10/17/06

NAB Users’ Manual

Version 5.1

Thomas J. Macke W.A. Svrcek-Seilet, Russell A. Brown,
and David A. Case

Tdik, Inc., Palo Alto, CA 94304
2University of Vienna, A-1010 Vienna, Austria
3Sun Microsystems, Inc., Menlo Park, CA 94025

“The Scripps Resedr Institute La Jolla, CA 92037

10/17/06

This source code and manual is yoght (C) 2002, 2004, by Tom Macke,. ¥ Svrcek-Seiler
Russell A. Brown, and David A. Case.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 1, or (at
your option) ag later version. The GNU General Public License should be in a file called COPYING;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

This program is distributed in the hope that it will be useful, WITHOUT ANY WAR-
RANTY; without esen the implied varranty of MERCHANTABILITY or FITNESS FOR AARTIC-
ULAR PURPOSE. See the GNU General Public License for more details.

Some of the force field routines were adapted from similar routines in the MOIL program pack-
age: R. ElberA. Roitberg, C. Simmerling, R. Goldstein, H. Li, Ge¥khivker C. KeasarJ. Zzhang
and A. Ulitsky, "MOIL: A program for simulations of macromolecule€omp. Phys. Commu#81,
159-189 (1995).

The "trifix" routine for random pairwise metrization is based on an algorithm designed by Jay
Ponder and as adapted from code in thaRer package; see M.E. Hodsdon, JRdnder and D.P
Cistola,J. Mol. Biol. 264, 585-602 (1996) antittp://dasher.wustl.edu/tinker/. The
"molsurf" routines for computing molecular sacé areas were adapted from routines writtenday P
Beroza. Thé'sasad" routine for computing degiives of lvent accessible surface areassvkindly
provided by S. Sridharan, A. Nicholls and K.A. Sharp. $&@mputat. Chen8, 1038-1044 (1995).

The preprocessor u¢pp was written by Thomas Pornin <thomas.pornin@ens.fr>,
http://www.di.ens.fr/"pornin/ucpp/ , and is distriuted under a separate, BSD-style
license. Seecpp-0.7/README for details.

The cifparseroutines to deal with mmCIF formatted files were written by Jolestlvook, and
are distributed with permission. Seifparse/README for details.

The teLeapcode comes from the Amber suite; this portion is also digeibhere (and else-
where) under the GNU General Public License. The "readparm" routine to access Amber topology
and parameter files was adapted from code written by Bill Ross.

The authors thank Jarrod Smith, Garry Gippert, Paul Beroza, Walter Chazin, DocgeaBSik
Vickie Tsui for advice and encouragement. Special thanks to Neill White (who helped in updating
documentation, in preparing the distance geometry database, and in testing and porting portions of the
code), and to Will Briggs (who wrote the fibdiffraction routines).Thanks also to Chris Putnam and
M.L. Dodson for bug reports.

Sun, Sun Microsystems and Sun Performance Library are trademarksstareal trademarks of
Sun Microsystems, Inc. in the United States and other countries.

The basic literature reference for the code isMacke and D.A. Case. Modeling unusual
nucleic acid structuredn Molecular Modeling of Nucleic Acid®l.B. Leontes and J. SantalLucia, Jr
eds. (Washington, DC: American Chemical So¢id§98), pp. 379-393.Users are requested to
include this citation in papers that nealse of NAB.

Table of Contents i

1. Installation and Getting StArted.euuiuuuiiiiiiiiiiiiiiii e e e ee e eeeeeeeeeeeeees
I 51 e= 1 =1 1o o PP PP PP PPPTPPP
1.2. Compiling Nab Programs.........cooooiiiiiio e
1.3, Parallel EBCULIONoiiiiiiiiiiiiee ettt a e e e e e e e e e e e 4
S TS =T I o] F= 11 {0 0 1SR
1.5. Contacting the @ElOPEISooeiiiiiiie e 8

2. General INtroduCtioN @Nd Q/EIVIEW.ciiiiiiiiiiiieiii et e e e e e e s e e e e
2.0, BACKOIOUNG. ...

2.1.1. Conformation build-up Procedures............ccouuiiiiiiii i
2.1.2. BaSe-fIrSt SIalESeeeeiieeiieeeeee e 11
2.2. Methods fOr STTUCTUIE CrEATIAM.......uuueiieeiiiaiiiee et e e e e e e e e e e e e e e e e e
PG T T (= = 110 0] =SSP PRSPPPPP
2.3.1. B-TOrmM DM dUPIEX. ittt e e e e e e e 14
2.3.2. SUPerimpoSe UMNOIECUIES. ... 14
2.3.3. Place residues in a standard orientation..............cccccoeviiiiiiiieiec e
2.4. Molecules, ReSIHUES AN0 ALOMIS ... e ittt ettt e et e e e e e e e e e e eenaeenaeens
2.5. Creating MOIECUIES.........cooiiiie ettt eeeeeeeennee
2.6. Residues and ReSIidUE LIDIariEs.........cooiiiiiiiiiiiieoiiii et
2.7. Atom Names and AtOM EXPreSSIONS.........uuuuuuuuuuuiiiiiieiieeieeeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeees
2.8. Looping @er aloms iN MOIECUIES........coo i
2.9. Points, Transformations and FramEs.c.uv ettt e e e e enaeens
2.9.1. POINES @NUACIOTS. ..oiiiiiiiiiiiiiie et e e e e e e s e e e e e e e e e 24
2.9.2. Matrices andr@inSTOrMAatiONS.cooiiiiiiiiiiiee e 24
2.9.3. FrAIMES. ..o e
2.10. Creating Watson Crick UBEES.oooiiiiiiiiiiee e 26
2.10.1. bdna() and fd_NeliX()e.eeeeeeeeerieeiiiieeeee e
P20 O T T o o 4 0] =T o 1 T=T o1
2.10.3. WC_heliX() OVEIVIB.oooeiiiiiiiiiieeeeeee e
P2 O T o o = =T 0 - 1 T
2.10.5. wc_helix() Implementation................. e uueeeueiiiiiiiieiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
2.11. Structure Quality and EIHBILICS. euuueeeieiiiiiiiieiiiiieeieeeeee et ee e e e e e e e e eeeeeeeeeeeeeeeeees 36
2.11.1. Creating a Parallel NI TIPIEX. ...ccooioi e 36
2.11.2. Creating BaSETAUS.uuuiimiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeteeeeeeeeeeseeeeeeeeeeeeeeeees 37
2.11.3. Finding the lowest energy tria.........cccoooioi e
2.11.4. Assembling the Triads iNtO DIMErS........ccooieeeeeeeeeeees

3. NAB Language RefEIENCE.ottt s e s eeeseeeeeeeees
I I [11 70 o [[ox 1 o o FA PP PP PP PPOPPPPR
3.2, Language ElemEnts.. ..o nrennee

12
14

15
17
17
19
21
22
24

Table of Contents il

R J0 0t N o (= o117 £
T o L= 1= Y=o R v o £ 46
B J 0 T I 1T - 1L PSPPSR
I @] 0[] - 1o £ T PP UUPPPPPRTRTRN
3.2.5. SpecCial CharaCterS.ceeiiiiiiiiiie e e e

3.3. Higher-I@El CONSITUCTS. ..ottt e e e e e e e e e e e e e e aeed 48

3. 3L \AMADIES. e A
.32, ATIMIEES. oo 49
TG TR N 1 - |1 TSP UUPPPPTTPPR
G TR I T b o] 1151 [LSS
3.3.5. REQUIANEINESSIONS. ..ooiiiiiiiiiiieee et 53
G IR JL TN o] o I bt o] (=151 [0 L PP
T T o 1 = L T o (=151 [L=

GRS = (<] 1 11T 1

3.4.1. EXPression StateMeNL..........cooviiiiiiiiii e
3.4.2. Delete StatEmMENL........ccoi e
G I R | S = (=] 2 =1 | SRR
I VAV 1 L= I = (=1 1 1= o |
B T o]G] = (=] 1 = 1
3.4.6. Break StatemMeENL.........couuiiii i e
3.4.7. CoNtINUE SEALEMIENL........coi i e e e e e e e e e e e e e e eearean s
I G T o (U] IS = (=] = o | S
3.4.9. CompouNnd StatEMENT.........ccoiiiiiiiiiie e

T T LU o2 1[0

IR T I U] g Toa Lo T a B 1Y i [11 ([0 4 TR
R YV =l U aTed d[o] g B I=Tod F= 1=\ (0] o 1T

46
47
48

51
52

53
54
57
57
57
57
58
59
60
60
61
61
61
61
62

R ST o 11 £STe=T Lo K< 1 (0] £ 62

3.7 SHING FUNCHONS. ...ttt e e e e e e e e s e e e e e e e
S T =g e T o) g 1 PP
3.9, SYSEEM FUNCHONS.A ...ceiiieiiiiie ittt e e e e e e e e e enees
G 2000 R 1@ I U T3 10

3.10.1. Ordinary /O FUNCHONS-......eiiiiiiiiiiiiii et e e e e e e e e e e e aaaes
3.11. MOleCUIE CreatioN FUNCHONS. ... ccv ettt ettt e et e e e e e e eenaeees

3.12. Creating BIOPOMIMEISooiiiiiiiiiieee e, 69
3.13. Fiber Diffraction DUpbeeS iIN NABoooiiiiiiii e 70

3.14. Reduced Representation ®M odeling FUNCLIONS............ccooiiiiiiii

3.15. MoleCule I/O FUNCHONS.........uuiiiiii et e e e e e e et e e e e e e e e aaaa e e e e e e
3.16. Other Molecular FUNCLIONS............cuuuiiiii et e e e e e e e e e ae e e e e e eeeeees
3.17. Debugging FUNCLIONS.coiiiiiiiiiiiee ettt
3.18. TiMe and date FOULINES.........uuiii i e e e e e e e et e e e e e e e e arar e e eeeeeees
4. Rigid-Body Transformationsoooiviiiiiiiiii

63
64
66
66
66
68

71

74
75
77

Table of Contents iii

4.1. Transformation MatriX FUNCHONS.oeiiiiiiiiiiiiiiee e 77
4.2, Frame FUNCHONS.uiiiiiiiee ettt e e et e e e e e e e e e e e e e e s e n e e e e e e e aannes 77
4.3. Functions for working with Atomic Coordinates..........cccceeeeiiiiii 78
4.4, SYMMELTY FUNCHIONS..uiiiiiiieee ettt e e e e e e e e e e e e e e e e annnn e e e eeens 78
4.4.1. Matrix Creation FUNCHONS.........cooiiiiiiiiie et e e 78
4.4.2. MALIIX 1/O FUNCHONS......ciiiiiiiiiiiiie ettt e e e s ee s 80
4.5. SYMMELrY SEIVEI PrOGIAMIS ...coiieiieeeeeeeeeeeeeaes s aas e s aas s s a e nnnennrrnnne 81
T I 1 1 =10 [=] OO PUUPPPPRRPTPN 81
4.5.2. Symmetry Definition Fil@S..........ccouiiiiiiiiiii e 81
A.5.3. MALMETE ...ttt e e ettt e e e e e et ettt b e e e e e e e eeeebbb e e e e e aeeeernnaaanas 83
454, MAIMUL.... e e e e e e e e 84
A.5.5. MABIIACToevieiiiieiiiiiieee e 84
4.5.6. TFANSTOMM. ... e 84
I B 1) = T a (ot CT=To] 411 Y/ 86
5.1. Metric MatriX DiStANCE GEOMELIY.uuuuuuiertiiiiietiieeiiees 86
5.2. Creating and manipulating bounds, embedding Structures..........cccccccevvvvviveeeennnn.. 87
5.3. Distance geometry temMPlates..........ooviiiiiiiiiiiiiiii 93
5.4. BOUNAS dAtaDaSES.cooiiiiieeie s 96
6. Molecular mechanics and molecular dynamicCsS............coovviiiiiiiiii e, 99
6.1. Basic molecular mechaniCs MOULINES.ccuciiiiiiiiiiieie et 99
6.2. Typical calling SEQUENCES.coii oo eeeeneenneenne 104
6.3. Second daratives and NOrmMal MOAES..........ouviiiiiiiiiiiiie e 106
7. Sample NAB apPPlICAIONS.coiiiiiiiiiii et e e e e e e e 108
7.1. Duplex Creation FUNCLIONS...........ooiiiiiiieeeeeee e 108
7.2. Nab and DiStaNCE GEOMELLY........uuuiuuuietiieteietieetees 110
7.2.1. Refine DI Backbone GEOMEIY.......ccoooiiiiiiiee e 111
7.2.2. RM\ PSEUAOKNOLS. ..ottt e e e 113
7.2.3. NMR refinement for a protein...........ooovvviiiiiiii 118
7.3. BUIlAING LArger STIUCLUIES......ceiiiiiiiitie ettt e e e 122
7.4. ClOSEA CIrCUIAN DAL ...coiiiiiiit ettt e e e e e e e e e anes 122
7.5. NUCIEOSOME MOUEL.........eiiiiiiiiee et 126
7.6. “Wrapping” DNA Around @ Bth.oeeeiiiieeee e 128
7.6.1. Interpolating the CUBYcoooiiiii e 129
7.6.2. DIVEN COAR. ...ttt ettt et e et e e e et e e e annb e e e e 132
T.6.3. WIAP DM ottt e e e e e r e et e e e 133
7.7. BUIlAING PEPLIAES.ceiiiieiieeeieee ettt 137
B LEAP ... e e et e e e et e e e e b bt e e nba e e e e e nreeaeaaa 143
S I [1170 o [[ox 1 o o H PP PP PP PPPRPPR PPN 143
S T ©0] g [ol= o | £ T PR PPURPPPN 143
8.2. 1. COMMENTS......etteeieee e ettt e e ettt e e e e e e et e e e e e e e e e e e e e e e annneees 143

8.2, 2. NAIAD S oo s 144

Table of Contents iv

S JC T O o] 1= of £ SRR 144
8.2.3.1. NUMBERS......etiiitiite ettt ettt e e st e e e e e beeeaeean 144
8.2.3.2. STRINGS ...ceiiieiiiite ettt e e a e e e e e 144
S T2 G TR N 1 I TP PPRRPPPPPPO 145
8.2.3.4. PARMSETS (Parameter SELS)........cccuuurriiieeiiiiiiiiiiiie e e 145
8.2.3.5. OIS .ttt e e 145
8.2.3.6. RESIDUES.......ciiiiiiiiiiitiie ettt e e et e e iee e e e 146
S0 Ty R U 1 N 8 I TP PRRROPPPPR 146
8.2.3.8. Compbeobjects and accessing SUbobjectS..........evvvieiiiiiiiiiiiiiiiiiiieeeeeeee, 147

8.3. Basic instructions for using LEaP WitlBl ... 150

8.3.1. Building a Molecule For Molecular Mechanics...........cccccccoiiiiiii 150

8.3.2. AMINO ACI RESIAUBS.eiiiiiiieiieeeieeeeeee ettt e e e e e e e e e e e e e aaaaeas 150

8.3.3. Nucleic ACId RESIAUESooiiiiieieieeee e 152

8.3.4. MiSCellan@OUS RESIAUES.uuuuuiriiiiiiiiiiiiiiieiieeiees 152

S o] 3 2 =T T £ 153

St - To [« PP PPPPPROPPPR 153

8.4.2. addAIOMYPES ..o 154

S J 3G T = o [0 | [o T £ URR 154

S 0 = o o | o T 2SR 154

8.4.5. AAUBN ... 155

oI NS T=To (o | =du | oYY (o] 411/ F= o J PSSP 155

oI = o (o | oo | o] L= 2] LY = T o SRS 155

B.4.8. AlIAS. . e 156

84,9, PONM.... e e e e 157

8.4.10. DONUBYDISIANCE.uuuiiiiiiiiiiiiiittiiteieteeeeeeeee ettt eeteee et e seesseesseesseeseeesseesenneees 157

S 0 3t It O o 1= o P 157

S T Nt I o 1 0 o1 = P 158

SRR B oo+ AT PTPTTTTRR 158

e R o) (Y= 1= 2N (0] o A PP PPPTPTRPPTRR 159

8.4.15. CreatelfMSEL et e et a e e e ee et 159

8.4.16. CreateRESIAUE.coii it n e e nnrennee 159

o Tt I ox (== (=11 1 PP 159

8.4.18. deleteBONGd........cooi e 160

S 2 3t e T o =2 o 160

S T o | OO PT T OUPPPPOTPPR 161

8.4.21. groupSeleCtEUALOMIS.ueieiiiiieeeiiee ettt ettt ettt et e ettt e e e e e e e e e e e e e e aaaaaaaaaaas 161

S 0 1= |« T PSP PRT T POPPPP 162

84,23, IMPOSE. .. 162

B4 24 [IST ...t et e e e b e e e nne s 163

8.4.25. 10adAMbDERBIaMSoooviiiiiii 163

8.4.26. 10adAMDEIPIED. ... e 163

8.4.27.
8.4.28.
8.4.29.
8.4.30.
8.4.31.
8.4.32.
8.4.33.
8.4.34.
8.4.35.
8.4.36.
8.4.37.
8.4.38.
8.4.39.
8.4.40.
8.4.41.
8.4.42.
8.4.43.
8.4.44.
8.4.45.
8.4.46.
9. References

IO o [G T

Table of Contents \%

[Tz To] o | o185 T Te 1= o T
[0 o RPN
MEASUIEGEOMIL. ...ttt ettt e e e e ettt ettt e e e e e et e eeetbba e e e e e aaeeeesbbna e e eaaeaas

(0] 1 (== o ISR 172
SOPIESNEIL ..oeeee e e e 172
SOUICE. .. uttttteeteeeeeeeeeeeeeeeeeeeeeee et e eee e e e e e e e e e e e e e e e e e et e e e e e e et e aaeeaeeeeeeeeeaaaaaaaens
LU= 153 {0 1 o o P
(U= 151 F= (=P
1211 01 1= | PSPPSR 174
41, €

164
165
165
166
166
167
167

169

169

170

173
173
174

Table of Contents

Vi

10/17/06 Installatiomnd Getting Started 3

1. Installation and Getting Started.

1.1. Installation.

The nab package ivalable via anonymous ftp at ftp://ftp.scripps.edu/pub/case/nab-5.1gx.tar
as a compressed tar fil@he first step in setting up the nab package is to unzip the tar file using the
UNIX commands gunzip:

gunzip nab-5.1.x.tar.gz
tar xvf nab-5.1.x.tar

The path to this e directory .g./usr/local/nab-5.1.x , if you unpacked the distribution in
lusr/local) should be defined as thev@onment variable $NBHOME. If you are usingh, zsh
or bashas your shell:

export NABHOME-= insertyourpathhermab-5.1.x
If you are usingshor tcshas your shell:

setenv NABHOME insertyourpathhermab-5.1.x
Now, in the top-leel (SNABHOME) directory you should run the configure script:

Jconfigure --help

will show you the options.Choose a compiler and flags you want; for Linux systems, thevfalio
should work:

Jconfigure gcc

You may need to edit the resultimgnfig.hfile to change anvariables that dob’'match your compil-
ers and OS. The comments in tionfig.hfile should help. Then,

make

will construct the compilerIf the male fails, it is possible that some of the entries in "config.h" are
not correct.

