suitable.
The main difference between the two last options is that while characters are affected by modifier keys
(such as shift), key state is independent of any modifier keys. Also, special keys (such as function keys,
cursor keys and modifier keys) are not reported to the character callback function.

GLFW Users Guide API version 2.4 Page 11/31

4.2.1 Key state

To check if a key is held down or not at any given moment, use the functionglfwGetKey:� �
int glfwGetKey(int key)� �
It queries the current status of individual keyboard keys. The argumentkeyspecifies which key to
check, and it can be either an uppercase ISO 8859-1 character, or a special key identifier.glfwGetKey
returns GLFW_PRESS (or 1) if the key is currently held down, or GLFW_RELEASE (or 0) if the key is
not being held down.

In most situations, it may be useful to know if a key has been pressed and released between two calls to
glfwGetKey (especially if the animation is fairly slow, which may allow the user to press and release a
key between two calls toglfwGetKey). This can be accomplished by enabling sticky keys, which is
done by callingglfwEnable with the argument GLFW_STICKY_KEYS, as in the following example:� �
glfwEnable(GLFW_STICKY_KEYS);� �
When sticky keys are enabled, a key will not be released until it is checked withglfwGetKey. To disable
sticky keys, callglfwDisablewitht the argument GLFW_STICKY_KEYS. Then all keys that are not
currently held down will be released, and future key releases will take place immediately when the user
releases the key, without waiting forglfwGetKey to check the key. By default sticky keys are disabled.

Sticky keys are often very useful and should be used in most cases whereglfwGetKey is used. There is
however a danger involved with enabling sticky keys, and that is that keys that are pressed by the user
but are not checked withglfwGetKey, may remain “pressed” for a very long time. A typical situation
where this may be dangerous is in a program that consists of two or more sections (e.g. a menu section
and a game section). If the first section enables sticky keys but does not check for keys which the
second section checks for, there is a potential of recording many key presses in the first section that will
be detected in the second section. To avoid this problem, always disable sticky keys before leaving a
section of a program.

An alternative to usingglfwGetKey is to register a keyboard input callback function with
glfwSetKeyCallback:� �
void glfwSetKeyCallback(GLFWkeyfun cbfun)� �
The argumentfun is a pointer to a callback function. The callback function shall take two integer
arguments. The first is the key identifier, and the second is the new key state, which can be
GLFW_PRESS or GLFW_RELEASE. To unregister a callback function, callglfwSetKeyCallback
with fun= NULL.

A callback function can be useful in some situations. For instance it can replace multipleglfwGetKey
calls with a switch/case statement.

4.2.2 Character input

If the keyboard is to be used as a text input device (e.g. in a user dialog) rather than as a set of
independent buttons, a character callback function is more suitable. To register a character callback
function, useglfwSetCharCallback:� �
void glfwSetCharCallback(GLFWcharfun cbfun)� �

GLFW Users Guide API version 2.4 Page 12/31

The argumentfun is a pointer to a callback function. The callback function shall take two integer
arguments. The first is a Unicode character code, and the second is GLFW_PRESS if the key that
generated the character was pressed, or GLFW_RELEASE if it was released. To unregister a callback
function, callglfwSetCharCallback with fun= NULL.

The Unicode character set is an international standard for encoding characters. It is much more
comprehensive than seven or eight bit character sets (e.g. US-ASCII and Latin 1), and includes
characters for most written languages in the world. It should be noted that Unicode character codes 0 to
255 are the same as for ISO 8859-1 (Latin 1), so as long as a proper range check is performed on the
Unicode character code, it can be used just as an eight bit Latin 1 character code (which can be useful if
full Unicode support is not possible).

4.2.3 Key repeat

By default,GLFW does not report key repeats when a key is held down. To activate key repeat, call
glfwEnable with the argument GLFW_KEY_REPEAT:� �
glfwEnable(GLFW_KEY_REPEAT);� �
This will let a registered key or character callback function receive key repeat events when a key is held
down.

4.2.4 Special system keys

On most systems there are some special system keys that are normally not intercepted by an application.
For instance, under Windows it is possible to switch programs by pressingALT+TAB, which brings up
a list of running programs to select from. In certain situations it can be desirable to prevent such special
system keys from interfering with the program. WithGLFW it is possible to do by callingglfwDisable
with the argument GLFW_SYSTEM_KEYS:� �
glfwDisable(GLFW_SYSTEM_KEYS);� �
By doing so, most system keys will have no effect and will not interfere with your program. System
keys can be re-enabled by callingglfwEnable with the argument GLFW_SYSTEM_KEYS. By default,
system keys are enabled.

4.3 Mouse Input

Just like for keyboard input, mouse input can be realized with either polling or callback functions.

4.3.1 Mouse position

To read the mouse position, you can use the functionglfwGetMousePos:� �
void glfwGetMousePos(int *x, int *y)� �
The argumentsx andy point to integer variables that will be updated with the current absolute mouse
position. An alternative is to use a callback function instead, which can be set with
glfwSetMousePosCallback:

GLFW Users Guide API version 2.4 Page 13/31

� �
void glfwSetMousePosCallback(GLFWmouseposfun cbfun)� �
The function thatfunpoints to will be called every time the mouse position changes. The first argument
to the callback function is the mouse x position, and the second argument is the mouse y position.