This can be followed by
make test
which will run tests and will report successes or failures.
Now, add the path to the binaryxecutable of nab to your own path and rehash the search path, e.qg.,

set path = ($SNABHOME/bin $path)
rehash

10/17/06 Installatiomnd Getting Started 4

Now, you should be able to compile nab progrargsentually you may wish to define the \d@ron-
ment variable $NABHOME and add the path to the binaegwgable of nab explicitly in youcshrc
file (or equvalent in other shells) tovaid having to redefine these variables at eaehlogin.

1.2. Compilingnab Programs.

Compilingnab programs is very similar to compiling other highdlelanguage programs, such as C
and FORRAN. Thecommand line syntax is

nab [-O] [-c] [-v] [-noassert] [-nodebug] [-o file] [-Dstring] file(s)
where

-O optimizes the object code

-c suppresses the linking stage wlih and produces a .o file

-v verbosely reports on the compile process

-noassert causes the compiler to ignore assert statements

-nodebug causes the compiler to ignore debug statements

-0 file names the output file

-D string definesstring to the C preprocessor
Linking FORTRAN and C object code wittab is accomplished simply by including the source files
on the command line with theab file. For instance, if anab programbar.nabuses a C function
defined in the fildoo.c compiling and linking optimizedab code would be accomplished by

nab -O bar.nab foo.c

The result is anxecutablea.out file.

1.3. Rarallel Execution

The generalized Born emgr routines (for both first and second ddiives) include directies
that will allow for parallel &ecution on machines that support this opti@nce you hee sme level
of comfort and experience with the single-CPU version, you can enable patadigli@n by supply-
ing one of seeral parallelization options-dgpenmp, -mpor -scalapack to configure, by re-bilding
the NAB compiler (see section 1.1 abpand by recompiling your AB program (see section 1.2
above).

The-openmpoption enables parallekecution under OpenMP on shared- memory machiiies.
enable OpenMPxecution, add theopenmpoption to configure, re-build theAB compiler and re-
compile your NAB program. Then, if you set the OMP_NUM_THREADSirenment variable to

10/17/06 Installatiomnd Getting Started 5

the number of threads that you wish to perform paraledigion, the Born energy computation will
execute in parallel.

The -mpi option enables parallelxecution under MPI on either clusters or shared-memory
machines. @ enable MPI &ecution, add thempi option to configure and re-build the NAB compiler
You will need to modify your NAB program prior to re-compilation in order to initialize MPI as the
first step of your program, and in order to shuwddPI as the final step of your program. The ini-
tialization and shut down are supported by ri@init() and mpifinalize()functions. Inaddition, the
mpierror() function performs I/O error checking across all of the MPI procedBekw is a smple
NAB program that reads in a molecular model from a protein data bank (PDB) file, performs conju-
gae gradients minimization followed by molecular dynamics, and writes the result to another PDB
file. Thedetails of this program will be understandable after the user reads Seclibis frogram is
provided here to demonstrateshtn use thempiinit(), mpifinalize(Jandmpierror() functions:

/I Try some conjugate gradients followed by molecular dynamics.

molecule m;

int ier, mytaskid, numtasks;

float m_xyz[dynamic], f_xyz[dynamic], v_xyz[dynamic];
float dgrad, fret;

point dummy;

/I Initialize MPI.

if (mpiinit(argc, argv, mytaskid, numtasks) '=0) {
printf("Error in mpiinit\n");
fflush(stdout);
exit (1);

}

/I Ched for correct number of calling parameters.

if (argc '=4) {
if (mytaskid == 0) {
printf("Usage: %s pdbin prmtop pdbout\n”, argv[1]);
fflush(stdout);
}
ier =-1;
} else{
ier =0;
}
if (mpierror(ier) !'=0) {
if (mytaskid == 0) {
printf("Error in mpierror\n");
fflush(stdout);
}
exit (1);
}

10/17/06 Installatiomnd Getting Started

/I Create a molecule from a pdb file and a "prmtop" file.

m = getpdb(argv[2]);
readparm(m, argv[3]);

/I Allocate the arrays.

allocate m_xyz[3*m.natoms];
allocate f_xyz[3*m.natoms];
allocate v_xyz[3*m.natoms];

/I Load the molecular coordinates into the m_xyz array.
setxyz_from_mol(m, NULL, m_xyz);
/I Initialize molecular mechanics.

mme_init(m, NULL, "::ZZZZ", dummy, NULL);
mm_options("cut=20.0, rgbmax=20.0, nsnb=10, gb=1, diel=C");
mm_options("tautp=0.4, temp0=100.0, tempi=50.0");
mm_options("ntpr_md=100, ntpr=100");
fret = mme(m_xyz, f_xyz, 0);
if (mytaskid == 0) {

printf("Initial energy is %f0\n", fret);
}

/I Do some conjugate gradient minimization.

If (mytaskid == 0) {
printf("Starting with conjugate gradients...\n\n");

}

mm_options("cut=20.0, rgbmax=20.0, ntpr=100");
mm_options("nsnb=10, gb=1, diel=C");

dgrad = 0.00001;

ier = conjgrad(m_xyz, 3*m.natoms, fret, mme, dgrad, 0.0001, 50000);

/I Do some molecular dynamics.

if (mytaskid == 0) {
printf("Starting with molecular dynamics...\n\n");

}
ier = md(3*m.natoms, 1000, m_xyz, f xyz, v_xyz, mme);
if (mytaskid == 0) {

printf("\n...Done, md returns %d\n", ier);

}

/I Load the molecular coordinates into the m_xyz array and
/I write the result as a pdb file.

10/17/06 Installatiomnd Getting Started 7

setmol_from_xyz(m, NULL, m_xyz);
putpdb(argv[4], m);

/I Shut down MPL.

if (mpifinalize() '=0) {
if (mytaskid == 0) {
printf("Error in mpifinalize\n");
fflush(stdout);
}
}

To reiterate, the details of thisAB program will be made clear in section However, this program
demonstrates that the first step of an MPI- compatidiB Nrogram is a call tonpiinit(), that the last
step of an MPI- compatibleAB program is a call tonpifinalize() and that 1/0 error checking is per
formed bympierror(). One further point that is illustrated by this NAB program is that it is preferable
for an MPI-compatible NAB program to use treadparm() function instead of th@etpdb_prm()
function (see Section 6.1). Because thgiinit(), mpifinalize()and mpierror() functions are ignored

by NAB unless thempi option is specified, all AB programs may include these functions which will
be utilized only if thempioption is specified (or if thescalapacloption is specified, see below).

The-scalapackoption enables parallekecution under MPI on either clusters or shared-memory
machines, and in addition uses the ScalableAG¥R(ScaLARACK) library for parallel linear algebra
computation that is required to calculate the secondatieds of the generalized Born erngt to per-
form Newton-Raphson minimization or to perform normal mode analysis (see SectioRr®.80m-
putations that do not wolve linear algebra (such as conjugate gradients minimization or molecular
dynamics) thescalapackoption functions in the same manner as-thpioption. Donot use thempi
and-scalapackoptions simultaneouslyUse the-scalapackoption only when ScalLA®RCK has been
installed on your cluster or shared- memory machine.

In order that thempi or -scalapackoptions result in a correct build of the NAB compilttre
configure script must specify linking of the MPI libragy ScaLAPACK and BLACS libraries, as part
of that liild. Thesdibraries are specified for Sun machines in the solaris_cc section of the configure
script. Ifyou want to use MPI or ScaLAEK on a machine other than a Sun machine, you will need
to modify the configure script to link these libraries in a manner analogous to what occurs in the
solaris_cc section of the script.

There are three options to specify the manner in whidB Bupports linear algebra computa-
tion. The-scalapackoption discussed ake fecifies ScaLARCK. The -perflib option specifies

Sun™ Performance Libra®}, a multi-threaded implementation of LAEK. If neither-scalapack

nor -perflib is specified, then linear algebra computation will be performed by a single CPU using
LAPACK. In this last case, the Intel MKL library will be used if the MKL_HOME environment-v

able is set at configure time.

The parallel gecution capability of NAB was deloped primarily on Sun machines, and has
also been tested on the SGI Altix platform. But it has been much less widely-used wbathba
parts of NAB, so you should certainly run some tests with your system to ensure that single-CPU and
parallel runs gie the same results.

10/17/06 Installatiomnd Getting Started 8

1.4. Tested platforms

We have carried out the compilation and test programs onymanix/Linux machines, and
things are generally pretty portablén particular things should work on HP/UX, Solaris, IRIX,
Linux, and MacOS X, as well as on winvd® using the Cygwin deopment kit, aailable from
http://sources.redhat/com . Look at the config.h.* files in the main directory for informa-
tion about porting the code.

1.5. Contactingthe developers
Please send suggestions and questionage@scripps.edu or macke@scripps.edu.

10/17/06 Generalvearview 9

2. Generalintroduction and overview.

Nucleic acid builder fab) is a hgh-level language that facilitates manipulations of macro-
molecules and their fragmenteab uses a C-lik gyntax for variables,»@ressions and control struc-
tures {f , for , while) and has extensions for operating on moleculew (gpes and a lge number
of builtins for providing the necessary operationde expectnab to be useful in modeluilding and
coordinate manipulation of proteins and nucleic acids, ranging in size from fairly small systems to the
largest systems for which an atomiwdeof description maks good computational sense. As a pro-
gramming language, it is not a solution or program in itself, but rather providesieomarent that
eases manof the bookkeeping tasksviolved in writing programs that manipulate three-dimensional
structural models.

The current implementation is version 5.0, and incorporates the following main features:

(1) Objectssuch as points, atoms, residues, strands and molecules can be referenced and manipu-
lated as named objects. The internal manipulatiorsviad in operations li& merging seeral
strands into a single molecule are carried out automatically; in most cases the programmer
need not be concerned about the internal data structuohseioh.

(2) Rigid body transformations of molecules or parts of molecules can be specified witly a f
high-level set of routines.This functionality includes rotations and translations about particu-
lar axis systems, least-squares atomic superposition, and manipulations of coordinate frames
that can be attached to particular atomic fragments.

(3) Additionalcoordinate manipulation is ackisl by a fght interface to distance geometry meth-
ods. Thisallows allows relationships that can be defined in terms of internal distance con-
straints to be realized in three-dimensional structural modedlb. includes subroutines to
manipulate distance bounds in awarient fashion, in order to carry out tasks such askw
ing with fragments within a molecule or establishing bounds based on model structures.

(4) Force field calculationse(g.molecular dynamics and minimization) can be carried out with an
implementation of the AMBER force field. This works in both three and four dimensiains, b
periodic simulations are not (yet) supportddowever, the generalized Born models imple-
mented in Amber are also implemented here, which allowy miméeresting simulations to be
carried out without requiring periodic boundary conditiofi$ie force field can be used to
carry out minimization, molecular dynamics, or normal mode calculations.

(5) nab also implements a form of regular expressions that weatath egular expressions
which provide a uniform and ceenient method for working on parts of molecules.

(6) Mary of the general programming features of vk language hae keen incorporated in
nab. These include regular expression pattern matchiaghedarays (i.e arrays with
strings as indices), the splitting of strings into fields, and simplified string manipulations.

(7) Thereare luilt-in procedures for linkingnab routines to other routines written in C arian,
including access to most library routines normallgilable in system math libraries.

Our hope is thahab will serve to formalize the step-by-step process that is used to build com-
plex model structures, and wilatilitate the management and use of highesl Bymbolic constraints.
Writing a program to create a structure forces more of the nsagsltimptions to be explicit in the
program itself. And amab description can seevas a \ay to shav a model’s salient features, much
like helical parameters are used to characterize degle

10/17/06 Generalvearview 10

The first three chapters of this document both introduces the language through a series of sample
programs, and illustrates the programming iategs preided. Theexamples are chosen not only to
show the syntax of the language, but also to illustrate potential approaches to the construction of some
unusual nucleic acids, including BNdouble- and triple-helices, RNpseudoknots, four-arm junc-
tions, and DNA-protein interaction®\ separate reference manual (in Chapter ¥¢ga nore formal
and careful description of the requirements of the language itself.

The basic literature reference for the code isMacke and D.A. Case. Modeling unusual
nucleic acid structuresn Molecular Modeling of Nucleic Acid#l.B. Leontes and J. SantalLucia, Jr
eds. (Washington, DC: American Chemical So¢id§98), pp. 379-393.Users are requested to
include this citation in papers that nealise of NAB.

2.1. Backgound

Using a computer language to model polynucleotidesvisliogically from the fundamental
nature of nucleic acids, which can be described as “conflicted” or “contradictory” molecules. Each
repeating unit contains wan rotatable bonds (creating a very flexible backbone), but also contains a
rigid, planar base which can participate in a limited numbergflae interactions, such as base pair
ing and stacking. The result of these opposing tendencies is a family of moleculeséta¢ poten-
tial to adopt a virtually unlimited number of conformations, yeehary strong preferences forge-
lar helical structures and for certain types of loops.

The controlled flexibility of nucleic acids makes them difficult to model. On one hand, the lim-
ited range of rgular interactions for the bases permits the use of simplified and more abstract geomet-
ric representations. The most common of these is the replacement of each base by a plane, reducing
the representation of a molecule to the set of transformations that relate the planes to eadh other
the other hand, the flexible backbone makes it likely that there are emitie$ of nucleic acid struc-
tures that satisfy the constraints ofyguarticular modeling problemFamilies of structures must be
created and compared to the mosl@instraints. From this we can see that modeling nucleic acids
involves not just chemical knowledgethalso three processes—abstraction, iteration and testing—that
are the basis of programming.

Molecular computation languages are not & ndea. Herewe briefly describe some past
approaches to nucleic acid modeling, to provide a contexiator

2.1.1. Conbrmation build-up procedures

MC-SYM [1-3] is a high lgel molecular description language used to describe single stranded
RNA molecules in terms of functional constraints. It then uses those constraints to generate structures
that are consistent with that description. MC-SYM structures are created from a small library of con-
formers for each of the four nucleotides, along with transformation matrices for eaclBbddang
up conformers from these starting blocks can quickly generate a vgeytiae of structures. Thek
to MC-SYM'’s auccess is its ability to prune this tree, and the user has considerable flexibility in
designing this pruning process.

In a related approach, Eri¢ al.[4] used a Monte-Carloudld-up procedure based on sets af lo
enegy dinucleotide conformers to construct longer lenegy single stranded sequences thatlg
be suitable for incorporation into larger structures. Setswofeltergy dinucleotide conformers were
created by selecting one value from each of the stericaliwedloanges for the six backbone torsion
angles andy. Instead of anxhaustve uild- up search wer a anall set of conformers, this method

10/17/06 Generalvearview 11

samples a much largergien of conformational space by randomly combining members of a larger set
of initial conformers. Unlike grict build-up procedures, gsnimember of the initial set is allowed to fol-
low any aher membereven if their corresponding torsion angles do not exactly match, a concession
to the extreme flexibility of the nucleic acid backborekey feature determined the probabilities of
the initial conformers so that the probability of each created structure accurately reflected its energy.

Tung and Carter [5,6] va wsed a reduced coordinate system inNBeMOTnucleic acid model-
ing tool) program to rotation matrices that build up nucleic acids from simplified descripBpasial
procedures allw base-pairs to be preserved during deformations. This procedure allows simple algo-
rithmic descriptions to be constructed for non-regular structurednli&rcalation sites, hairpins, pseu-
doknots and bent helices.

2.1.2. Base-firsstrategies

An alternatve gproach that works well for some problems is the "base-first" gyratgnich
lays out the bases in desired locations, and attempts to find conformations ofahphsisphate
backbone to connect thenRigid-body transformations often provide a good way to place the bases.
One solution to the backbone problerould be to determine the relationship between the helicoidal
parameters of the bases and the associated backbone/sugar td&dnslong these lines suggests
that the relationship is complicated and non-linear However, considerable simplification can be
achieved if instead of using the complete relationship between all the helicoidal parameters and the
entire backbone, the problem is limited to describing the relationship between the helicoidal parame-
ters and the backbone/sugar torsion angles of single nucleotides and then using this information to
drive a onstraint minimizer that tries to connect adjacent nucleotides. This is the approach used in
JUMNA [8], which decomposes the problem aiflding a model nucleic acid structure into the con-
straint satisfaction problem of connecting adjacent flexible nucleotiles.sequence is decomposed
into 3'-nucleotide monophosphateEach nucleotide has as independent variables its six helicoidal
parameters, its glycosidic torsion angle, threeasaggles, tw sugar torsions and tabackbone tor
sions. JUMM seeks to adjust these independent variables to satisfy the constreahigvghsugar
ring and backbone closure.

Even constructing the base locations can be a naialtmhodeling task, especially for non-stan-
dard structures. Recognizing that coordinate frames should be chosenide jpreimple description
of the transformations to be used, Gabarro-Agpal. [9] devised “Object Command Language”
(OCL), a small computer language that is used to associate parts of molecules called objects, with
arbitrary coordinate frames defined by sets of their atoms or numerical p@@ts.can “link”
objects, allowing other objects’ positions and orientations to be described in the frame of some refer
ence object.Information describing these frames and links is written out and used by the program
MORCAD [10] which does the actual object transformations.

OCL contains seral elements of a molecular modeling languageers can create and operate
on sets of atoms called objects. Objects ani& by naming their component atoms and to simplify
creation of larger objectsxpressions)F statements, an iteraté@ORIloop and limited 1/O are pro-
vided. Anothemice feature is the equalence between a literal 3-D point and the position represented
by an atons name. OCLincludes numerous built-in functions on 3-vector® ltke dot and cross
products as well as specialized molecular modeling functioesriating a vector that is normal to an
object. Havever, OCL is limited because these language elements can only be assembled into func-
tions that define coordinate frames for molecules that will be operated on by MORCAD. Functions
producing values of other data types and stand-alone OCL programs are not possible.

10/17/06 Generalvearview 12

2.2. Methodsfor structur e aeation

As a structure-generating toolab provides three methods for building models. ¥ lage rigid-
body transformations, metric matrix distance geometrg molecular mechanics. The firstawneth-
ods are good initial methodsytbalmost alvays create structures with some distortion that must be
removed. On the other hand, molecular mechanics is a poor initial methaety good at refinement.
Thus the three methods work well together.

Rigid-body tansformations. Rigid-body transformations create model structures by applying
coordinate transformations to members of a set of standard residuesedhema to ne positions
and orientations where there incorporated into the growing model structure. The method is espe-
cially suited to helical nucleic acid molecules with their hightyutar structures. It is less saéistory
for more irregular structures where internal rearrangement is required teeréatbcwalent or non-
bonded geometyrpr where it may not be obviousWwdo place the bases.

nab uses thematrix type to hold a 44 transformation matrix.Transformations are applied to
residues and molecules to weothem into nes orientations or positionsnab doesnot require that
transformations applied to parts of residues or molecules be chemualadlylvsimply transforms the
coordinates of the selected atoms leaving it to the user to correct (or ignootearically incorrect
geometry caused by the transformation.

Every nab molecule includes a frame, or “handle” that can be used to positmmblecules in a
generalization of superimpositionrabitionally when a molecule is superimposed on a reference
molecule, the user first forms a correspondence between a set of atoms in the first molecule and
another set of atoms in the reference molecule. The superimposition algorithm then determines the
transformation that will minimize the rmsd between corresponding atoms. Because superimposition is
based on actual atom positions, it requires that tbentalecules hae a ®mmon substructure, and it

can only place one molecule on top of another and not at an arbitrary point in space.

Thenab frame is a way around these limitation&.frame is composed of three orthonormal
vectors originally aligned along the axes of a right handed coordinate frame centered on the origin.
nab provides two huiltin functionssetframe() andsetframep() that are used to reposition this
frame based on vectors defined by atom expressions or arbitrary 3-D points, vegp@otiposition
two molecules via their frames, the uservemthe frames so that when thare superimposed via the
nab builtin alignframe() , the two molecules hee the desired orientation. This is a generalization
of the methods described atedior OCL.

Distance gometry. nab’s second initial structure-creation method ngetric matrix distance
geometry[11,12], which can be aevy powerful method of creating initial structures. It has tmain
strengths. First, since it uses internal coordinates, the initial position of atoms about which nothing is
known may be left unspecified. This has the effect that distance geometry models use only-the infor
mation the modeler considers valid. No assumptions are required concerning the positions of unspeci-
fied atoms. The second ahtage is that much structural information is in the form of distances.
These include constraints from NMR or fluorescenceggnansfer experiments, implied propin-
quities from chemical probing and footprinting, and tertiary interactions inferred from sequence analy-
sis. Distancegeometry provides aay to formally incorporate this information, or other assumptions,
into the model-building process.

Distance geometry coarts a molecule represented as a set of interatomic distances into a 3-D
structure.nab has seeral builtin functions that are used together tovjile metric matrix distance
geometry A bounds object contains the molecuteihteratomic distance bounds matrix and a list of
its chiral centers and theiroumes. Thefunction newbounds() creates abounds object

10/17/06 Generalvearview 13

containing a distance bounds matrix containing initial upper amerlbounds forwery pair of atoms,

and a list of the molecuke’chiral centers and theirolumes. Distancéounds for pairs of atoms
involving only a single residue are dexdl from that residus’ wordinates. The 1,2 and 1,3 distance
bounds are set to the actual distance between the atoms. The 1,4 distance lower bound is set to the
larger of the sum of the twaoms Van der Waals radii or theiyn (torsion angle = 0°) distance, and

the upper bound is set to thainti (torsion angle = 180°) distanceewbounds() also initializes the

list of the molecules chiral centers.Each chiral center is an ordered list of four atoms anddhene

of the tetrahedron those four atoms enclose. Each entrpab aesidue library contains a list of the

chiral centers composed entirely of atoms in that residue.

Once abounds object has been initialized, the modeler can use functions to tighten, loosen or
set other distance bounds and chiralities that corresponghésimental measurements or parts of the
models hypothesis. The functiorendbounds() andorbounds() allow logical manipulation of
bounds. setbounds_from_db() Allows distance information from a model structure or a
database to be incorporated into a part of the current mokebolends object, facilitating transfer
of information between partially-built structures.

These primitve functions can be incorporated into highexel routines. Br example the func-
tionsstack() andwatsoncrick() set the bounds between theotgpecified bases to what the
would be if thg were stacked in a strand or base-paired in a standatsoWCrick duplex, with
ranges of allowed distances ded from an analysis of structures in the Nucleic Acid Database.

After all experimental and model constraintwéndeen entered into thkounds object, the
functiontsmooth() applies “triangle smoothing” to pull in the ¢gr upper bounds, since the maxi-
mum distance between amatoms can notxxeed the sum of the upper bounds of the shortest path
between themRandom pairwise metrization [13] can also be used to help ensure coysdtémne
bounds and to impwe the sampling of conformational spac€éhe functionembed() finally takes
the smoothed bounds and werts them into a 3-D objectThe newly embedded coordinates are sub-
ject to conjugte gradient refinement against the distance and chirality information contained in
bounds . The call toembed() is usually placed in a loop to explore thgedsity of the structures
the bounds represent.

Molecular mebanics. The final structure creation method thab offers ismolecular melean-
ics. This includes both energy minimization and molecular dynamics — simulated annesiliog.
this method requires a good estimate of the initial positiovaf/eatom in a structure, it is not suit-
able for creating initial structureddowever, given a reasonable initial structure, it can be used to
remove kad initial geometry and to explore the conformational space around the initial stridtige.
makes it a good method for refining structures created either by rigid body transformations or distance
geometry.nab has its own 3-D/4-D molecular mechanics package that implememsisaMBER
force fields and reads AMBER parameter and topology fifesdvation effects can also be modelled
with generalized Born continuum models.

Our hope is thahab will serve to formalize the step-by-step process that is used to build com-
plex model structures. It will facilitate the management and use of high@rsiembolic constraints.
Writing a program to create a structure forces one teereqiicit more of the moded sssumptions in
the program itself. And an nab description can sa&w a vay to exhibit a moded’ salient features,
much like helical parameters are used to characterize gemleSofar, nab has been used to construct
models for synthetic Holliday junctions [14], cabtin dimers [15], HMG-protein/DW complexes
[16], active stes of Riesk iron-sulfur proteins [17], and supercoiled B18]. TheExamples chap-
ter belav provides a number of other sample applications.

10/17/06 Generalvearview 14

2.3. FirstExamples.

This section introducesab via three simple examples. Allab programs in this user manual
are set in Courier typewriter style font. The line numbers at the beginning of each line are not parts
of the programs but ke been added to makit easier to refer to specific program sections.

2.3.1. B-brm DNA duplex.

One of the goals afab was that simple models should require simple programs. Herenalan
program that creates a model of a B-formAduplex and saes it as a BB file.

/I Program 1 - Average B-form DNA duplex
molecule m;

m = hdna("gcgttaacgc”);
putpdb("gcg10.pdb”, m);

ga b wN Pk

Line 2 is a declaration used to tell thab compiler that the nhammis a molecule ariable,
somethingnab programs use to hold structurdsne 4 creates the actual model using the predefined
function bdna() . This functions agument is a literal string which represents the sequence of the
duplex that is to be created. Hesefow bdna() corverts this string into a molecule. Each letter
stands for one of the four standard base$or adenine,c for cytosine,g for guanine and for
thymine. Ina gandard DM\ duplex every adenine is paired with thymine andes/ cytosine with
guanine in an antiparallel double helix. Thus only one strand of the double helix has to be specified.
As bdna() reads the string from left to right, it creates one strand from 5’ to 3jd@itaacgc
-3"), automatically creating the other antiparallel strand using Watson/Crick pairing. It uses a uniform
helical step of 3.38Arise and 36.0° twist. Naturallpab has other ways to create helical molecules
with arbitrary helical parameters andee mismatched base pairs, but if you need somerége”

DNA, you should be able to get it without having to specifgrnedetail. The last line uses timab
builtin putpdb() to write the newly created dupléo the filegcg10.pdb

Program 1 is about the smallestb program that does gmeal work. Ewen so, it contains ge
eral elements common to almost adb programs. The tar consecutie forward slashes in line 1
introduce a comment which tells thab compiler to ignore all characters between them and the end
of the line. This particular comment begins in column 1, but that is not required as comments may
begin in ary column. Line 3 is blank. It sees no purpose other than to visually separate the declara-
tion part from the action pamab input is free format. Runs of white space characters—spaces, tabs,
blank lines and page breaks—actli $ngle space which is required only to separate resenords
like molecule from identifiers likem Thus white space can be used to increase readability.

2.3.2. Superimposéwo molecules.

Here is another simplenab program. It reads ta DNA molecules and superimposes them
using a rotation matrix made from a correspondence betweerCtieatoms.

1 /I Program 2 - Superimpose two DNA duplexes
2 molecule m, mr;
3 floatr;
4

10/17/06 Generalvearview 15

m = getpdb("test.pdb");

mr = getpdb("gcg10.pdb");
superimpose(m, "::C1™, mr, "::C1™");
putpdb("test.sup.pdb”, m);

rmsd(m, "::C1™, mr, "::C1™, r);

10 printf("rmsd = %8.3\n", r);

© 00N O O

This program uses threanables—two moleculesmandmr and one float; . An nab declara-
tion can include annumber of variables of the same typat ariables of different types must be in
separate declarations. Theilbn function getpdb() reads tw molecules in PDB format from the
filestest.pdb andgcglO.pdb into the \ariablesmandmr. The superimposition is done with the
builtin function superimpose() . The aguments tesuperimpose() are tw molecules and to
“atom epressions”’nab uses atom expressions as a compast of specifying sets of atom#tom
expressions and atom names are discussed in more detavl lngldor nov an dom expression is a
pattern that selects one or more of the atoms in a molecule. Inxdénple, thg select all atoms with
namesCl'.

superimpose() uses the tew aom expressions to associate the correspor@itigcarbons in
the two molecules. It uses these correspondences to create a rotation matrix that when applidld to
minimize the root mean squareviadion between the pairs. It applies this matrixtdmoving” it on
to mr. The transformed molecuhais written out to the filéest.sup.pdb in PDB format using the
builtin function putpdb() . Finally the builtin function rmsd() is used to compute the actual root
mean square deviation between corresponding atoms indhseperimposed molecules. It returns the
result inr, which is written out using the C-kkl/O function printf() . rmsd() also uses tw
atom expressions to select the corresponding pairs. In this examplearghibe same pairs that were
used in the superimpositionthary set of pairs would hae keen acceptable. An example ofahthis
might be used would be to use different subsets of corresponding atoms to compute trial superimposi-
tions and then usensd() over al atoms of both molecules to determine which subset did the best
job.
2.3.3. Placeesidues in a standard orientation.

This is the last of the introductory examples. It places nucleic acid monomers in an orientation
that is useful for building \Atson/Crick base pairs. It useyeaal atom expressions to create a frame
or handle attached to amab molecule that permits easy wement along important “molecular direc-
tions”. In a standard Watson/Crick base pair@#eandN1 atoms of the purine base and th8& N3
and C6 atoms of the pyrimdine base are colin€arch a line is obviously an important molecular
direction and would maka god coordinate axis. Program 3 aligns these monomers so that this
hydrogen bond is along the Y-axis.

1 /I Program 3 - orient nucleic acid monomers

2 molecule m;

3

4 m = getpdb("ADE.pdb");

5 setframe(2, m, Il also for GUA
6 ":C4",

7 ":C5", ":N3",

8 "C4", N1,

10/17/06

9
10
11
12
13
14
15
16
17
18

Generalvearview 16

alignframe(m, NULL);
putpdb("ADE.std.pdb", m);

m = getpdb("THY.pdb");

setframe(2, m, // also for CYT & URA

":C6",
":C5", "::N1",
":C6", ":N3");

alignframe(m, NULL);
putpdb("THY.std.pdb", m);

This program uses only one variable, the molecnleExecution begins on line 4 where the

builtin getpdb()
ADE.pdb . Thenab builtin setframe()

is used to read in the coordinates of an adenine (createdhels? from the file
creates a coordinate frame for this molecule useajors

defined by some of its atoms aswhdn Figure 1. The first atom expression (line 6) sets the origin of
this coordinate frame to be the coordinates ofGAatom. The tw aom expressions on line 7 set the
X direction from the coordinates of tigb to the coordinates of tH¢3. The last tvo aom expressions

set the Y direction from th€4 to theN1. The Z-axis is created by the cross produg¥XFrames are
thus like sts of local coordinates that can be attached to molecules and useilitatd defining
transformations; a more complete discussionveagiin the sectior-ramesbelow.

nab requires that the coordinateesxof all frames be orthogonal, and while the X and Y axes as

specified here are close, yhare not quite ract. setframe()

uses its first parameter to specify

which of the original tw axes is © be sed as a formal axis. If this parametet ishen the specified X
axis becomes the formal X axis and Y is recreated freix; Zf the value is2, then the specified Y
axis becomes the formal Y axis and X is recreated frot. Yn this exkample the specified Y axis is

used and X is recreated. Thailbn alignframe()

transforms the molecule so that the X, Y and Z

axes of the nely created coordinate frame point along the standard X, Y and Z directions and that the

Y

THY H3ﬁ

o N3

\‘\l"’ { __\\:\)‘///_l
5>

5
[

. &2;"5'\1\/9 X
|

co "

Figure 1. ADE and THY after execution of Program 3.

10/17/06 Generalvearview 17

origin is at (0,0,0). The transformed molecule is writen to theAfi.std.pdb . A similar proce-
dure is performed on aymine residue with the result that the hydrogen bond betweeh 3rof
thymine and th&l1 of adenine in a Watson Crick pair ismalong the Y axis of these twesidues.

2.4. MoleculesResidues and Atoms.

We row turn to a discussion of ways of describing and manipulating moleclresddition to
the general-purpose variable typeslffloat ,int andstring , nab has three types foravking
with moleculesmolecule , residue andatom. Like their chemical counterpartsab molecules
are composed of residues which are in turn composed of atoms. The residuaabinnaolecule are
organized into one or more named, ordered lists called straRésidues in a strand are usually
bonded so that the “exiting” atom of residuge connected to the “entering” atom of residael. The
residues in a strand need not be bonded; awenly residues in the same strand can be bonded.

Each of the three molecular types has a coxmpiernal structure, only some of which is
directly accessible at theab level. Simple elements of these typeselithe number of atoms in a
molecule or the X coordinate of an atom are accessed viautdtiba suffix attached to a molecule,
residue or atom variable. Attributes bebamost likeint |, float andstring variables; the only
exception being that some attributes are read only wdthes that can t be changed. More comple
operations on these types such as adding a residue to a molecule or meygingnide into one are
handled with builtin functions. A complete listiéb builtin functions and molecule attributes can be
found in thenab Language Reference.