4.3.2 Mouse buttons

To query the state of a mouse button, callglfwGetMouseButton:� �
int glfwGetMouseButton(int button)� �
The argumentbuttoncan be one of the following mouse button identifiers:
GLFW_MOUSE_BUTTON_LEFT, GLFW_MOUSE_BUTTON_RIGHT or
GLFW_MOUSE_BUTTON_MIDDLE.glfwGetMouseButtonwill return GLFW_PRESS (or 1) if the
corresponding mouse button is held down, otherwise it will return GLFW_RELEASE (or 0).

Just as it is possible to make keys “sticky”, it is also possible to make mouse buttons appear as held
down until the button is checked for withglfwGetMouseButton. To enable sticky mouse buttons, call
glfwEnable with the argument GLFW_STICKY_MOUSE_BUTTONS.

When sticky mouse buttons are enabled, a mouse button will not be released until it is checked with
glfwGetMouseButton. To disable sticky mouse buttons, callglfwDisablewith the argument
GLFW_STICKY_MOUSE_BUTTONS. Then all mouse buttons that are not currently held down will
be released, and future mouse button releases will take place immediately when the user releases the
mouse button, without waiting forglfwGetMouseButton to check for the mouse button. By default
sticky mouse buttons are disabled.

There is also a callback function for mouse button activities, which can be set with
glfwSetMouseButtonCallback:� �
void glfwSetMouseButtonCallback(GLFWmousebuttonfun fun)� �
The argumentfunspecifies a function that will be called whenever a mouse button is pressed or
released, or NULL to unregister a callback function. The first argument to the callback function is a
mouse button identifier, and the second is either GLFW_PRESS or GLFW_RELEASE, depending on
the new state of the corresponding mouse button.

4.3.3 Mouse wheel

Some mice have a mouse wheel, which can be thought of as a third mouse axis. To get the position of
the mouse wheel, callglfwGetMouseWheel:� �
int glfwGetMouseWheel(void)� �
The function returns an integer that represents the position of the mouse wheel. When the user turns the
wheel, the wheel position will increase or decrease.

It is also possible to register a callback function for mouse wheel events with the
glfwSetMouseWheelCallbackfunction:� �
void glfwSetMouseWheelCallback(GLFWmousewheelfun fun)� �

GLFW Users Guide API version 2.4 Page 14/31

The argumentfunspecifies a function that will be called whenever the mouse wheel is moved, or NULL
to unregister a callback function. The argument to the callback function is the position of the mouse
wheel.

4.3.4 Hiding the mouse cursor

It is possible to hide the mouse cursor with the function call:� �
glfwDisable(GLFW_MOUSE_CURSOR);� �
Hiding the mouse cursor has three effects:

1. The cursor becomes invisible.

2. The cursor is guaranteed to be confined to the window.

3. Mouse coordinates are not limited to the window size.

To show the mouse cursor again, callglfwEnable with the argument GLFW_MOUSE_CURSOR:� �
glfwEnable(GLFW_MOUSE_CURSOR);� �
By default the mouse cursor is hidden if a window is opened in fullscreen mode, otherwise it is not
hidden.

4.4 Joystick Input

GLFW has support for up to sixteen joysticks, and an infinite1 number of axes and buttons per joystick.
Unlike keyboard and mouse input, joystick input does not need an opened window, andglfwPollEvents
or glfwSwapBuffersdoes not have to be called in order for joystick state to be updated.

4.4.1 Joystick capabilities

First, it is often necessary to determine if a joystick is connected, and what its capabilities are. To get
this information the functionglfwGetJoystickParamcan be used:� �
int glfwGetJoystickParam(int joy, int param)� �
The joy argument specifies which joystick to retrieve the parameter from, and it should be
GLFW_JOYSTICK_n, wheren is in the range 1 to 16. Theparamargument specifies which parameter
to retrieve. To determine if a joystick is connected,paramshould be GLFW_PRESENT, which will
cause the function to return GL_TRUE if the joystick is connected, or GL_FALSE if it is not. To
determine the number of axes or buttons that are supported by the joystick,paramshould be
GLFW_AXES or GLFW_BUTTONS, respectively.

1There are of course actual limitations posed by the underlying hardware, drivers and operation system.

GLFW Users Guide API version 2.4 Page 15/31

4.4.2 Joystick position

To get the current axis positions of the joystick, theglfwGetJoystickPosis used:� �
int glfwGetJoystickPos(int joy, float *pos, int numaxes)� �
As with glfwGetJoystickParam, thejoy argument specifies which joystick to retrieve information
from. Thenumaxesargument specifies how many axes to return, and theposargument specifies an
array in which all the axis positions are stored. The function returns the actual number of axes that were
returned, which could be less thannumaxesif the joystick does not support all the requested axes, or if
the joystick is not connected.

For instance, to get the position of the first two axes (the X and Y axes) of joystick 1, the following code
can be used:� �
float position[2];

glfwGetJoystickPos(GLFW_JOYSTICK_1, position, 2);� �
After this call, the first element of thepositionarray will hold the X axis position of the joystick, and the
second element will hold the Y axis position. In this example we do not use the information about how
many axes were really returned.