2.5. Creating Molecules.

The following functions are used to create molecul®sly an werview is given here; more
details are in chapter 3.

molecule newmolecule();
int addstrand(molecule m, string str);

residue getresidue(string rname, string rlib);
residue transformres(matrix mat, residue res, string aex);
int addresidue(molecule m, string str, residue res);

int connectres(molecule m, string str,
int rnl, string atm1, int rn2, string atm2);

int mergestr(molecule m1, string strl, string end1,
molecule m2, string str2, string end2);

The general strategy for creating molecules wib is to create a e (empty) molecule then
build it one residue at a time. Each residue is fetched from a residue,lifoasusformed to properly
position it and added to a growing stranltemplate showing this strafg is shown bel. mat, m
andres are respectely a matrix , molecule andresidue variable declared elsewhere.ovds
in italics indicate general instances of things that would be filled in according to actual application.

10/17/06 Generalvearview 18

1

2 m = rewmolecule();

3 addstrand(m, str-1);

4

5 for(...){

6

7 res = getresidue(res-name res-lib);
8 res = transformres(mat, res, NULL);
9 addresidue(m, str-name r es);
10

11 }

12

In line 2, the functionnewmolecule() creates a molecule and stores itnm The nev
molecule is empty—no strands, residues or atohtext addstrand() is used to add a strand
namedstr-1. Strand names may be up to 255 characters in length and can incluadbaaacters
except white space. Each strand in a molecule must daniqgue name. There is no limit on the num-
ber of strands a molecule maywha

The actual structure would be created in the loop on lines 5-11. Each time around the loop, the
function getresidue() is used to extract the next residue with the naesenamefrom some
residue libraryres-lib and stores it in theesidue variableres . Next the functiontransform-
res() applies a transformation matrix, held in timatrix variable mat to the residue imes ,
which places it in the orientation and position it wilvban the nev molecule. Finally the function
addresidue() appends the transformed residue to the end of the chain of residues in thetstrand
nameof the nev molecule.

Residues in each strand are numbered from N, twhereN is the number of residues in that
strand. The residue order is the order in whicly there inserted wittaddresidue() . While nab
does not require it, nucleic acid chains are usually numbered from 5’ to 3’ and proteins chains from
the N-terminus to the C-terminus. The residues in nucleic acid strands and protein chains are usually
bonded with the outgoing end of residumnded to the incoming end of residué&. Hovever, as this
is not alvays the casenab requires the user to explicitly maldl interresidue bonds with theulitin
connectres()

connectres() malkes bonds between énagtoms in different residues of the same strand of a
molecule. Only residues in the same strand can be borumethectres() takes six aguments.
They are a molecule, the name of the strand containing the residues to be bonded paidsteach
of a residue number and the name of an atom in that residue. As an example, thiscraietm
tres()

connectres(m, "sense", i, "O3™, i+1, "P");

connects an atom namé&@3™ in residuei to an atom nameW®P" in residuei+l , creating the
phosphate bond that joinsdwucleic acid monomers.

The functionmergestr() is used to either '@ a copy the residues in one strand into
another strand. Details are provided in chapter 3.

10/17/06 Generalvearview 19

2.6. Residuesnd Residue Libraries.

nab programs hild molecules from residues that are parts of residue libraries, whickaattye
those distrilnted with the Amber molecular mechanics programs (see
http://amber.scripps.edu).

nab provides segeral functions for working with residues. All return a valid residue on success
and NULL on failure. The functiorgetres() is written innab and it source is sk belov.
transformres() which applies a coordinate transformation to a residue and is discussed under the
sectionMatrices and Transformations.

residue getresidue(string resname, string reslib);
residue getres(string resname, string reslib);
residue transformres(matrix mat, residue res, string aexp);

getresidue() extracts the residue with namesname from the residue libraryeslib
reslib is the name of a file that either contains the residue information or contains names of other
files that contain itreslib is assumed to be in the direct@MABHOME/reslib unless it bgins
with a slash/()

A common task of mannab programs is the translation of a string of characters into a structure
where each letter in the string represents a resi@Gamerally some mapping of one or twcharacter
names into actual residue names is requimad. supplies the functiogetres() that maps the sin-
gle character names c, g, t andu and their 5 and 3’ terminal analogues into the residARE
CYT, GUATHYandURA Here is its source:

1 I/l getres() - map 1 letter names into 3 letter names
2 residue getres(string rname, string rlib)
3 {
4 residue res;
5 string map1to3[hashed |; /I convert residue names
6
7 map1to3["A"] = "ADE"; maplto3['C"] = "CYT";
8 maplto3['G"] = "GUA"; mapl1to3['T"] = "THY";
9 maplto3["U"] = "URA";
10
11 maplto3[‘a"] = "ADE"; maplto3['c"] ="CYT";
12 maplto3['g"] = "GUA"; maplto3["t"] = "THY";
13 maplto3["u"] = "URA";
14
15 if(rin maplto3) {
16 res = getresidue(maplto3[r], rlib);
17 telse{
18 fprintf(stderr, "undefined residue %s\n", r);

19 exit(1);

10/17/06 Generalvearview 20

20 }
21 return(res);
22 5

getres() s the first of seeral nab functions that are discussed in this User Manual. The fol-
lowing explanation will ceer not justgetres() but will serve as anntroduction to user defined
nab functions in general.

An nab function is a named group of declarations and statements thaiciged as a unit by
using the functiors name in an xpression.nab functions can hae ecial variables called parame-
ters that allv the same function to operate on different data. A function definition begins with a
header that describes the function, fata by the function body which is a list of statements and dec-
larations enclosed in brace$ () and ends with a semicolon. The headegétres() is on line 2
and the body is on lines 3 to 22.

Everynab function header begins with the ressthword that specifies its type, followed by the
function’s rame followed by its parameters (ify@nenclosed in parentheses. The parentheses are
always required, een if the function does not fia parametersnab functions may return a single
vaue of ary of the 10nab types.nab functions can not return arrays. In symbolic terweenab
function header uses this template:

type namé parameters?)
The parameters (if present) torab function are a comma separated list of type variable pairs:
typel variablel type2 variable?2 . ..

An nab function may hae any mimber of parameters, including noreaameters may of gnof the
10 nab types, but unlik function values, parameters can be arrays, inclusispedarrays. The func-
tiongetres() has tvwo parameters, the twstring variablesresname andreslib

Paameters toab functions are “called by reference” which means that tlomtain the actual
data—not copies of it—that the function was called with. Whemalm function parameter is
assigned, the actual data in the calling function is changed. Thexmelption is when anxpression
is passed as a parameter tonab function. In this case, theab compiler eauates the xpression
into a temporary (and invisible to thab programmer) variable and then operates on its contents.

Immediately following the function header is the function bddys a ist of declarations fol-
lowed by a list of statements enclosed in braces. The list of declarations, the list of statements or both
may be emptygetres() has seeral statements, and a single declaration, #wéableres . This
variable is alocal variables Local variables are defined only when the function isracti a local
variable has the same name as variable defined outside of a it thedoableshides the global one.
Local variables can not be parameters.

The statement part getres() begins on line 6. It consists ofweal if statements genized
into a decision tree. The action of this tree is to translate one of the gtrings, etc., or their laver
case equilents into the corresponding three letter standard nucleic acid residue name amtraicen e
that residue frommeslib using the lav levd residue library functiometresidue() . The walue
returned bygetresidue() is stored in the localariableres , except when the input string is not
one of those listed alse. In that casegetres() writes a message &iderr indicating that it can
not translate the input string and sets to the value NULL nab usesNULL to represent non-

10/17/06 Generalvearview 21

existent values of the typesdring , file , atom, residue , molecule andbounds . A vaue of
NULL generally means that a variable is uninitialized or that an error occurred in creating it.

A function returns a value byxeuting areturn statement, which is the reserveards
return followed by an gpression. Theeturn statementwsuates the expression, sets the func-
tion value to it and returns control to the point just after the call. Xpeession is optional but if
present the type of the expression must be the same as the type of the function or both must be
numeric {nt , float). If the epression is missing, the function still returns, but its value is unde-
fined.getres() includes ongeturn statements on line 204 function also returns with an unde-
fined value when it "runs bthe bottom", i.e. xecutes the last statement before the closing brace and
that statement is notraturn

2.7. AtomNames and Atom Expressions.

Every atom in amab molecule has a name. This name is composed of the strand name, the
residuenumberand the atom name. As both PDB anfifofmats require that all atoms in a residue
have dstinct names, the combination of strand name, residue number and atom name is unique for
each atom in a single molecule. Atoms in different molecules,\reoweay hare the same name.

Many nab builtins require the user to specify exactly which atoms are to \erenb by the oper
ation.nab does this with special strings callatbm epressionsAn aom expression is a pattern that
matches one or more atom names in the specified molecule or residue. Ax@@Essien consists of
three parts—a strand part, a residue part and an atomTperfparts are separated by colons (ot
all three parts are required. An atorpeession with no colons consists of only a strand part; it selects
all atoms in the selected strands. An atom expression with one colon consists of a strand part and a
residue part; it selectl atoms in the selected residues in the selected strands. An empty part selects
all strands, residues or atoms depending on which parts are empty.

nab patterns specify thentire string to be matched. For example, the atom pa@amatches
only atoms name@ , and not those name@A HG etc. To match ay name that begins witl, use
C*, to match ay name ending witlC, use*C and to match & in ary position use*C* . An @om
expression is first parsed into its parts. The strand paviisaged selecting one or more strands in a
molecule. Next the residue part iwaleated. Only residues in selected strands can be selected. Finally
the atom part iswaluated and only atoms in selected residues are selekei are some typical
atom expressions and the atomg/timatch.

10/17/06 Generalvearview 22

:ADE: Select all atoms in gnresidue namedDE All three parts are
present but both the strand and atom parts are eifiptyatom e-
pressionADE selects the same set of atoms.

::C,CAN select all atoms with nam&; CAor Nin all residues in all strands—
typically the peptide backbone.

A:1-10,13,URA:CYL’ Select atoms namedl’ (the glycosyl-carbons) in residues 1 to 10
and 13 and in gnresidues namedRAiIn the strand named.

CH Select all non-sugar carbons. Tg is an example of a geted
character class. It matchesyamaracter in the last positiomaept’ .

::P,0?P,C[3-5]?,0[35]? The nucleic acid backbone. Thisselects phosphorous atoms. The

O7?P matches phosphate oxygens thavehaarious second letters
O1P, O2Por OAPor OBR TheC[3-5]? matches the backbone car
bons,C3', C4’, C5' or C3*, C4*, C5*. And theO[35]? match-
es the backbone oxyge@s8', O5’ or O3*, O5*.

or: Select all atoms in the molecule.

An important property ohab atom epressions is that the order in which the strands, residues,
and atoms are listed is unimportairg., the atom epression'2,1:5,2,3:N1,C1™ is the eact
same atom expression ‘d52:3,2,5:C1’,N1" . All atom e&pressions are reordered, internal to
nab, in increasing atom numbeBo, in the abwe example, the selected atoms will be selected in the
following sequence:

1:2:N1
1:2:.C1
1:3:N1
1:3:CY
1:5:N1
1:5:C1
2:2:N1
2:2.CY
2:3:N1
2:3.CY
2:5:N1
2:5.C1

The order in which atoms are selected internal to a specific residue are the order in whappahe
in anab PDB file. As seen in the abe example,N1 appears befor€1’ in all nab nucleic acid
residues and PDB files.

2.8. Loopingover atoms in molecules.

Another thing that mannab programs hee © do is visit every atom of a moleculeab pro-
vides a special form of ifer -loop for accomplishing this task. These loopgenthis form:

forf(ain m)
stmt

10/17/06 Generalvearview 23

a andmrepresent aatom and amolecule variable. The action of the loop is to seto each atom

in min this order The first atom is the first atom of the first residue of the first strand. This is fol-
lowed by the rest of the atoms of this residue, followed by the atoms of the second residue, etc until all
the atoms in the first strandJealeen visited. The process is then repeated on the second and subse-
guent strands im until a has been set tovery atom inm. The order of the strands in a molecule is

the order in which thewere created witladdstrand() , the order of the residues in a strand is the
order in which the were added witladdresidue() and the order of the atoms in a residue is the
order in which the are listed in the residiue library entry that the residue is based on.

The following program uses twnested fCfofin loops to compute all the proton-proton dis-
tances in a molecule. Distances less thaoff are written tostdout . The program uses the sec-
ond agument on the command to hold th&toff value. The program also uses the operator to
compare a character string , in this case an atom name to pattern, specified as a regular expression.

1 /I Program 4 - compute H-H distances <= cutoff
2 molecule m;
3 atom ai, aj;
4 float d, cutoff;
5
6 cutoff = atof(argv[2]);
7 m = getpdb("gcgl10.pdb");
8
9 for(aiin m){
10 if(ai.atomname !I" "H")continue;
11 for(aj in m){
12 if(aj.tatomnum <= ai.tatomnum)continue;
13 if(@j.atomname !" "H")continue;
14 if((d=distp(ai.pos,aj.pos))<=cutoff){
15 printf(
16 "%3d %-4s %-4s %3d %-4s %-4s %8.3f\n",
17 ai.tresnum, ai.resname, ai.atomname,
18 aj.tresnum, aj.resname, aj.atomname,
19 d);
20 }
21 }
22 }

The molecule is read intmusinggetpdb() . Two aom variablesai andaj are used to hold
the pairs of atoms. The outer loop in lines 9-22 aiettd each atom imin the order discussed al
Since this program is only interested in proton-proton distancas, i§ not a proton, all calculations
involving that atom can be skipped@heif in line 10 tests to seedi is a proton. It does so by test-
ing to see ifai 's name, aailable via theatomname attribute doesn’ match the regularxg@ression
"H" . If it doesnt match then the progranxecutes thecontinue statement also on line 10, which
has the effect of advancing the outer loop to its next atom.

From the section on attakes,ai.atomname behaes like a daracter string. It can be com-
pared aginst other character strings or tested to see if it matches a pattern or regular expression. The
two operators=" and!” stand formatchanddoesn’t-matchrhey also inform thenab compiler that
the string on their right hand sides is to be treatesldikegular expression. In this case, thgukar

10/17/06 Generalvearview 24

expression"H" matches ay name that contains the lettel or any proton which is just what is
required.

If ai is a proton, then the inner loop from 11-21xscrited. This setaj to each atom inthe
same order as the loop in 9. Since distance isxi"eéle(disqj = disT]), and the distance between an

atom and itself is 0, the inner loop usesitheon line 12 to skip the calculation @y unless it fol-
lowsai inthe molecules aom order Next theif on line 13 checks to seedf is a proton, skipping
to the next atom if it is not. Finalltheif on line 14 computes the distance between tleepratons
ai andaj and if it is <=cutoff writes the information out using the C4ikl/O function

printf()

2.9. RPoints, Transformations and Frames.

nab provides three kinds of geometric objects. Y¥iaee the typepoint andmatrix and the
frame component of molecule

2.9.1. Ppints and Vectors.

The nab type point is an object that holds thrdlwat values. Theseralues can represent
the X, Y and Z coordinates of a point or the components afc8v The individual elements of a
point variable are accessed via attribs or sufxes added to the variable name. The tipeat
attributes are'x" , "y" and"z" . Many nab builtin functions use, return or creapmint values.
Details of operations on points areai in chapter 3.

2.9.2. Matricesand Transformations.

nab uses thematrix type to hold a 44 transformation matrix.Transformations are applied to
residues and molecules to weohem into ne orientations and/or positions. Unéika general coordi-
nate transformatiomab transformations can not alter the scale (size) of an objémiuever, transfor-
mations can be applied to a subset of the atoms of a residue or molecule changing its sheg®@- For e
ple, nab would use a transformation to rotate a group of atoms about a babddoesnot require
that transformations applied to parts of residues or molecules be chemically valid. It simply transforms
the coordinates of the selected atoms leaving it to the user to correct (or igyarkgm@mrcally incor
rect geometry caused by the transformati@b uses the following builtin functions to create and use
transformations.

matrix newtransform(float dx, float dy, float dz,
float rx, float ry, float rz);
matrix rot4(molecule m, string tail, string head, float angle);
matrix rot4p(point tail, point head, float angle);
matrix trans4(molecule m, string tail, string head, float distance);
matrix trans4p(point tail, point head, float distance);
residue transformres(matrix mat, residue r, string aex);
int transformmol(matrix mat, molecule m, string aex);

nab provides three ways to create a metransformation matrix. The functionewtrans-
form() creates a transformation matrix from 3 translations and 3 rotations. It is intended to position
objects with respect to the standard Xavd Z axes located at (0,0,0). Here isvtibworks. Imagine
two coordinate systems, X,,¥ and X', Y’, Z' that are initially superimposednewtransform()

10/17/06 Generalvearview 25

first rotates the the primed coordinate system aboutrZ lgegrees, then about Y by degrees, then
about X byrx degrees. Finally the reoriented primed coordinate system is translated to the point
(dx,dy,dz) in the unprimed system. The functior®4() androt4p() create a transformation
matrix that effects a clockwise rotation by an angle (in degrees) about an axis definedpbints:
The points can be specified implicitly by atorpeessions applied to a moleculerat4() or explic-
itly as points in

rotdp() . If an @om expression imot4() selects more that one atom, tlverage coordinate of
all selected atoms is used as the psivalue. (Notethat a positie rotation angle here is defined to be
clockwise, which is in accord with the IBE rules for defining torsional angles in molecules, is
opposite to the coention found in man other branches of mathematicsSimilarly, the functions
trans4() andtrans4p() create a transformation that effects a translation by a distance along the
axis defined by te points. Apositive ranslation is fromail tohead.

transformres() applies a transformation to those atomsesf that match the atonmxpres-
sion aex. It returns acopy of the input residue with the changed coordinates. The input residue is
unchanged. It returnsIULL if the nev residue could not be creatadansformmol() applies a
transformation to those atomsmbl that matchaex . Unlike transformres() , transform-
mol() changesthe coordinates of the input molecule. It returr® @n success antl on failure. In
both functions, the special atom expres$iWiL selects all atoms in the input residue or molecule.

2.9.3. Frames.
Every nab molecule includes a frame, a handle thatvedl@arbitrary and precise me@ment of
the molecule. This frame is set with thab builtins setframe() andsetframep() . It is ini-

tially set to the standard X, Y and Z directions centered at (Og&thlame() creates a coordinate
frame from atom expressions that specify the the origin, the X direction and the Y direction. If an
atom expression selects more that one atom,wrage of the selected atoms’ coordinates is used. Z
is created from XY. Since the initial X and Y directions are urdlly to be orthogonal, thase
parameter specifies which of the input X and Y directions is to become the formal X or Y direction. If
use is 1, X is chosen and Y is recreated fromX If use is 2, then Y is chosen and X is recreated
from YxZ. setframep() is identical except that the &vpoints defining the frame arex@icitly
provided.

intsetframe(int use, molecule mol, string origin,
string xtail, string xhead,
string ytail, string yhead);
intsetframep(int use, molecule mol, point origin,
point xtail, point xhead,
point ytail, point yhead);
intalignframe(molecule mol, molecule mref);

alignframe() is similar tosuperimpose() , but works on the molecules’ frames rather
than selected sets of their atoms. It transfamné to superimpose itsameon theframeof mref . If
mref is NULL, alignframe() superimposes the frame wiol on the standard X, Y and Z coordi-
nate system centered at (0,0,0).

Heres how frames and transformationsoik together to permit precise motion betweei tw
molecules. Corresponding frames are defined fomwlecules. Thestames are based on molecular

10/17/06 Generalvearview 26

directions. alignframe() is first used to align the frame of one molecule along with the standard
X, Y and Z directions. The molecule is thenvew and reoriented via transformations. Because its
initial frame was along these molecular directions, the transformations are likely to be along or about
the axes. Finallalignframe() is used to realign the transformed molecule on the frame of the
fixed molecule.

One use of this method would be the rough placement of a drug into e gnmo@a DNA
molecule to create a starting structure for restrained molecular dynaseifsame() is used to
define a frame for the DNalong the appropriate grge, with its origin at the center of the binding
site. A similar frame is defined for the druignframe() first aligns the drug on the standard
coordinate system whose axes are/ inmportant directions between the BNnd the drug. The drug
is transformed andlignframe() realigns the transformed drug on the AdNframe.

2.10. Creating Watson Crick duplexes.

Watson/Crick duplges ae fundamental components of almost all nucleic acid structures and
nab provides seeral functions for use in creating them. Vraee

residue getres(string resname, string reslib);
molecule bdna(string seq);
molecule fd_helix(string helix_type, string seq, string acid_type);
string wc_complement(string seq, string reslib, string natype);
molecule wc_basepair(residue sres, residue ares);
molecule wc_helix(string seq, string rlib, string natype,
string aseq, string arlib, string anatype, float xoff,
float incl, float twist, float rise, string opts);

All of these functions are written imab allowing the user to modify or extend them as needed with-
out having to modify theab compiler.

Note: If you just want to create a regular helical structure withvengiequence, use the "fiber
diffraction” routinefd_helix() , Which is discussed in Section 3.1Bhe methods discussedxmhe
are more general, and can b#eaded to more complicated problems, buy #re also much harder to
follow and understand. The construction of "unusual" nucleic acastive original focus of NAB; if
you are using NAB for some other purpose (such as running Amber force field calculations) you
should probably skip to Chapter 3 at this point.

2.10.1. bdna()and fd_helix().

The functionbdna() which was used in the first example gems a string into a atson/Crick
DNA duplex using average DM helical parameters.

1 /I bdna() - create average B-form duplex
2 molecule bdna(string seq)

3 {

4 molecule m;

5 string cseq;

10/17/06 Generalvearview 27

7 cseq = wc_complement(seq, ", "dna");

8 m = ve_helix(seq, "™, "dna",

9 cseq, ", "dna",
10 2.25,-4.96, 36.0, 3.38, "sba5s3a3");
11 return(m);
12 h

bdna() callswc_helix() to create the molecule. Mever, wc_helix() requires both strands of
the duple so bdna() callswc_complement() to create a string that represents that34n/Crick
complement of the sequence contained in its pararseter The string'sba5s3a3'teplaces both the
sense ana@nti 5’ terminal phosphates with hydrogens and addisdgens to both theense and@nti 3’
terminal O3’ oxygens. The finished moleculamis returned as the functi@walue. If aly errors had
occurred in creatingy it would have the valueNULL, indicating thatbdna() failed.

Note that the simple method usedna() for constructing the helix is noew generic, since
it assumes that thiaternal geometry of the residues in the (default) library are appropriate for this sort
of helix. This is in fact the case for B-DNA, but this method cannot bialtyi generalized to other
forms of helices.One could create initial models of other helical forms in the way described, abo
and fix up the internal geometry by subsequentggnerinimization. An alternate is to drectly use
fiber-diffraction models for other types of heliceghe fd_helix() routine does this, reading a
database of experimental coordinates from fiber diffraction data, and constructing a helix of the appro-
priate form, with the helix axis alormy More details are gén in Section 3.13.

2.10.2. wc_complement().

The functionwc_complement() takes three strings. The first is a sequence using the standard
one letter code, the second is the name afadnresidue libraryand the third is the nucleic acid type
(RNA or DNA). It returns a string that contains the Watson/Crick complement of the input sequence in
the same one letter code. The input string and the returned complement stengpesite direc-
tions. If the left end of the input string is the 5’ base then the left end of the returned string will be the
3’ base. The actual direction of theairings depends on their use.

1 /l wc_complement() - create a string that is the W/C
2 /I complement of the string seq
3 string wc_complement(string seq, string rlib, string rlt)
4 /I (note that rlib is unused: included only for backwards compatibility
5 {
6 string acbase, base, wcbase, wcseq;
7 inti, len;
8
9 if(rit =="dna") acbase = "t";
10 else if(rlit =="rna") acbase = "u";
11 else{
12 fprintf(stderr,
13 "wc_complement: rlt (%s) is not dna/rna, no W/C comp.", rlt);
14 return(NULL);

|_\
(¢
—

10/17/06 Generalvearview 28

16 len = length(seq);

17 wcseq = NULL;

18 for(i=1;i<=len;i=i+ 1)

19 base = substr(seq, i, 1);

20 if(base =="a" || base =="A") wcbhase = acbase;
21 else if(base == "c" || base =="C") wcbase ="g";

22 else if(base == "g" || base =="G") wcbase ="c";

23 else if(base == "t" || base =="T") wcbase ="a";

24 else if(base == "u" || base =="U") wcbase ="a";

25 else{

26 fprintf(stderr, "wc_complement: unknown base %sn", base);
27 return(NULL);

28 }

29 wcseq = wcseq + wchase;

30 }

31 return(wcseq);

32 }

wc_complement() begins its work in line 9, where the nucleic acid type, as indicatett by
as DMA or RNA is ised to determine the correct complement foaafhe complementary sequence
is created in théor loop that begins in line 18 andtends to line 30. Theab builtin substr() s
used to extract single characters from the input sequegoenb® with with position 1 and evking
from left to right until entire input sequence has beervated. Theif -tree from lines 20 to 28 is
used to set the character complementary to the current chawsitey the previously determined
acbase if the input character is amor A. Any character other than thepmecteda, c, g, t, u (or A,
C, G T,Uis an eror causingvc_complement() to print an error message and retbfdLL, indi-
cating that it failed. Line 29 showswamab uses the infix- to concatenate character string&hen
the entire string has been complementedfdhe loop terminates and the complementary sequence
now in wecseq is returned as the function value. Note that if the input sequence is, &mptom-
plement() returnsNULL, indicating failure.

2.10.3. wc_helix(Overview.

wc_helix() generates a uniform helical dupligEom a sequence, its complemento ts@sidue
libraries and four helical parameters: x-offset, inclination, twist and rise. By usiogetsidue
libraries, wc_helix() can generate RAIDNA heteroduplges. wc_helix() returns annab
molecule containing ta grands. The stringeq becomes thésense" strand and the stringseq
becomes théanti" strand.seq andaseq are required to be complementary although this is not
checkedwec_helix() creates the molecule one base pair at a theg. is read from left to right,
aseq is read from right to left and corresponding letters ateaeted and carerted to residues by
getres() . These residues are in turn combined into an idealized Watson/Crick base pair by
wc_basepair() . An AT created bywc_basepair() is shown in Figure 2.

A Watson/Crick dupbe can be modeled as a set of planes stacked in a hilie.numbers that
describe the relationships between the planes and between the planes and the helical axis are called
helical parameters. Planes can be defined for each base or baSe paimbers (three displacements
and three angles) can be defined fary pair of planes; hwever, helical parameters for nucleic acid
bases are restricted to the six numbers describing the the relationship betweenbdsesin a base
pair and the six numbers describing the relationship between adjacent base pairs. A complete

10/17/06 Generalvearview 29

description of helical parameters can be found in Dickerson [19]

wc_helix() uses only four of the 12 helical parameters. It builds its helices from idealized
Watson/Crick pairs. These pairs are planar so the three intra base angles are 0. In addition the displace-
ments are displacements from the idealized Watson/Crick geometry and are alsé\@ndh&er in
Figure 2 are in plane of the page_helix() uses four of the six parameters that relate a base pair
to the helical axis. The helices createdvioy helix() have a ingle axis (the Z axis, not stvo)
which is at the intersection of the X and Yeavof Figure 2. Nw imagine keeping the axes fixed in the
plane of the paper and moving the base panffset is the displacement along the X axis between the
Y axis and the line marked Y’. A posit X-offset is tavard the arrav on the X-axis. Inclination is the
rotation of the base pair about the X axis. A rotation thatesithe A abee the plane of page and the
T below is positive. Twist involves a rotation of the base pair about the Z-axis. A counterclockwise
twist is positve. Finally, rise is a displacement along the Z-axis. A pesitise is out of the page
toward the reader.

2.10.4. wc_basepair().

The functionwc_basepair() takes two residues and assembles them into @adwandednab
molecule containing one base p&esiduesres is placed in thésense" strand and residusres
is placed in théanti" strand. Thavork begins in line 14 whenreewmolecule() is used to cre-
ate an empty molecule storednm Two drands,sense andanti are added usingddstrand()
In addition, two more molecules are creatad, sense for the sense residue and anti for the anti
residue. Thef -trees in lines 26-61 and 63-83 are used to select residue dependent atoms that will be
used to mee the base pairs into a ommient orientation for helix generation. TipairineC4 and
pyrimidineC6 distance which is residue dependent is also set. In lined&esidue() adds
sres to the strandsense of m_sense. In line 84,addresidue() addsares to the strand
anti of m_anti . Lines 86 and 87 align the molecules containing the sense residue and anti residue
so thatsres andares are on top of each othekine 88 creates a transformation matrix that rotates
m_anti (containingares) 180° about the X-axis. After applying this transformation, the bases

ADE . THY

Y X

Figure 2. ADE:THY from wc_basepair().

10/17/06 Generalvearview 30

are still occupying the same spac# &res is nov antiparallel tosres . Line 90 creates a transfor
mation matrix that displaces_anti andares along the Y-axis bgep A. The properly positioned
molecules containingres andares are merged into a single molecule, m ompleting the

base pair. Lines 97-98 move this base pair to a more convenient
orientation for helix generation. Initially the base as shown in
Figure 2 is in the plane of page with origin on the C4 of theA. The calls to

setframe() andalignframe() move the base pair so that the origin is at the intersection of the
lines marked X and Y’.

1 /I we_basepair() - create Watson/Crick base pair
2 #define AT_SEP 8.29
3 #define CG_SEP 8.27
4 molecule wc_basepair(residue sres, residue ares)
5 {
7 molecule m, m_sense, m_anti;
8 float sep;
9 string srname, arname;
10 string xtail, xhead,;
11 string ytail, yhead,;
12 matrix mat;
13
14 m = rewmolecule();
15 m_sense = newmolecule();
16 m_anti = newmolecule();
17 addstrand(m, "sense");
18 addstrand(m, "anti");
19 addstrand(m_sense, "sense");
20 addstrand(m_anti, "anti");
21
22 srname = getresname(sres);
23 arname = getresname(ares);
24 ytail = "sense::C1™;
25 yhead = "anti::C1"™;
26 if((srname =="ADE") || (srname == "DA") ||
27 (s rname =="RA") || (srname =" "[DR]A[35]")
28 sep = AT_SEP;
29 xtail = "sense::C5";
30 xhead = "sense::N3";
31 setframe(2, m_sense,
32 ":C4", "ChY, "IN3Y, MiC4T, "iNLT);
33 Yelse if((srname =="CYT") || (srname =" "[DR]C[35]*")
34 sep = CG_SEP;
35 xtail = "sense::C6";
36 xhead = "sense::N1";
37 setframe(2, m_sense,
38 ":C6", ":Ch", ":IN1", "::C6", "::N3");

10/17/06 Generalvearview

39 }else if((srname == "GUA") || (srname =" "[DR]G[35]*") }{
40 sep = CG_SEP;

41 xtail = "sense::C5";

42 xhead = "sense::N3";

43 setframe(2, m_sense,

44 ":C4", " Ch", "IN3Y, "iC4T, "NL");
45 }else if((srname =="THY") || (srname =""DT[35]*") }{

46 sep = AT_SEP;

47 xtail = "sense::C6";

48 xhead = "sense::N1";

49 setframe(2, m_sense,

50 ":C6", ":Ch", ":N1", "::C6", "::N3");
51 }else if((srname =="URA") || (srname =" "RU[35]*") }{
52 sep = AT_SEP;

53 xtail = "sense::C6";

54 xhead = "sense::N1";

55 setframe(2, m_sense,

56 ":C6", ":Ch", ":N1", "::C6", "::N3");
57 Yelse{

58 fprintf(stderr,

59 "wc_basepair : unknown sres %s\n",srname);
60 exit(1);

61 }

62 addresidue(m_sense, "sense", sres);

63 if((arname =="ADE") || (arname == "DA") ||

64 (arname =="RA") || (arname =" "[DR]JA[35]") }{

65 setframe(2, m_anti,

66 ":C4", "Ch", "IN3Y, M C4T, N1);
67 }else if((arname =="CYT") || (arname =""[DR]C[35]*")){
68 setframe(2, m_anti,

69 ":C6", ":Ch", ":N1", "::C6", "::N3");
70 }else if((arname =="GUA") || (arname =" "[DR]G[35]*") X
71 setframe(2, m_anti,

72 ":C4", "Ch", "IN3Y, MiC4T, "NL");
73 lelse if((arname =="THY") || (arname =" "DT[35]*")){
74 setframe(2, m_anti,

75 ":C6", ":Ch", ":N1", "::C6", "::N3");
76 }else if((arname =="URA") || (arname =" "RU[35]*") ¥
77 setframe(2, m_anti,

78 ":C6", ":Ch", ":N1", "::C6", "::N3");
79 Yelse{

80 fprintf(stderr,

81 "wc_basepair : unknown ares %s\n",arname);
82 exit(1);

83 }

84 addresidue(m_anti, "anti", ares);

85

10/17/06 Generalvearview 32

86 alignframe(m_sense, NULL);
87 alignframe(m_anti, NULL);
88 mat = newtransform(0., 0., 0., 180., 0., 0.);
89 transformmol(mat, m_anti, NULL);
90 mat = newtransform(0., sep, 0., 0., 0., 0.);
91 transformmol(mat, m_anti, NULL);
92 mergestr(m, "sense", "last", m_sense, "sense", "first");
93 mergestr(m, "anti", "last", m_anti, "anti", "first");
94
95 freemolecule(m_sense); freemolecule(m_anti);
96
97 setframe(2, m, "::C1™, xtail, xhead, ytail, yhead);
98 alignframe(m, NULL);
99 return(m);
100 |5

2.10.5. wc_helix(Jmplementation.

The functionwc_helix() assembles base pairs frava_basepair() into a helical dupbe.
It is a fairly complicated function that usewvaal transformations and showsvhonergestr() is
used to combine smaller molecules into a larger one. In addition to creating completesduple
wc_helix() can also create molecules that contain only one strand of axdulslieg the special
value NULL for eitherseq or aseq creates a dupkethat omits the residues for thdJLL sequence.
The molecule still contains iwdrands,sense andanti , but the strand corresponding to tReJLL
sequence has zero residues. helix() first determines which strands are required, then creates
the first base paithen creates the subsequent base pairs and assembles them into a helix and finally
packages the requested strands into the returned molecule.