The position of an axis can be in the range -1.0 to 1.0, where positive values represent right, forward or
up directions, while negative values represent left, back or down directions. If a requested axis is not
supported by the joystick, the corresponding array element will be set to zero. The same goes for the
situation when the joystick is not connected (all axes are treated as unsupported).

4.4.3 Joystick buttons

A function similar to theglfwGetJoystickPosfunction is available for querying the state of joystick
buttons, namely theglfwGetJoystickButtons function:� �
int glfwGetJoystickButtons(int joy, unsigned char *buttons,

int numbuttons)� �
The function works just like theglfwGetJoystickAxis function, except that it returns the state of
joystick buttons instead of axis positions. Each button in the array specified by thebuttonsargument can
be either GLFW_PRESS or GLFW_RELEASE, telling if the corresponding button is currently held
down or not. Unsupported buttons will have the value GLFW_RELEASE.

GLFW Users Guide API version 2.4 Page 16/31

Chapter 5

Timing

5.1 High Resolution Timer

In most applications, it is useful to know exactly how much time has passed between pointA and point
B in a program. A typical situation is in a game, where you need to know how much time has passed
between two rendered frames in order to calculate the correct movement and physics etc. Another
example is when you want to benchmark a certain piece of code.

GLFW provides a high-resolution timer, which reports a double precision floating point value
representing the number of seconds that have passed sinceglfwInit was called. The timer is accessed
with the functionglfwGetTime:� �
double glfwGetTime(void)� �
The precision of the timer depends on which computer and operating system you are running, but it is
almost guaranteed to be better than10 ms, and in most cases it is much better than1 ms (on a modern
PC you can get resolutions in the order of1 ns).

It is possible to set the value of the high precision timer using theglfwSetTime function:� �
void glfwSetTime(double time)� �
The argumenttime is the time, in seconds, that the timer should be set to.

5.2 Sleep

Sometimes it can be useful to put a program to sleep for a short time. It can be used to reduce the CPU
load in various situations. For this purpose, there is a function calledglfwSleep, which has the
following C syntax:� �
void glfwSleep(double time)� �
The function will put the calling thread to sleep for the time specified with the argumenttime, which has
the unit seconds. WhenglfwSleepis called, the calling thread will be put in waiting state, and thus will
not consume any CPU time.

Note that there is generally a minimum sleep time that will be recognized by the operating system,
which is usually coupled to the task-switching interval. This minimum time is often in the range

GLFW Users Guide API version 2.4 Page 17/31

5 − 20ms, and it is not possible to make a thread sleep for less than that time. Specifying a very small
sleep time may result inglfwSleepreturning immediately, without putting the thread to sleep.

GLFW Users Guide API version 2.4 Page 18/31

Chapter 6

Image and Texture Import

In many, if not most,OpenGLTM applications you want to use pre-generated 2D images for surface
textures, light maps, transparency maps etc. Typically these images are stored with a standard image
format in a file, which requires the program to decode and load the image(s) from file(s), which can
require much work from the programmer.

To make life easier forOpenGLTM developers,GLFW has built-in support for loading images from
files.

6.1 Texture Loading

To load a texture from a file, you can use the functionglfwLoadTexture2D:� �
int glfwLoadTexture2D(const char *name, int flags)� �
This function reads a 2D image from a Truevision Targa format file (.TGA) with the name given by
name, and uploads it to texture memory. It is similar to theOpenGLTM functionglTexImage2D,
except that the image data is read from a file instead of from main memory, and all the pixel format and
data storage flags are handled automatically.

Theflagsargument can be used to control how the texture is loaded. Ifflagsis zero, the origin of the
texture will be the lower left corner, and only one mipmap level is loaded. Ifflagsis
GLFW_ORIGIN_UL_BIT the origin of the texture will be the upper left corner. Ifflagsis
GLFW_BUILD_MIPMAPS_BIT, all mipmap levels will be generated and uploaded to texture memory.
To combine GLFW_ORIGIN_UL_BIT and GLFW_BUILD_MIPMAPS_BIT, or them together (i.e.
like this: GLFW_ORIGIN_UL_BIT | GLFW_BUILD_MIPMAPS_BIT).

Here is an example of how to upload a texture from a file toOpenGLTM texture memroy, and configure
the texture for trilinear interpolation (assuming anOpenGLTM window has been opened successfully):� �

GLuint texid;

// Generate texture object for one texture
glGenTextures(1, &texid);

// Bind texture object
glBindTexture(GL_TEXTURE_2D, texid);

GLFW Users Guide API version 2.4 Page 19/31

// Load texture from file, and build all mipmap levels
glfwLoadTexture2D("mytexture.tga", GLFW_BUILD_MIPMAPS_BIT);

// Use trilinear interpolation for minification
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR);

// Use bilinear interpolation for magnification
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR);

// Enable texturing
glEnable(GL_TEXTURE_2D);� �

As you can see,glfwLoadTexture2D is very easy to use. Since it can also automatically create
mipmaps when required, it is also a very powerful function.

6.2 Image Loading

In certain cases it may be useful to be able to load an image into client memory (application memory),
without directly uploading the image toOpenGLTM texture memory. For example, one may wish to
retain a copy of the texture in local memory for future use. Another example is when the image is not to
be used as a texture at all, e.g. if it is to be used as a height map.