Lines 20-34 test the input sequences to see which strands are requiredaridbkeshas_s
andhas_a are flags where a value dfindicates thaseq and/oraseq was requested. If an input
sequence idIULL, wc_complement() is used to create it and the appropriate flag is d@&t tBhe
nab builtin setreslibkind() is used to set the nucleic acid type so that the proper residua (DN
or RNA) is extracted from the residue library.

The first base pair is created in lines 42-63. Thelétters corresponding the 5’ basesef] and
the 3’ base ofaseq are extracted using theab builtin substr() , corverted to residues using
getresidue() and assembled into a base paimay basepair() . This base pair is oriented as
in Figure 2 with the origin at the intersection of the lines X and Wo Tansformations are created,
xomat for the x-offset andhmat for the inclination and applied to this pair.

Base pairs 2 tslen-1 are created in théor loop in lines 66-87.substr() is used to
extract the appropriate letters froseq and aseq which are cowerted into another base pair by
getresidue() andwc_basepair() . Four transformations are applied to these base pair®— tw
to set the x-offset and the inclination anadtmore to set the twist and the rise.Xim2 the molecule
containing the newly created properly positioned base pair must be bonded to the previously created
molecule inm1 Since nab only permits bonds between residues in the same stmeergestr()
must be used to combine the corresponding strands in thexdiecules beforeonnectres() can
create the bonds.

10/17/06 Generalvearview 33

Because the tavdrands in a Watson/Crick duplere antiparallel, adding a base pair to one end
requires that one residue be addéeér the lastresidue of one strand and that the other residue added
beforethefirst residue of the other strand.Wwt_helix() thesense strand is extended after its last
residue and thanti strand is extended before its first residue. The cafiémgestr() in line 79
extends the sense strand ofm1with the the residue of thesense strand ofm2 The residue om?2
is added after thelast® residue of of thesense strand ofml The final agument'first” indi-
cates that the residue ai2 are copied in their original ordenl:sense:last is followed by
m2:sense:first . After the strands wva been meged, connectres() makes a bond between
the O3’ of the next to last residug-1) and the P of the last residuei {. The next call to
mergestr() works similarly for the residues in thanti strands. The residue in thati strand
of m2are copied into the thanti strand ofm1 beforethe first residue of thanti strand of m1l
m2:anti: last precedesnl:anti: first . After meging connectres() creates a bond between
theO3’ of the nev first residue and the of the second residue.

Lines 121-130 create the returned moleaul® If the flaghas_s is 1, mergestr() copies
the entire sensatrand of mlinto the empty sensd#rand of m3 If the flaghas_a is 1, theanti
strand is also copied.

1 Il we_helix() - create Watson/Crick duplex
2 string wc_complement();
3 molecule wc_basepair();
4 molecule wc_helix(
5 string seq, string sreslib, string snatype,
6 string aseq, string areslib, string anatype,
7 float xoff, float incl, float twist, float rise,
8 string opts)
9 {
10 molecule m1, m2, m3;
11 matrix xomat, inmat, mat;
12 string arname, srname;
13 string sreslib_use, areslib_use;
14 string loup[hashed |;
15 residue sres, ares;
16 int has_s, has_a;
17 inti, slen;
18 float ttwist, trise;
19
20 has s=1;has a=1;
21 if(sreslib =="") sreslib_use = "all_nucleic94.lib";
22 else sreslib_use = sreslib;
23 if(areslib =="") areslib_use = "all_nucleic94.lib";
24 else areslib_use = areslib;
25
26 if(seq == NULL && aseq == NULL){
27 fprintf(stderr, "wc_helix: no sequence\n");
28 return(NULL);

10/17/06

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Generalvearview

Yelse if(seq == NULL ¥
seq = wc_complement(aseq, areslib_use, snatype);
has s =0;

}else if(aseq == NULL){
aseq = wc_complement(seq, sreslib_use, anatype);
has a=0;

}

slen = length(seq);
loup['g"] = "G"; loup['a"] = "A",
loup["t"] ="T"; loup["c"] = "C",

I handle the first base pair:
setreslibkind(sreslib_use, snatype);
srname = "D" + loup[substr(seq, 1, 1)];
if(opts =" "s5")
sres = getresidue(srname + "5", sreslib_use);
else if(opts =7 "s3" && slen ==1)
sres = getresidue(srname + "3", sreslib_use);
else sres = getresidue(srname, sreslib_use);

setreslibkind(areslib_use, anatype);
arname = "D" + loup[substr(aseq, 1, 1)];
if(opts =" "a3")

ares = getresidue(arname + "3", areslib_use);
else if(opts =" "a5" && slen==1)

ares = getresidue(arname + "5", areslib_use);
else ares = getresidue(arname, areslib_use);
m1l = wc_basepair(sres, ares);
freeresidue(sres); freeresidue(ares);
xomat = newtransform(xoff, 0., 0., 0., 0., 0.);
transformmol(xomat, m1, NULL);
inmat = newtransform(0., 0., 0., incl, 0., 0.);
transformmol(inmat, m1, NULL);

I add in the main portion of the helix:
trise = rise; ttwist = twist;
for(i=2;i<=slen-1;i=i+1){
srname = "D" + loup[substr(seq, i, 1)];
setreslibkind(sreslib, snatype);
sres = getresidue(srname, sreslib_use);
arname = "D" + loup[substr(aseq, i, 1)];
setreslibkind(areslib, anatype);
ares = getresidue(arname, areslib_use);
m2 = wc_basepair(sres, ares);
freeresidue(sres); freeresidue(ares);
transformmol(xomat, m2, NULL);

10/17/06

76
77
78
79
80
81
82
83
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

if(i> 1)

}

Generalvearview

transformmol(inmat, m2, NULL);

mat = newtransform(0., 0., trise, 0., 0., ttwist);
transformmol(mat, m2, NULL);

mergestr(m1, "sense", "last", m2, "sense", "first");
connectres(m1, "sense", i-1, "O3™, i, "P");
mergestr(m1, "anti", "first", m2, "anti", "last");
connectres(m1, "anti", 1, "O3™, 2, "P");

trise = trise + rise;

ttwist = ttwist + twist;

freemolecule(m2);

s len; / add in final residue pair:

srname = substr(seq, i, 1);
srname = "D" + loup[substr(seq, i, 1)];
setreslibkind(sreslib, snatype);
if(opts =7 "s3")

sres = getres(srname + "3", sreslib_use);
else

sres = getres(srname, sreslib_use);
arname = "D" + loup[substr(aseq, i, 1)];
setreslibkind(areslib, anatype);
if(opts =" "ab")

ares = getres(arname + "5", areslib_use);
else

ares = getres(arname, areslib_use);

m2 = wc_basepair(sres, ares);

freeresidue(sres); freeresidue(ares);
transformmol(xomat, m2, NULL);
transformmol(inmat, m2, NULL);

mat = newtransform(0., 0., trise, 0., 0., ttwist);
transformmol(mat, m2, NULL);

mergestr(m1, "sense", "last", m2, "sense", "first");
connectres(m1, "sense", i-1, "O3™, i, "P");
mergestr(m1, "anti", "first", m2, "anti", "last");
connectres(m1, "anti", 1, "O3™, 2, "P");

trise = trise + rise;

ttwist = ttwist + twist;

freemolecule(m2);

m3 = newmolecule();
addstrand(m3, "sense");
addstrand(m3, "anti");

35

10/17/06 Generalvearview 36

124 if(has_s)

125 mergestr(m3, "sense", "last", m1, "sense", "first");
126 if(has_a)

127 mergestr(m3, "anti", "last", m1, "anti", "first");
128 freemolecule(m1);

129

130 return(m3);

131 ki

2.11. Structure Quality and Energetics.

Up to this point, all the structures in theaeples hee been built using only transformations.
These transformations properly place the purine and pyrimidine ringgevielp snce theg are rigid
body transformations, tlgewill create distorted swy/backbone geometry if mrinternal sugr/back-
bone rearrangements are required to accommodate the base gedheetynount of this distortion
depends on both the input residues and transformations applied and can vary from trivialégeso se
that the created structures are uselesb. offers two methods for fixing bad sag/backbone geome-
try. They are molecular mechanics and distance geomatlg provides distance geometry routines
and has its own molecular mechanics package. The latter is based &@akygrogram, which is part
of the AMBERSsuite of programs deloped at the Uwiersity of California, San Francisco and at The
Scripps Research Institute. The text version of L.Ealledtleapis distributed as a part of NAB.

2.11.1. Ceating a Parallel DNA Triplex.

Paallel DNA triplexes ae thought to be intermediates in homologousADicombination.
These triplees, irnvestigated by Zhurkiret al.[20] are called R-form DNA, and are befesl to exist in
two distinct conformations. In the presence of recombination protemsRecA), thg adopt an
extended conformation that is undemwnd with respect to standard helices (a twist of 20°) ang v
large base stacking distances (a rise of 5. However, in the absence of recombination proteins, R-
form DNA exists in a "collapsed” form that resemblesarional triplexes but with two very impor
tant differences—the twvparallel strands he the same sequence and the tiptan be made from
ary Watson/Crick duple irregardless of its base composition. The remainder of this section discusses
how this triplex could be modeled and twaab programs that implement that strategy.

If the daggrees of freedom of a tripleare specified by the helicoidal parameters required to place
the bases, then a triglef N bases has B(- 1) degees of freedom, an impossibly large humber for
ary but trivial N. Fortunately the nature of homologous recombination allows some simplifying
assumptions. Since the recombination must workmnduplex, the aerall shape of the triplemust
be sequence independent. This implies that each helical step uses the same set of transformational
parameters which reduces the size of the problem to gieee of freedom once the individual base
triads hae keen created.

The indvidual triads are created by assuming thay tine planarthat the third base isydrogen
bonded on the major gree sde of the base pair as it appears in a standard Watson/Crick dilnale
the original Vtson Crick base pair pair is essentially undisturbed by the insertion of the third base and
finally that the third base belongs at the point that maximizeydi®gen bonding with respect to the
original Watson/Crick base pakfter the optimized triads ke keen created, tlyeare assembled into
dimers. The dimers assume that the helical axis passes through the center of the circle defined by the
positions of the thre€1’ atoms. Seeral instances of a twparameter family (rise, twist) of dimers
are created for each of the 16 pairs of triads and minimized.

10/17/06 Generalvearview 37

2.11.2. Ceating Base Triads.

Here is amab program that computes the vacuum energ6fX base triads as a function of
the position and orientation of tie(non-Watson/Crick) base. A minimum eggrAU:A found by the
program along with the potential energy surfaegell to the position of the secoAds shown in Fig-
ure 3. The program creates a single Watson/Criclh DBise pair and then computes the gnaf a
third DNA base at each position of a user defined rectangular grid. Spdcegen bonding is both
distance and orientation dependent the program allows the user to specify a range of orientations to try
at each grid point. The orientation giving the lowest energy at each grid point and its associgyed ener
are written to a file. The position and orientatiovirgg the lowest eerall energy is sa&d and is used
to recreatethe best triad after the search is completed.

1 /l Program 5 - Investigate energies of base triads
2 molecule m;
3 residue tr;
4 string sb, ab, tb;
5 matrix rmat, tmat;
6
7 file ef;
8 string mfnm, efnm;
9 point txyz[35];
10 float x, Ix, hx, xi, mx;
11 floaty, ly, hy, yi, my;
12 float rz, Irz, hrz, rzi, urz, mrz, brz;
13
14 int prm;
15 point xyz[100], force[100];
16 float me, be, energy;
17
18 scanf("%s %s %s", sh, ab, th);
19 scanf("%lIf %lf %lf", Ix, hx, xi);
20 scanf("%lIf %lf %lf", ly, hy, yi);
21 scanf("%lIf %lf %lIf", Irz, hrz, rzi);
22
23 mfnm = sprintf("%s%s%s.triad.min.pdb", sb, ab, tb);
24 efnm = sprintf("%s%s%s.energy.dat", sb, ab, tb);
25
26 m = vwe¢_helix(sb, ", "dna", ab,
27 "™, "dna", 2.25, 0.0, 0.0, 0.0);
28
29 addstrand(m, "third");
30 tr = getres(tb, "all_nucleic94.lib");
31 addresidue(m, "third", tr);
32 setxyz_from_mol(m, "third::", txyz);
33

w
D
©
c
—
o
o
o
—~
3
—
¢}
3
©
]
Q.
o
o
3
1
Q
)
—
o
Q.
IU
©
=
3
—~
—
)
3
o
o
Q.
o
)
Q
=
©
o
=
(o]
&
o
~

10/17/06 Generalvearview 38

35 mme_init(m, NULL, "::2ZZ7", xyz, NULL);

36

37 ef = fopen(efnm, "w");

38

39 mrz=urz=1Irz - 1;

40 for(x = Ix; x <= hx; x = x + xi §

41 for(y =ly;y <=hy;y =y +yi{

42 brz = urz;

43 for(rz=1Irz;rz<=hrz;rz =rz + rzi){

44 setmol_from_xyz(m, "third::", txyz);
45 rmat=newtransform(0., 0., 0., 0., 0., rz);
46 transformmol(rmat, m, "third::");
47 tmat=newtransform(x, y, 0., 0., 0., 0.));
48 transformmol(tmat, m, "third::");
49

50 setxyz_from_mol(m, NULL, xyz);
51 energy = mme(xyz, force, 1);

52

53 if(brz ==urz {

54 brz = rz; be = energy;

55 lelse if(energy < be ¥

56 brz = rz; be = energy;

57 }

58 if(mrz == urz){

59 me = energy;

60 mx = X; my =y; mrz = rz,

61 }else if(energy < me)}

62 me = energy;

63 mx = X; my =y; mrz = rz;

64 }

65 }

66 fprintf(ef, "%10.3f %210.3f %10.3f %10.3fn",
67 X, Y, brz, be);

68 }

69 }

70 fclose(ef);

71

72 setmol_from_xyz(m, "third::", txyz);

73 rmat = newtransform(0.0, 0.0, 0.0, 0.0, 0.0, mrz);
74 transformmol(rmat, m, "third::");

75 tmat = newtransform(mx, my, 0.0, 0.0, 0.0, 0.0);
76 transformmol(tmat, m, "third::");

77 putpdb(mfnm, m);

Program 5 begins by reading in a description of the desired triad and data defining the location
and granularity of the search area. It does this with the calls toathébuiltin scanf() on lines
18-21. scanf() uses its first argument as a format string which directs theeion of text

10/17/06 Generalvearview 39

versions ofint , float andstring values into their internal formats. The first callgoanf()
reads the three letters that specify the bases, the nexalls read the X and Y location, extent and
granularity of the the search rectangle and the last call reads in the first, last and inca&resrthat
will be used specify the orientation of the third base at each point on the search grid.

Lines 23 and 24 respeatly, create the names of the files that will hold the best structure found
and the values of the potential energy surface. The file names are created usingltithe b
sprintf() . Like scanf() this function also uses its first argument as a format string, used here to
construct a string from the data values that $olibin the parameter list. The action of these calls is
to replace the each format descriptis(with the \alues of the corresponding string variable in the
parameter list. The file names created forAkkeA shavn in Figure 3 werdUA.triad.min.pdb
andAUA.energy.dat . Format expressions and formatted I/O including the 1/@ digrintf()
are discussed in the sectioRsrmat Expr essionsand Ordinary I/O Functions of the nab Lan-
guage Reference

The triad is created in wmajor steps in lines 26-32. First aaWon/Crick base pair is created
with we_helix() . The base pair has an X-offset of 2°2&#d an inclination of 0.0 meaning it lies in
the XY plane. Twist and rise although thieare not used in creating a single base pair are also set to
0.0. TheX-offset which is that of standard B-PNwas chosen to facilitate extension of trijge
made from the triads created here with standard ®upidA. Absent this consideration yaiX-offset
including 0.0 would hee keen satisictory A third strand ‘third") is added tom the stringtb is
corverted into a DM residue and this residue is added to the sieand. Finallyin the coordinates of
the third strand are ged in the point arraytxyz . Referring to Figure 3, the third base is located
directly on top of the Watson/Crick pa# purine would hge its C4 atom at the origin and itS4-N1
vector along the Y axis; a pyrimidine i@6 at the origin and it€6-N3 vector along the Y axis. Gio-
ously this is not a real structure;vever, as will be seen in the next section, this initial placement
greatly simplifies the transformations required to explore the search area.

10/17/06 Generalvearview 40

2.11.3. Findingthe lowest energy triad.

The energy calculation begins in line 34 and extends to line 69. Elements of the general molecu-
lar mechanics code skeleton discussed inLtmuage Refeencechapter are seen at lines 34-35 and
lines 50-51. Initialization takes place in lines 34 and 35 with the cgiktipdb _prm() to prepare
the information needed to compute molecular mechanicgieserTheforce field routine is initialized
in line 35, asking that all atoms be alled to mee. The actual energy calculation is done in lines 50
and 51.setxyz_from_mol() copies the current conformation wiol into thepoint arrayxyz
and thenmme() evduates the energy of this conformation. Note that theggnesaluation is in a
loop, in this case nested inside the three loops that control the conformational search.

The search area shio in Figure 3 is on the left side of the Watson/Crick base Pphis corre-
sponds to inserting the third base into the majorngrabthe duple. Now as he third base is initially
positioned at the origin with itsydrogen bonding edge pointingatards the top of the page, it must
be both mweed to the left or in the -X direction and rotated approximately -90° so thaydsoben
bonding sites can interact with those on the left side of the Watson/Crick pair.

The search isxecuted by the three nestéar loops in lines 40, 41 and 43. Theontrol the
third bases X and Y position and its orientation in the XY plan&wo transformations are used to
place the base. The first step of the placement process is in line 44 wheab theiltin set-
mol_from_xyz() is used to restore the original (untransformed) coordinates of the base. The call to
newtransform() in line 45 creates a transformation matrix that will point the third base so that its
hydrogen bonding sites are aimed in the pesiX drection. A second transformation matrix created
on line 47 is used to me the properly oriented third base to a point on the search area. The call to
setxyz_from_mol() extracts the coordinates of this conformation iya andmme() computes
and returns its energy.

The remainder of the loop determines if this is either the hestlbenergy or the best emgr
for this grid point. Lines 53-57 compute the best energy at this point and lines 58-64 compute the best
overall enegy. The complexity arises from thadt that the energy returned bhyme() can be an
float value. Thus it is not possible to to pick a value that is guaranteed to be higheryhauan
returned during the search. The solution is to use @hevrom the first iteration of the loop as the
value to test against. The dwariablesmrz andbrz are used to indicate the very first iteration and
the first iteration of the rz loop. The gray rectangle of Figure @slioe vacuum energy of the best
AU:A triad found when the origin of the X’ Y’ &s are at that point on the rectandarker grays
are lower energies. Figure 3 shows the Bés® found.

2.11.4. Assemblinghe Triads into Dimers.

Once the minimized base triadsvhaeen created, tyemust be assembled into trigkes. Since
these triplaes ae believed to be ntermediates in homologous recombination, their structure should be
nearly sequence independent. This means thaictrebe assembled by applying the same set of heli-
cal parameters to each optimized triadweeer, sevaal things still need to be determined. These are
the location of the helical axis and just what helical parameters are to be applied. This code assumes
that the three backbone strands are roughly on thacsuof a cylinder whose axis is the global helical
axis. In particular the helical axis is the center of the circle defined by theGQhteatoms in each
triad. While the four circles defined by the four minimized triads are xaatly the same, their radii
are within XA of each other with the XY:X triad having the largest offset &f Yhe code maés two
additional assumptions. The sugar rings are all in the C2’-endo conformation and the triads are not
inclined with respect to the helical axis. The program that createsvaodtes the dimers is so
below. A detailed explanation of the program follows the listing.

10/17/06

Generalvearview
URA // /
. .W
6.5 — vk ¢
ADE | X
45 — |
i s

ADE

Figure 3. Minimum energy AUA triad and Potential Energy Surfa

© oo ~NO UL, WNPRE

el =
(N)

12
13
14
15
16
17
18
19

// Program 6 - Assemble triads into dimers
molecule gettriad(string mname)

{

molecule m;
point pl, P2, p3, pc;
matrix mat;

if(mname =="a"){
m = getpdb("ata.triad.min.pdb");
setpoint(m, "A:ADE:C1™, p1);
setpoint(m, "B:THY:C1"™, p2);
setpoint(m, "C:ADE:C1™, p3);
lelse if(mname =="c"){
m = getpdb("cgc.triad.min.pdb");
setpoint(m, "A:CYT.C1™, pl);
setpoint(m, "B:GUA:C1"™, p2);
setpoint(m, "C:CYT:C1"™, p3);
lelse if(mname =="g"){
m = getpdb("gcg.triad.min.pdb");

10/17/06

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

3

Generalvearview

setpoint(m, "A:GUA:C1™, p1);
setpoint(m, "B:CYT:C1™, p2);
setpoint(m, "C:GUA:C1™, p3);
}else if(mname =="t" }{
m = getpdb("tat.triad.min.pdb");
setpoint(m, "A:THY:C1™, p1);
setpoint(m, "B:ADE:C1™, p2);
setpoint(m, "C:THY:C1™, p3);
}
circle(p1, p2, p3, pc);
mat = newtransform(-pc.x, -pc.y, -pc.z, 0.0, 0.0, 0.0);
transformmol(mat, m, NULL);
setreskind(m, NULL, "DNA");
return(m);

int mk_dimer(string ti, string tj)

{

molecule mi, mj;
matrix mat;

int sid;

float ri, tw;

string ifname, sfname, mfname;
file idx;

int natoms;

float dgrad, fret;
float box[31];
float xyz[1000 J;
float fxyz[1000 J;
float energy;

sid = 0;

mi = gettriad(ti);

mj = gettriad(tj);

mergestr(mi, "A", "3™, mj, "A", "5);
mergestr(mi, "B", "5™, mj, "B", "3");
mergestr(mi, "C", "3™, mj, "C", "5™);
connectres(mi, "A", 1, "O3™, 2, "P");
connectres(mi, "B", 1, "O3™, 2, "P");
connectres(mi, "C", 1, "O3™, 2, "P");

putpdb("temp.pdb", mi);
mi = getpdb_prm("temp.pdf", "leaprc.ffo4", ", 0);

ifname = sprintf("%s%s3.idx", ti, tj);
idx = fopen(ifname, "w");

42

10/17/06

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

Generalvearview

for(ri=3.2;ri<=4.4;ri=ri+.2)
for(tw = 25; tw <= 45; tw =tw + 5){

sid = sid + 1;
fprintf(idx, "%3d %5.1f %5.1f", sid, ri, tw);

mi = gettriad(ti);
mj = gettriad(tj);

mat = newtransform(0.0, 0.0, ri, 0.0, 0.0, tw);
transformmol(mat, mj, NULL);

mergestr(mi, "A", "3™, mj, "A", "5);
mergestr(mi, "B", "5™, mj, "B", "3");
mergestr(mi, "C", "3™, mj, "C", "5™);
connectres(mi, "A", 1, "O3™, 2, "P");
connectres(mi, "B", 1, "O3™, 2, "P");
connectres(mi, "C", 1, "O3™, 2, "P");

sfname = sprintf("%s%s3.%03d.pdb", ti, tj, sid);
putpdb(sfname, mi); /[starting coords

natoms = getmolyz(mi, NULL, xyz);
mme_init(mi, NULL, "::Z2ZZ", xyz, NULL);

dgrad = 3*natoms*0.001;
conjgrad(xyz, 3*natoms, fret, mme, dgrad, 10., 100);
energy = mme(xyz, fxyz, 1);

setmol_from_xyz(mi, NULL, xyz);
mfname = sprintf("%s%s3.%03d.min.pdb", ti, tj, sid);
putpdb(mfname, mi); /I minimized coords

}
}
fclose(idx);
¥
inti, j;
string i, tj;

for(i=1;i<=4;i=zi+ 1)
for(j=1;j<=4;j=j+ 1)
ti = substr("acgt", i, 1);
tj = substr("acgt", j, 1);
mk_dimer(ti, tj);

43

10/17/06 Generalvearview 44

Program 6 assembles, minimizes and writes the final energiesawfilg bf dimers for each of
the 16 pairs of optimized triads. The program is loagstraightforward. It is @anized into tvo sub-
routines followed by a main program. The first subrougjetriad() is defined in lines 2-34, the
second subroutinenk_dimer() in lines 36-101 and the main program in lines 103-111. Vel
organization is that the main program controls the sequence of the dimers beginnidg\aid con-
tinuing with AC AG ... and on up tal'T. Each time it selects the sequence of the dintesalls
mk_dimer() to explore the family of structures defined by variation in the rise and twist.

mk_dimer() in turn callsgettriad() to fetch and orient the specified base triples.
The functiongettriad() (lines 2-34) taks a string with one of the foualues"a" , "c" ,
"g" or"t" . Theif -tree in lines 8-28 uses this string to select the coordinates of the corresponding

optimized triad. Thdf -tree sets the value of the three poipls p2 andp3 that will be used to

define the circle whose center will intersect the global helical axis. Once these points are defined, the
nab builtin circle() (line 29) returns the center of the circleythiefine inpc. The huiltin cir-

cle() returns dl if the three points do not define a circle ar@lifithey do. In this case it is kiven

that the positions of the thréxl’ atoms are well belad, so the return value is ignored. The selected
triad is properly centered in lines 30-31. Each residue of the triad is set to be GDNAE via the

call to setreskind() in line 32 so that its atomic charges and forcefield potentials can be set cor
rectly to perform the minimization. Thewenolecule is returned as the functismalue in line 33.

The dimers are created by the functiok_dimers() that is defined in lines 36-101. The pro-
cess uses twdages. The molecule is first prepared for molecular mechanics in lines 53-63 and then
dimers are created and minimized in the tested loops in lines 67-99. The results of the minimiza-
tions are stored in a file whose name iswaerfrom the name of the triads in the dimé&bpr example,
the results for a\A would be in the filé'aa3.idx" . There is one file for each of the 16 dimers.
The file name is created in line 65 and opened for writing in line 66. It is closed just before the func-
tion returns in line 100. Each line of the file contains a number that identifies thesdmararheters
followed by its rise, twist and final (minimized) energy.

In order to perform molecular on a molecule tlad program must create a parameter structure
for it. This structure contains the topology of the molecule and parameters for the various terms of
forcefield--things lile bond lengths and angles, torsions, chirality and plandritis is done in lines
53-63. The particular dimer is created. The functettriad() is called twice to return the tw
properly centered triads in the molecubeisandmj. Next the three strands ofij are merged into the
three strands ahi to create a tripbe of length 2. Thé/A" and"B" strands form the Atson/Crick
pairs of the triplg and the"C" strand contains the strand that is parallel td'&e strand. The three’
calls toconnectres() create arD3-P bond between the newly added residue and xistirgg
residues in each of the three strands. After all this is done, the a@tgdb_prm() in line 63
builds the parameter structure, returnihgn failure and on success.

This section of code seems simple enough except for one thing—drigass in the dimer are
obviously directly on top of each othafoweve, this is not a problem becausgetpdb_prm()
ignores the moleculs’mordinates. Instead it uses the moleautesidue names to get each residue’
internal coordinates and other information from a library which it uses to up the parameter and topol-
ogy structure required by the minimization routines.

The dimers are built and minimized in theotwested loops in lines 69-104. The outer loop
varies the rise from 3.240 4.4Aby 0.2Aand the inner loop varies the twist from 25° to 45° in steps
of 5° creating 35 different starting dimers. Tharigble sid is a number that identifies each
(rise twist) pair It is inserted into the file names of the starting coordinates (lines 85-86jnanid
mized coordinates (lines 96-97) to mdkeasy to identify them.

10/17/06 Generalvearview 45

Each dimer is created in lines 72-83. The fecified triads are returned by the callgét-
triad() as the molecule’'mi andmj. Next the triad inmj is transformed to ge it the current rise
and twist with respect to the triadnm . The transformed triad imj is merged intoni and bonded to
mi. These starting coordinates are written to a file whose name contains both the dimer sequence and
sid . For example, the first dimer fégtAwould be"aa3.01.pdb" , theO1 indicating that this dimer
used a rise of 3.2And a twist of 25°.

The minimization is performed in lines 88-95. The calsétxyz_from_mol() extracts the
current atom positions ahi into the arrayxyz . The coordinates are passediime_init() which
initializes the molecular mechanics system. The actual minimization is done with the aaii-to
grad() which performsl00 cycles of conjugte gradient minimization, printing the resulerg 10
cycles. The final energy is written to the fitlx and the molecule’aiginal coordinates are updated
with the minimized coordinates by the callgetmol_from_xyz() . Once all dimers hze been
made for this sequence the loops terminate. The last thing dank laimer() before it returns to
the main program is to close the file containing the energy results for this family of dimer.

The very simple main program folle mk_dimer() . It consists of tw nested loops that pro-
duce the pairs of strings(’ ,"a"), ("a" ,'c"),....('t" ,"t") callingmk_dimer() for each pair.

10/17/06 MB Language Reference 46

3. NAB Language Reference.

3.1. Introduction.

nab is a computer language used to create, modify and describe models of macromolecules,
especially those of unusual nucleic acids. The following sectiongpra complete description of the
nab language. The discussionges with its lexical elements, continues with sectionsxpressions,
statements and user defined functions and concludes with an explanation ofrets bfiltin func-
tions. Wwo gopendices contain a more detailed and formal description oftlwalland syntactic ele-
ments of the language including the acteal andyacc input used to create the compil@wo ather
appendices descrilv@b’s internal data structures and the C code generated to support soalesof
higher level operations.

3.2. LanguageElements.

An nab program is composed of\sal basic lexical elements: identifiers, reserwords, liter
als, operators and special characters. These are discussed in the following sections.

3.2.1. Identifiers.
An identifier is a sequence of letters, digits and underscoggsnireg with a letterUpper and
lower case letters are distinct. Identifiers are limited to 255 characters in length. The underscore () is
a letter Identifiers beginning with underscore must be used carefully asndne conflict with operat-
ing system names am@db created temporaries. Here are sorab identifiers.

mol i3 twist TWIST Watson_Crick_Base_ Pair

3.2.2. Resered Words.

Certain identifiers are reserved words, special symbols usedtbyo denote control flo and
program structure. Here are thab reserved words:

allocate assert atom bounds break
continue deallocate debug delete dynamic
else file for float hashed
if in int matrix molecule
point residue return string while

3.2.3. Literals.

Literals are self defining terms used to introduce constant valuepressionsnab provides
three types of literals: integers, floats and character strings. Integer literals are sequences of one or
more decimal digits. Float literals are sequences of decimal digits that include a decimal point and/or
are followed by an exponent. An exponent is the letter E followed by an optionat or - followed
by one to three decimal digits. The exponent is interpreted as “times 10 to the pexgrwhere
exXp is the number following the or E. All numeric literals are base 10. Here are some integer and
float literals:

1 3.14159 5 234 3.0e7 1E-7

10/17/06 MB Language Reference 47

String literals are sequences of characters enclosed in double dupte& double quote is
placed into a string literal by preceding it with a backsl&ghA backslash is inserted into a string by
preceding it with a backslash. Strings of zero length are permitted.

" "a string" "string with a\ "string with a \\"

Non-printing characters are inserted into strings via escape sequences: one to three charagters follo
ing a backslash. Here are thab string escapes and their meanings:

\a Bell (a for audible alarm).

\b Back space.

\f Form feed (N&v page).

\n New line.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\" Literal double quote.

\\ Literal backslash.

\ooo character with valueoo whereooo is 1 to 3 octal digitsQ-7).
\xhh character with valubh wherehh is 1 or 2 h& digits (0-9 ,a-f ,A-F).

Here are some strings with escapes:

"Molecule\tResidue\tAtom\n" Two tabs and a newline.

"\252Real quotes\272" Octal \alues,\252 , the left dou-
ble quote* and\272 the right
double quotég .

3.2.4. Operators.

nab uses seeral additional 1 or 2 character symbols as operators. Operators combine literals
and identifiers into expressions.

10/17/06 MB Language Reference 48

Operator Meaning Precedence Associates
() Expression grouping 9

[] Array indexing 9

. Select attrinte 8

Unary - Negation 8 Right to left
! Not 8

" Cross product 7 Left to right
@ Dot product 6

* Multiplication 6 Left to right
/ Division 6 Left to right
% Modulus 6 Left to right
+ Addition, concatenation 5 Left to right
Binary - Subtraction 5 Left to right
< Less than 4

<= Less than or equal to 4

== Equal 4

I= Not equal 4

>= Greater than or equal to 4

> Greater than 4

= Match 4

I~ Doesnt match 4

in Member of hashed ar 4

ray, or atom in a
molecule

&& And 3

Il Or 2

= Assignment 1 Right to left

3.2.5. SpecialCharacters.

nab uses braceq)() to group statements into compound statements and statements and declara-
tions into function bodies. The semicolan) (s used to terminate statements. The commas¢pa-
rates items in parameter lists and declarations. The stpusdd in column 1 designates a preproces-
sor directve, which invokes the standard C preprocessor to provide constants, macros and file inclu-
sion. A# in ary other column, gcept in a comment or a literal string is an erfero consecutie for-
ward slashes/{) indicate that the rest of the line is a comment which is ignored. All other characters
except white space (spaces, tabsylires and formfeeds) are itjd except in literal strings and com-
ments.

3.3. Higherlevel constructs.

3.3.1. \ariables.

A variable is a namegn to a part of memory that is used to hold dataeBwnab variable has
type which determines hothe computer interprets theanables contents.nab provides 10 data
types. Thg are the numeric typemt andfloat which are translated into the underlying C com-

10/17/06 MB Language Reference 49

piler'sint anddouble respectiely.* Thestring type is used to hold null (zero byte) terminated
(C) character stringsThefile type is used to access files (eglént to C5 FILE *). Thereare

three types—atom, residue andmolecule for creating and wrking with molecules. Thpoint

type holds thredoat values which can represent the X, Y and Z coordinates of a point or the com-
ponents of a 3ector The matrix type holds 1€loat vaues in a 44 matrix and thebounds

type is used to hold distance bounds and other information for use in distance geometry calculations.

nab string \ariables are mapped into cbar * variables which are allocated as needed and
freed when possible. Maver, dl of this is invisible at thenab level wherestring s ae atomic
objects. Theatom, residue , molecule andbounds types become pointers to the appropriate C
struct s.point andmatrix are implemented doat [3] andfloat [4][4] respectiely.
Again thenab compiler automatically generates all the C code required to makes these types appear
as atomic objects.