GLFW also offers the possibility to load an image to application memory, using theglfwReadImage
function:� �
int glfwReadImage(const char *name, GLFWimage *img, int flags)� �
The function reads the image given by the argumentname, and upon success stores the relevant image
information and pixel data in the GLFWimage structureimg. The GLFWimage structure is defined as:� �
typedef struct {

int Width, Height; // Image dimensions
int Format; // OpenGL pixel format
int BytesPerPixel; // Number of bytes per pixel
unsigned char *Data; // Pointer to pixel data

} GLFWimage;� �
Datapoints to the loaded pixel data. If the function loaded the image successfully, GL_TRUE is
returned, otherwise GL_FALSE is returned.

Possible flags for theflagsargument are GLFW_ORIGIN_UL_BIT and GLFW_NO_RESCALE_BIT.
GLFW_ORIGIN_UL_BIT works as described for theglfwLoadTexture2D function. If the
GLFW_NO_RESCALE_BIT flag is set, the image will not be rescaled to the closest larger2m × 2n

resolution, which is otherwise the default action for images with non-power-of-two dimenstions.

When an image that was loaded with theglfwReadImagefunction is not used anymore (e.g. when it
has been uploaded to texture memory), you should use the functionglfwFreeImageto free the
allocated memory:� �
void glfwFreeImage(GLFWimage *img)� �

GLFW Users Guide API version 2.4 Page 20/31

Chapter 7

OpenGL Extension Support

One of the benefits ofOpenGLTM is that it is extensible. Independent hardware vendors (IHVs) may
include functionality in theirOpenGLTM implementations that exceed that of theOpenGLTM standard.

An extension is defined by:

1. An extension name (e.g. GL_ARB_multitexture).

2. New OpenGL tokens (e.g. GL_TEXTURE1_ARB).

3. New OpenGL functions (e.g.glActiveTextureARB).

A list of official extensions, together with their definitions, can be found at theOpenGL Extension
Registry(http://oss.sgi.com/projects/ogl-sample/registry/).

To use a certain extension, the following steps must be performed:

1. A compile time check for the support of the extension.

2. A run time check for the support of the extension.

3. Fetch function pointers for the extendedOpenGLTM functions (done at run time).

How this is done usingGLFW is described in the following sections. Please note that this chapter
covers some advanced topics, and is quite specific to the C programming language.

7.1 Compile Time Check

The compile time check is necessary to perform in order to know if the compiler include files have
defined the necessary tokens. It is very easy to do. The include fileGL/gl.h will define a constant
with the same name as the extension, if all the extension tokens are defined. Here is an example of how
to check for the extension GL_ARB_multitexture:� �
#ifdef GL_ARB_multitexture

// Extension is supported by the include files
#else

// Extension is not supported by the include files
// Update your <GL/gl.h> file!

#endif� �

http://oss.sgi.com/projects/ogl-sample/registry/

GLFW Users Guide API version 2.4 Page 21/31

7.2 Runtime Check

Even if the compiler include files have defined all the necessary tokens, the target system may not
support the extension (perhaps it has a different graphic card with a differentOpenGLTM

implementation, or it has an older driver). That is why it is necessary to do a run time check for the
extension support as well. This is done with theGLFW functionglfwExtensionSupported, which has
the C syntax:� �
int glfwExtensionSupported(const char *extension)� �
The argumentextensionis a null terminated ISO 8859-1 string with the extension name.
glfwExtensionSupportedreturns GL_TRUE if the extension is supported, otherwise it returns
GL_FALSE.

Let us extend the previous example of checking for support of the extension GL_ARB_multitexture.
This time we add a run time check, and a variable which we set to GL_TRUE if the extension is
supported, or GL_FALSE if it is not supported.� �
int multitexture_supported;

#ifdef GL_ARB_multitexture
// Check if extension is supported at run time
multitexture_supported =

glfwExtensionSupported("GL_ARB_multitexture");
#else

// Extension is not supported by the include files
// Update your <GL/gl.h> file!
multitexture_supported = GL_FALSE;

#endif� �
Now it is easy to check for the extension within the program, simply do:� �

if (multitexture_supported)
{

// Use multi texturing
}
else
{

// Use some other solution (or fail)
}� �

7.3 Fetching Function Pointers

Some extensions (not all) require the use of newOpenGLTM functions, which are not necessarily
defined by your link libraries. Thus it is necessary to get the function pointers dynamically at run time.
This is done with theGLFW functionglfwGetProcAddress:� �
void * glfwGetProcAddress(const char *procname)� �

GLFW Users Guide API version 2.4 Page 22/31

The argumentprocnameis a null terminated ISO 8859-1 string holding the name of theOpenGLTM

function.glfwGetProcAddressreturns the address to the function if the function is available, otherwise
NULL is returned.

Obviously, fetching the function pointer is trivial. For instance, if we want to obtain the pointer to
glActiveTextureARB, we simply call:� �
glActiveTextureARB = glfwGetProcAddress("glActiveTextureARB");� �
However, there are many possible naming and type definition conflicts involved with such an operation,
which may result in compiler warnings or errors. My proposed solution is the following:

• Do not use the function name for the variable name. Use something similar (perhaps with a prefix
or suffix), and then use#define to map the function name to your variable.

• The standard type definition naming convention for function pointers isPFNxxxx PROC, where
xxxx is the uppercase version of the function name (e.g.PFNGLACTIVETEXTUREARBPROC).
Either make sure that a compatiblegl.h and/orglext.h file is used by your compiler and rely
on it to do the type definitions for you, or use a custom type definition naming convention (e.g.
xxxx _T or something) and do the type definitions yourself.

Here is an example of how to do it (here we use our own function pointer type defintion):� �
// Type definition of the function pointer
typedef void (APIENTRY * GLACTIVETEXTUREARB_T) (GLenum texture);

// Function pointer
GLACTIVETEXTUREARB_T _ActiveTextureARB;
#define glActiveTextureARB _ActiveTextureARB

// Extension availability flag
int multitexture_supported;

#ifdef GL_ARB_multitexture
// Check if extension is supported at run time
if (glfwExtensionSupported("GL_ARB_multitexture"))
{

// Get the function pointer
glActiveTextureARB = (GLACTIVETEXTUREARB_T)

glfwGetProcAddress("glActiveTextureARB");

multitexture_supported = GL_TRUE;
}
else
{

multitexture_supported = GL_FALSE;
}

#else
// Extension is not supported by the include files
multitexture_supported = GL_FALSE;

#endif� �
Please note that the code example is not 100% complete. First of all, the GL_ARB_multitexture
extension defines many more functions than the single function that the code example defines.

GLFW Users Guide API version 2.4 Page 23/31

Secondly, checking if an extension is supported usingglfwExtensionSupportedis not enough to
ensure that the corresponding functions will be valid. You also need to check if the function pointers
returned byglfwGetProcAddressare non-NULL values.

7.3.1 Function pointer type definitions

To make a function pointer type definition, you need to know the function prototype. This can often be
found in the extension definitions (e.g. at theOpenGL Extension Registry). All the functions that are
defined for an extension are listed with their C prototype definitions under the sectionNew Procedures
and Functionsin the extension definition.

For instance, if we look at the definition of the GL_ARB_texture_compression extension, we find a list
of new functions. One of the functions looks like this:� �
void GetCompressedTexImageARB(enum target, int lod, void *img);� �
Like in most officialOpenGLTM documentation, all theGLandgl prefixes have been left out. In other
words, the real function prototype would look like this:� �
void glGetCompressedTexImageARB(GLenum target, GLint lod, void *img);� �
All we have to do to turn this prototype definition into a function pointer type definition, is to replace
the function name with(APIENTRY * xxxx _T) , wherexxxxis the uppercase version of the name
(according to the proposed naming convention). The keywordAPIENTRYis needed to be compatible
between different platforms. TheGLFW include fileGL/glfw.h always makes sure thatAPIENTRY
is properly defined, regardless of which platform the program is compiled on.

In other words, for the functionglGetCompressedTexImageARBwe get:� �
typedef void (APIENTRY * GLGETCOMPRESSEDTEXIMAGEARB_T)

(GLenum target, GLint level, void *img);� �

GLFW Users Guide API version 2.4 Page 24/31

Chapter 8

Multi Threading

Multi threading may not seem to be related toOpenGLTM , and thus it may seem to be out of the scope
of GLFW to provide multi threading support. The initial intent ofGLFW was to provide the very basic
functionality needed to create anOpenGLTM application, but asGLFW grew to be a platform for
portableOpenGLTM applications, it felt natural to include an operating system independent multi
threading layer inGLFW . Hopefully this will makeGLFW more attractive for advancedOpenGLTM

developers, as well as inspire more programmers to use multi threading.

In this chapter you will learn about multi threading and how you can useGLFW to create multi
threaded applications.

8.1 Why Use Multi Threading?

Multi threading is not a new technology, neither is it an advanced technology. In fact, multi threading
could be found as early as 1985 in consumer computers, namely the Amiga, whose operating system
implemented preemptive multi threading. During the early and mid 90’s, consumer level operating
systems emerged for Intel based PCs that supported multi threading. Still, over a decade later, many
programmers, especially game programmers, feel reluctant to using threading in their applications.
Why?

There are probably many reasons that one can think of to avoid multi threading, but many of them are
based on ignorance and myths. The foremost reason for not using multi threading is probably that it
requires a new way of thinking, but once accepted, threaded programming can take your program to
new performance levels and solve many problematic timing and synchronization issues.

In the following sections a few key reasons for using multi threaded programming will be presented.

8.1.1 Take advantage of multi processor systems

If an application is divided into several threads that can execute concurrently, these threads will
automatically execute on separate processors in parallel on an SMP (symmetric multi-processing)
system. Multi processor platforms are becoming increasingly common, and the price to pay is generally
not much higher than for a single processor system.

A multi processor system is especially appealing if you consider that in general, for the price of the
fastest processor available you can get two processors of a model that performs only slightly worse.

GLFW Users Guide API version 2.4 Page 25/31

The problem with SMP systems is of course that if an application is not multi threaded, only one of the
available processors will actually be used to execute the application. This is probably the most important
aspect of multi threading. For SMP systems to be really useful, programs must be multi threaded.

Another emerging technology known as SMT (symmetric multi threading) is also becoming more and
more popular. In short, it takes a single physical processor, and divides it into several logical processors
that can execute separate threads. The idea behind this is to better utilize all available CPU resources by
running independent pieces of code on the same physical CPU.

8.1.2 Avoid unnecessary waiting

In many situations, an application is placed in a wait state, waiting for a task to complete. Examples of
such situations are: waiting for a file to load from disk, waiting for a vertical retrace (when using a
double buffered display, such as aGLFW OpenGL TM window), waiting for a display to be cleared or
data to be sent to the graphic card.

Some or all of these operations can be done asynchronously, if the conditions are right and the operating
system supports it, but a simple and efficient way of avoiding unnecessary waits is to use multi
threading. If there are several active threads in an application, a thread that was waiting for CPU time
can start running as soon as another thread enters a wait state. This will speed up an application on both
single and multi processor systems.

8.1.3 Improve real time performance

It is a known fact that an application becomes more responsive and exhibits less timing problems if
different jobs are assigned to separate threads.

A typical example is streaming audio: when an audio buffer is empty, it has to be filled with new sound
again within a limited amount of time, or strange sound loops or clicks may be the result. If a program
is displaying graphics, loading files and playing audio at the same time (a typical game), it is very
difficult to guarantee that the program will update the audio buffers in time if everything is performed in
a single thread. On the other hand, if the audio buffer is updated from a separate thread, it becomes a
very simple task.

8.2 How To Use Multi Threading

In general, every program runs as a process, which has its own memory space and its own set of
resources, such as opened files etc. As a consequence, each process is coupled with a fairly large set of
state. When the processor changes the execution from one process to another process, all this state has
to be changed too (this is often referred to as a context switch), which can be quite costly.

Threads are sometimes referred to as “lightweight processes”, which gives you a clue of what they are.
In contrast to a process, a thread is a separate execution path within a process, which shares the same
memory area and resources. This means that very little state has to be changed when switching
execution between different threads (basically only the stack pointer and the processor registers). It also
means that data exchange between threads is very simple, and there is little or no overhead in
exchanging data, since program variables and data areas can be shared between threads.

Writing threaded applications may be very awkward before you get used to it, but there are a few key
rules that are fairly simple to follow:

GLFW Users Guide API version 2.4 Page 26/31

1. ALWAYS assure exclusive access to data that is shared between threads!

2. Make sure that threads are synchronized properly!

3. NEVER busy wait!

In the following sections you will learn how to use the functionality ofGLFW to create threads and
meet these rules, and hopefully you will find that it is not very difficult to write a multi threaded
application.

8.3 Creating Threads

Creating a thread inGLFW is very simple. You just call the functionglfwCreateThread:� �
GLFWthread glfwCreateThread(GLFWthreadfun fun, void *arg)� �
The argumentfun is a pointer to a function that will be executed by the new thread, andarg is an
argument that is passed to the thread.glfwCreateThread returns a positive thread ID number if the
thread was created successfully, or a negative number if the thread could not be created.

When the thread function returns, the thread will die. In most cases, you want to know when the thread
has finished. A thread can wait for another thread to die with the commandglfwWaitThread :� �
int glfwWaitThread(GLFWthread ID, int waitmode)� �
The argumentID is the thread handle that was obtained when creating the thread. Ifwaitmodeis
GLFW_NOWAIT, glfwWaitThread will return immediately with the value GL_TRUE if the thread
died, or GL_FALSE if it is still alive. This can be useful if you only want to check if the thread is alive.
If waitmodeis GLFW_WAIT, glfwWaitThread will wait until the specified thread has died. Regardless
of whatwaitmodeis, glfwWaitThread will return immediately if the thread does not exist (e.g. if the
thread has already died or if ID is an invalid thread handle).

In some situations, you may want to brutally kill a thread without waiting for it to finish. This can be
done withglfwDestroyThread:� �
void glfwDestroyThread(GLFWthread ID)� �
It should be noted thatglfwDestroyThread is a very dangerous operation, which may interrupt a thread
in the middle of an important operation, which can result in lost data or deadlocks (when a thread is
waiting for a condition to be raised, which can never be raised). In other words, do not use this function
unless you really have to do it, and if you really know what you are doing (and what the thread that you
are killing is doing)!

To sum up what we have learned so far, here is an example program which will print “Hello world!”
(error checking has been left out for brevity):� �
#include <stdio.h>
#include <GL/glfw.h>

void GLFWCALL HelloFun(void *arg)
{

printf("Hello ");
}

GLFW Users Guide API version 2.4 Page 27/31

int main(void)
{

GLFWthread thread;

glfwInit();
thread = glfwCreateThread(HelloFun, NULL);
glfwWaitThread(thread, GLFW_WAIT);
printf("world!\n");
glfwTerminate();

return 0;
}� �
The program starts by initializingGLFW , as always, and then it goes on by creating a thread that will
execute the functionHelloFun . The main thread then waits for the created thread to do its work and
finish. Finally the main thread prints “world!”, terminatesGLFW and exits. The result is that “Hello
world!” will be printed in the console window.

You may have noticed that we have already used a simple form of thread synchronization, by waiting
for the child thread to die before we print “world!”. If we would have placed the wait command after
the print command, there would be no way of knowing which word would be printed first (“Hello” or
“world!”). Our program would then suffer from a race condition, which is a term used to describe a
situation where two (or more) threads are competing to complete a task first.

In section8.5you will learn how to do advanced thread synchronization using condition variables,
which let threads wait for certain conditions before continuing execution.

8.4 Data Sharing Using Mutex Objects

In many situations you need to protect a certain data area while reading or modifying it, so that other
threads do not start changing or reading the data while you are only half way through.

For instance, consider that you have a vectorvec, and a variableN telling how many elements there are
in the vector. What happens if threadA adds an element to the vector at the same time as threadB is
removing an element from the vector? Figure8.1shows a possible scenario.

Thread A Thread B� �
N ++;� � waiting to exectue

waiting to exectue

� �
x = vec[N-1];
N --;� �� �

vec[N-1] = y;� � waiting to exectue

Figure 8.1: Data sharing without mutex protection

We have created a possible race condition. The result in this case is that threadB reads an invalid
element from the vector, and threadA overwrites an already existing element, which is not what we
wanted.

GLFW Users Guide API version 2.4 Page 28/31

The solution is to only let one thread have access to the vector at a time. This is done with mutex
objects (mutex stands formutual exclusion). The proper use of mutexes eliminates race conditions. To
create a mutex object inGLFW , you use the functionglfwCreateMutex:� �
GLFWmutex glfwCreateMutex(void)� �
glfwCreateMutex returns NULL if a mutex object could not be created, otherwise a mutex handle is
returned. To destroy a mutex object that is no longer in use, callglfwDestroyMutex:� �
void glfwDestroyMutex(GLFWmutex mutex)� �
Mutex objects by themselves do not contain any useful data. They act as a lock to any arbitrary data.
Any thread can lock access to the data using the functionglfwLockMutex :� �
void glfwLockMutex(GLFWmutex mutex)� �
The argumentmutexis the mutex handle that was obtained when creating the mutex.glfwLockMutex
will block the calling thread until the specified mutex is available (which will be immediately, if no
other thread has locked it).

Once a mutex has been locked, no other thread is allowed to lock the mutex. Only one thread at a time
can get access to the mutex, and only the thread that has locked the mutex may use or manipulate the
data which the mutex protects. To unlock a mutex, the thread callsglfwUnlockMutex :� �
void glfwUnlockMutex(GLFWmutex mutex)� �
As soon asglfwUnlockMutex has been called, other threads may lock it again.

Figure8.2shows the the scenario with the two threads trying to access the same vector, but this time
they use a mutex object (vecmutex).

Thread A Thread B� �
glfwLockMutex(vecmutex);
N ++;� � waiting to exectue

waiting to exectue
� �
glfwLockMutex(vecmutex);� �� �

vec[N-1] = y;
glfwUnlockMutex(vecmutex);� � waiting to exectue

waiting to exectue

� �
x = vec[N-1];
N --;
glfwUnlockMutex(vecmutex);� �

Figure 8.2: Data sharing with mutex protection

In this example, threadA successfully obtains a lock on the mutex and directly starts modifying the
vector data. Next, threadB tries to get a lock on the mutex, but is placed on hold since threadA has
already locked the mutex. ThreadA is free to continue its work, and when it is done it unlocks the
mutex.Now threadB locks the mutex and gains exclusive access to the vector data, performs its work,
and finally unlocks the mutex.

The race condition has been avoided, and the code performs as expected.

GLFW Users Guide API version 2.4 Page 29/31

8.5 Thread Synchronization Using Condition Variables

Now you know how to create threads and how to safely exchange data between threads, but there is one
important thing left to solve for multi threaded programs: conditional waits. Very often it is necessary
for one thread to wait for a condition that will be satisfied by another thread.

For instance, a threadA may need to wait for both threadB and threadC to finish a certain task before
it can continue. For starters, we can create a mutex protecting a variable holding the number of
completed threads:� �
GLFWmutex mutex;
int threadsdone;� �
Now, threadB andC will lock the mutex and increase thethreadsdonevariable by one when they are
done, and then unlock the mutex again. ThreadA can lock the mutex and check if threadsdone is equal
to 2.

If we assume thatmutexhas been created successfully, the code for the three threads (A, B andC)
could be the following:

ThreadA: Wait for both threadB andC to finish.� �
do
{

glfwLockMutex(mutex);
done = (threadsdone == 2);
glfwUnlockMutex(mutex);

}
while (!done);� �
ThreadB andC: Tell threadA that I am done.� �
glfwLockMutex(mutex);
threadsdone ++;
glfwUnlockMutex(mutex);� �
The problem is that when threadA discovers that threadB andC are not done, it needs to check
threadsdoneover and over again untilthreadsdoneis 2. We have created a busy waiting loop!

The method will work without a doubt, but threadA will consume a lot of CPU power doing nothing.
What we need is a way for threadA to halt until threadB or C tells it to re-evaluate the conditions
again. This is exactly what condition variables do.

GLFW supports three condition variable operations: wait, signal and broadcast. One or more threads
may wait to be woken up on a condition, and one ore more threads may signal or broadcast a condition.
The difference between signal and broadcast is that broadcasting a condition wakes up all waiting
threads (in an unspecified order, which is decided by task scheduling rules), while signaling a condition
only wakes up one waiting thread (again, which one is unspecified).

An important property of condition variables, which separates them from other signaling objects such
as events, is that onlycurrently waitingthreads are affected by a condition. A condition is “forgotten”
as soon as it has been signaled or broadcasted. That is why a condition variable is always associated
with a mutex, which protects additional condition information, such as the “done” variable construct
described above.

GLFW Users Guide API version 2.4 Page 30/31

This may all be confusing at first, but you will see that condition variables are both simple and
powerful. They can be used to construct more abstract objects such as semaphores, events or gates
(which is whyGLFW does not support semaphores natively, for instance).

Before we go on by solving the busy waiting scenario, let us go through theGLFW condition variable
functions. Just like for mutexes, you can create and destroy condition variable objects. The functions
for doing this areglfwCreateCondandglfwDestroyCond:� �
GLFWcond glfwCreateCond(void)� �� �
void glfwDestroyCond(GLFWcond cond)� �
glfwCreateCond returns NULL if a condition variable object could not be created, otherwise a
condition variable handle is returned. To destroy a condition variable that is no longer in use, call
glfwDestroyCond.

To wait for a condition variable, you useglfwWaitCond , which has the C syntax:� �
void glfwWaitCond(GLFWcond cond, GLFWmutex mutex, double timeout)� �
WhenglfwWaitCond is called, the locked mutex specified bymutexwill be unlocked, and the thread
will be placed in a wait state until it receives the conditioncond. As soon as the waiting thread is woken
up, the mutexmutexwill be locked again. Iftimeoutis GLFW_INFINITY, glfwWaitCond will wait
until the conditioncondis received. Iftimemoutis a positive time (in seconds),glfwWaitCond will
wait until the condition cond is received or the specified time has passed.

To signal or broadcast a condition variable, you use the functionsglfwSignalCondand
glfwBroadcastCond, respectively:� �
void glfwSignalCond(GLFWcond cond)� �� �
void glfwBroadcastCond(GLFWcond cond)� �
glfwSignalCondwill wake up one threads that is waiting for the conditioncond. glfwBroadcastCond
will wake up all threads that are waiting for the condition cond.

Now that we have the tools, let us see what we can do to solve the busy waiting situation. First, we add
a condition variable to our data set:� �
GLFWcond cond;
GLFWmutex mutex;
int threadsdone;� �
If we assume thatmutexandcondhave been created successfully, the code for the three threads (A, B
andC) could be the following:

ThreadA: Wait for both threadB andC to finish.� �
glfwLockMutex(mutex);
do
{

done = (threadsdone == 2);
if (!done)
{

glfwWaitCond(cond, mutex, GLFW_INFINITY);

GLFW Users Guide API version 2.4 Page 31/31

}
}
while (!done);
glfwUnlockMutex(mutex);� �
ThreadB andC: Tell threadA that I am done.� �
glfwLockMutex(mutex);
threadsdone ++;
glfwUnlockMutex(mutex);
glfwSignalCond(cond);� �
With the addition of a condition variable, the busy waiting loop turned into a nice condition waiting
loop, and threadA no longer wastes any CPU time. Also note that the mutex locking and unlocking is
moved outside of the waiting loop. This is becauseglfwWaitCond effectively performs the necessary
mutex locking and unlocking for us.

8.6 Calling GLFW Functions From Multiple Threads

The current release ofGLFW is not 100% thread safe. In other words, mostGLFW functions may
cause conflicts and undefined behaviour if they are called from different threads.

To avoid conflicts, only the followingGLFW API functions should be regarded as thread safe (i.e. they
can be called from any thread at any time):

1. All functions that deal with threads, mutexes and condition variables (e.g.glfwCreateThread,
glfwLockMutex etc).

2. The timing functionglfwSleep.

All other GLFW API function calls should be done from a single thread. This also makes for better
future compatibility, since future versions ofGLFW may implement per thread window contexts (much
in the same way asOpenGLTM has per thread rendering contexts), for instance.

	1 Introduction
	2 Getting Started
	2.1 Initializing GLFW
	2.2 Opening An OpenGL Window
	2.3 Using Keyboard Input
	2.4 Putting It Together: A Minimal GLFW Application

	3 Window Operations
	3.1 Setting Window Properties
	3.2 Getting Window Properties
	3.3 Buffer Swapping
	3.4 Querying Video Modes

	4 Input Handling
	4.1 Event Polling
	4.2 Keyboard Input
	4.2.1 Key state
	4.2.2 Character input
	4.2.3 Key repeat
	4.2.4 Special system keys

	4.3 Mouse Input
	4.3.1 Mouse position
	4.3.2 Mouse buttons
	4.3.3 Mouse wheel
	4.3.4 Hiding the mouse cursor

	4.4 Joystick Input
	4.4.1 Joystick capabilities
	4.4.2 Joystick position
	4.4.3 Joystick buttons

	5 Timing
	5.1 High Resolution Timer
	5.2 Sleep

	6 Image and Texture Import
	6.1 Texture Loading
	6.2 Image Loading

	7 OpenGL Extension Support
	7.1 Compile Time Check
	7.2 Runtime Check
	7.3 Fetching Function Pointers
	7.3.1 Function pointer type definitions

	8 Multi Threading
	8.1 Why Use Multi Threading?
	8.1.1 Take advantage of multi processor systems
	8.1.2 Avoid unnecessary waiting
	8.1.3 Improve real time performance

	8.2 How To Use Multi Threading
	8.3 Creating Threads
	8.4 Data Sharing Using Mutex Objects
	8.5 Thread Synchronization Using Condition Variables
	8.6 Calling GLFW Functions From Multiple Threads