Every nab variable must be declared. All declarations for functions amiables in the main
block must precede the firsteeutable statement of that block. Also all declarations in a user defined
nab function must precede the firsteeutable statement of that function. Aab variable declaration
begins with the reserved word that specifies thgables type folloved by a comma separated list of
identifiers which become variables of that type. Each declaration ends with a semicolon.

inti, i
matrix mat;
point origin;

Six nab types—string , file , atom, residue , molecule andbounds use the predefined
identifier NULL to indicate a nonxéstent object of these typasab builtin functions returning objects
of these types returNULL to indicate that the object could not be createdb considers aNULL
value to be &lse. Theemptynab string™ is notequal toNULL

3.3.2. Attributes.

Four nab types—atom, residue , molecule andpoint —have dtributes which are ele-
ments of their internal structure directly accessible antte level. Attributes are accessed via the
select operator. () which takes a variable as its left hand operand and an attribute name (an identifier)
as its right. The general form is

var. attr

Most attritutes behae exactly like ardinary variables of the same typEowever, some attributes are

read only They are not permitted to appear as the left hand side of an assignment. When a read only
attribute is passed to amb function, it is copied into temporary variable which in turn is passed to
the function. Read only attributes are not permitted to appear as destiraiadies inscanf()

*This translation ofloat to double is nev at version 3.0.Previous versions of the code used (single-precisiloat variables
in both C and KB programs. Carrying out manipulations in double-precision generally helps numerical sedgétially for distance ge-
ometry and molecular mechanics calculations. The earlier behavior can be re-obtained by chadgfrepttidneader file.

10/17/06 MB Language Reference 50

parameter lists. Attribute names arepk separate from variable and function names and since
attributes can only appear to the right of select there is no conflict between variable antk attrib
names. For example fis apoint , then

x /1 t he point variable x
x.x// X coordinate of x
X Error!

Here is the complete list ofab attributes.

Atom attrib utes Type Write? Meaning

atomname string Yes Ordinarily talen from columns 13-16 of an input pdb
file, or from a residue librarySpaces are renved.

atomnum int No The number of the atom startinglafor eachstrand
in the molecule.

tatomnum int No The total number of the atom starting &t Unlike
atomnum, tatomnum does not restart 4t for each
strand.

fullname string No The fully qualified atom name, having the form

strandnum resnum atomname

resid string Yes Theresid of the residue containing this atom; see the
Residue attributestable.

resname string Yes The name of the residue containing this atom.

resnum int No The number of the residue containing the atpm.
resnum starts afl for eachstrand.

tresnum int No Thetotal number of the residue containing this atom

starting atl. Unlike resnum , tresnum does not
restart atl for each strand.

strandname string Yes The name of the strand containing this atom.
strandnum int No Thenumber of the strand containing this atom.
pos point Yes point variable giving the atons’ position.

X f loat Yes The atoms$ X coordinate.

y f loat Yes The atom$ Y coordinate.

z f loat Yes The atoms$ Z wordinate.

charge float Yes

radius float Yes

intl int Yes User settable int value.

floatl float Yes User settable float value.

10/17/06 MB Language Reference 51

Residue attributes Type Write? Meaning
resid string Yes A 6-character string, ordinarily taken from columns
22-27 of a PDB file. It can be re-set to something
else, but should akys be either empty or exactly|6
characters long, since this string is used (if it is |not
empty) byputpdhb

resname string Yes Three-character identifier.

resnum int No The number of the residue starting Jat resnum
starts afl for eachstrand.

tresnum int No Thetotal number of the residue startingJatUnlike

resnumtresnum does not restart for each strand.
for eachstrand.

strandname string Yes The name of the strand containing this residue.

strandnum int No Thenumber of the strand containing this residue.

Molecule attributes Type Write? Meaning

natoms int No Thetotal number of atoms in the molecule.

nresidues int No Thetotal number of residues in the molecule.

nstrands int No Thetotal number of strands in the molecule.
3.3.3. Arrays.

nab supports tw kinds of arrays—ordinary arrays where the selector is a comma separated list
of integer expressions and assouiiir “hashed” arrays where the selector is a character string. The
set of character strings that is associated with data in a hashed array is caflgsl #srlay elements
may be of ap nab type. All the dimensions of an ordinary array are kedefrom 1 to N, whereN,

is the size of thel” dimension. Norparameter array declarations are similar to scalar declarations
except the variable name is folled by either a comma separated list of integer constants surrounded
by square bracket§| () for ordinary arrays or the reservedrdthashed in square brackets for asso-
ciative arays. Associatie arays hae ro predefined size.

float energy| 20], surface[13,13];
int attr[dynamic, dynamic |;
molecule structs[hashed];

The syntax for multi-dimensional arraysdilthat for Fortran, not C.The nab2ccompiler lin-
earizes all indereferences, and the underlying C code sees only single-dimension arrays. Arrays are
stored in "column-order", so that the most-rapidiyying inde is the first index, as indftran. Multi-
dimensionaint or float arrays created inabcan generally be passed torffan routinesxgect-
ing the analogous construct.

10/17/06 MB Language Reference 52

Dynamic arrays are not allocated space upon program stauiiprebcreated and freed by the
allocate anddeallocate statements:

allocate attr| Ll

deallocate attr;

Herei andj must be integer expressions that may Vauated at run-time. It is an error (generally
fatal) to refer to the contents of such an array before it has been allocated or after it has been deallo-
cated.

3.3.4. Expressions.

Expressions use operators to combine variables, constants and function values vatues.
nab uses standard algebraic notatiarlf*c , etc) for expressions. Operatoveéith higher precedence
are @aluated first. Paentheses are used to alter thdwation order The complete list ohab opera-
tors with precedencevels and associativity is listed und@perators.

nab permits mixed mode arithmetic in that andfloat data may be freely combined in
expressions as long as the operation(s) are defined. The only exceptions are that the modulus operator
(% does not accepgtoat operands, and that subscripts to ordinary arrays must lgeintdued. In
all other cases except parameter passing and assignment, winén andfloat are combined by
an operatqrtheint is corverted tofloat then the operation isxecuted. In the case of parameter
passingnab requires (ot does not check) that actual parameters passed to functim$basame
type as the corresponding formal parameters. As for assignmahe(right hand side is coeerted to
the type of the left hand side (as long as both are numeric) and then assighddeats assignment
like any ather binary operator which permits multiple assignmeatb£c) as well as “embedded”
assignments like:

if(mol = newmolecule()) ...

nab relational operators are strictly binaAny two dbjects can be compared provided that both
are numeric, both arstring or both are the same type. Comparisons for objects otheiirthan
float andstring are limited to tests for equalit¢omparisons betwedile , atom, residue
molecule andbounds objects test for “pointer” equalityneaning that if the pointers are the same,
the objects are same and thus equal, but if the pointers &eenlif no inference about the actual
objects can be made. The most common comparison on objects of these typasidNbig L to see
if the object vas correctly created. Note thatre considerdNULLto be false the followingxpres-
sions are equélent.

if(var == NULL)... isthe same as if(! wvar)..
if(var !=NULL)... isthe same as if(var)...

10/17/06 MB Language Reference 53

The Boolean operato&& and|| evduate only enough of an expression to determine its truth
vaue. nab considers thealueO to be false anény non-zero value to be truenab supports direct
assignment and concatenation of string values. Thetnfixused foistring concatenation.

nab provides seeral infix vector operations fopoint vaues. Thg can be assigned and
point vaued functions are permittedwo point values can be added or subtractechoint can
be multiplied or divided by #oat or anint . The unary minus can be applied tp@nt which
has the same effect as multiplying it bY. Finally, the at signh @ is used to form the dot product of
two point s and the circumfle (") is used to form their cross product.

3.3.5. Regularexpressions.

The =" and!” operators (match and not matchyéatrings on the left-hand-sides ansyular
expressionstrings on their right-hand-sides. These regulqressions are interpreted according to
standard corentions drawn from the UNIX libraries.

3.3.6. AtomExpressions.

An atom epression is a character string that contains one or more patterns that match a set of
atom names in a molecule. Atom expressions contain three substrings separated by koldrg (
represent the strand, residue and atom parts of the atom expression. Each subexpression consists of a
comma () separated list of patterns, or for the residue part, patterns and/or number raagpeal
atom epressions may be placed in a single character string by separating them with the vertical bar

(1)

Paterns in atomgressions are similar to Unix shell expressions. Each pattern is a sequence of
1 or more single character patterns and/or sta)ys Thestar matchegeroor more occurrences ahy
single characterEach part of an atom expression is composed of a comma separated list of limited
regular expressions, or in the case of the residue part, limigedareexpressions and/or ranges. A
rangeis a number or a pair of numbers separated by a dagtgubar expressionis a sequence of
ordinary characters and “metacharacters”. Ordinary characters represent tegmsdiile the
metacharacters are operators used to construct more complicated patterns from the ordinary characters.
All characters ecept?, *,[,],-,, (comma),: and| are ordinary characterfRegular epressions
and the strings tlyematch follov these rules.

10/17/06 MB Language Reference 54

aexpr matches

X An ordinary character matches itself.

? A question mark matchesysingle character.

* A star matches anrun of zero of more characters. The pattern *
matches anything.

[xyZ A character class. It matches a single occurrence yothlaracter be;
tween the [and the].

[C xy3 A “neggaed” character class. It matches a single occurrenceyafhan-

acter notbetween the[” and the]. Character ranges; [, are per
mitted in both types of character class. This is a shorthand for all |char
acters beginning withf up to and including I. Useful ranges ar@-9
for all the digits and a-zA-Z for all the letters.

- The dash is used to delimit ranges in characters classes and to separate
numbers in residue ranges.

$ The dollar sign is used in a residue range to represent the “last” residue
without having to knw its number.

, The comma separates regular expressions and/or ranges in arxatom e
pression part.

: The colon separates the parts of an atom expression.

| The vertical bar separates atom expressions in the same character
string.

\ The backslash is used as an escapg.oharacter including metacha
acters following a backslash matches itself.

=

Atom expressions match tlemtire name. The patter@, matches onlyC, not CA HG etc. To
match ag name that begins wit@ useC*; to match ay name that ends witl, use*C; to match ay
name containing €, use*C* . A table of examples waswgn in chapter 2.

3.3.7. Format Expressions.

A format expression is a special character string that is used to direct vhesiconbetween the
computers internal data representations and their charactewvabgpuis. nab uses the underlying C
compiler’s printf() /scanf() system to preide formatted 1/0O. This section provides a short
introduction to this systemk-or the complete description, consultyatandard C reference. Note that
sincenab supports fewer types than its underlying C compitmatted I/O options pertaining to the
data subtypedh(l ,L) are not applicable toab format expressions.

An input format string is a mixture of ordinary charactepacesand format descriptorsAn
output format string is mixture of ordinary characters including spaces and format descjaicins.
format descriptor begins with a percent sighfollowed by seeral optional characters describing the
format and ends with single character that specifies the type of the data towdseedorHereare the
most common format descriptors. The represent optional characters describedviaelo

10/17/06 MB Language Reference 55

% ...C corvert a character
% ...d convert an integer
% ... If corvert a float

% ...s convert a string
%% corvert a literal%

Input and output format descriptors and format expressions resemble each other ang in man
cases the same format expression can be used for both input and outrerHbe two types of for
mat descriptors @ dfferent options and their actions are sufficiently distinct to consider in some
detail. GenerallyC based formatted output is more useful than C based formatted input.

When an input format expression iseeuted, it is scanned at most once from left to right. If the
current format expression character is an ordinary character (anything but spécé orust match
the current character in the input stream. liyth@atch then both the current character of the format
expression and current character of the stream arenadd one character to the right. Ifytldon’t
match, the scan ends. If the current format expression character is a space or a run of spaces and if the
current input stream is one or more “white space” characters (spaceewding, then both the fer
mat and input stream are advanced to th& men-white space charactdf the input format is one or
more spaces but the current character of the input stream is non-blank, then only thexfmesaion
is advanced to the next non-blank charadtéhe current format character is a percent sign, the format
descriptor is used to ceert the nat “field” in the input stream. A field is a sequence of non-blank
characters surrounded by white space or tiggnberg or end of the stream. This means that a format
descriptor willskipwhite space including newlines to find non blank characters witpaven ifitis
the first element of the format expression. This implicit scanning is what limits the ability of C based
formatted input to read fixed format data that contaigsspaces.

Note thatif is used to input a AB floatvariable, rather than thie agument that would be used
in C. This is becaustoatin NAB is corverted todoublein the output C code (sakefreal.hif you
want to change this betiar.) Ideally, the NAB compiler should parse the format string, anderiad
appropriate substitutions, but this is not (yet) doreBNranslates the format string directly into the C
code, so that the NAB code must also generallyfusas a format descriptor for floating poiraiwves.

nab input format descriptors ke wo gptions, a field width, and an assignment suppression
indicator The field width is an integer which specifiesshmuch of currentfield and not the input
stream is to be ceerted. Conersion bgins with the first character of the field and stops when the
correct number of charactersvieabeen comerted or white space is encounteredl.star (*) option
indicates that the field is to be emrted, but the result of the comsion is not stored. This can be
used to skip unwanted items in a data stream. The order ofdhaptions does not matter.

The «ecution of an output format expression is sahat different. It is scanned once from left
to right. If the current character is not a percent sign, it placed on the output stream. Thus spaces ha
no special significance in formatted output. When the scan encounters a percent sign it replaces the
entire format descriptor with the properly formatted value of the corresponding output expression.

Each output format descriptor has four optional attee—width, alignment, padding and preci-
sion. Thewidth is theminimumnumber of characters the data is to ogcigqr output. Padding con-
trols hawv the field will be filled if the number of characters required for the data is less than the field
width. Alignmentspecifies whether the data is to start in the first character of the field (left aligned) or
end in the last (right aligned)rinally precision, which applies only to string and floatveosions
controls hav much of the string is be ceerted or hav mary digits should follav the decimal point.

10/17/06 MB Language Reference 56

Output field attributes are specified by optional characters between the initial percent sign and
the final data type characté&lignment is first, with left alignment specified by a minus sign Any
other character after the percent sign indicates right alignni®adding is specified ne¢. Padding
depends on both the alignment and the type of the data beimgitedn Charactecorversions ¢9
are alays filled with spaces, irgardless of their alignment. Left aligned e@rsions are also abys
filled with spaces.However, right aligned string and numeric a@nsions can use @ to indicate that
left fill should be zeroes instead of spaces. In addition numerieasions can also specify an
optional + to indicate that non-g&ive rumbers should be preceded by a plus sign. Theuttefction
for numeric cowersions is that ngetive rumbers are preceded by a minus, and other numbezsha
sign. If bothO and+ are specified, their order does not matter.

Output field width and precision are last and are specified by one imtegers or stars*() sep-
arated by a period §. The first number (or star) is the field width, the second is its precision. If the
precision is not specified, a deft precision is chosen based on thevexsion type. For floatsf), it
is six decimal places and for strings it is the entire strihgecision is not applicable to character or
integer cowersions and is ignored if specified. Precision may be specified without the field width by
use of single integer (or star) preceded by a perfgghin, the action is caersion type dependent.

For strings @69, the action is to print the first characters of the string or the entire string, whiehe
is shorter For floats @of), it will print N decimal places but will extend the field to wivatesize if
required to print the whole number part of the float. The use of ther3tas @n atput width or pre-
cision indicates that the width or precision is specified as the next argument in ¥Besioanlist
which allows for runtime widths and precisions.

Output Format Options

Alignment.

- left justified.

default rightjustified.

Palding.

0 %d %f, %sonly, left fill with zeros, right fill with spaces.

+ %, %f only, precede non-rggtive rumbers with ar.

default leftand right fill with spaces.

Width & Precision.

w minimumfield width of W. W is either an integer or’awhere the staf
indicates that the width is the next argument in the parameter list.

W.P minimumfield width of W, with a precision of. W,P are integers of

stars, where stars indicate thatyttaee to be set from the appropriate
arguments in the parameter list. Precision is ignoreeébfoand%d
P %s print the firstP characters of the string or the entire string whiehe
er is shorter%f, print P decimal places in a field wide enough to hpld
the integer and fractional parts of the numBBgcand%d use whate-
er width is required. Agin P is either an integer or a star where the star
indicates that it is to be tak from the next expression in the parameter
list.
default %c¢ %d %s use whateer width is required to exactly hold the data.
%f, use a precision of 6 and wheagewidth is required to hold the datg.

10/17/06 MB Language Reference 57

3.4. Statements.

nab statements describe the action tiad program is to perform.The expression statement
evduates expressions. Tlife statement provides a twvay branch. Thevhile andfor statements
provide loops. Thébreak statement is used to “short circuit” axitethese loops.The continue
statement advanced@ loop to its next iterationThereturn statement assigns a functiswalue
and returns control to the call&inally a list of statements can be enclosed in brageystp create a
compound statement.

3.4.1. Expression Statement.

An expression statement is an expression followed by a semicolaaluates the xgpression.
Many expression statements include an assignment operator anadlitation will update the alues
of those variables on the left hand side of the assignment opdiaése kinds of expression state-
ments are usually called “assignment statements” in other languages. Xptiess®n statements con-
sist of a single function call with its result ignored. These statemergsttakplace of “call state-
ments” in other languages. Note that apression statement can contaimy expression, een ones
that hae ro lasting effect.

mref = getpdb("5p21.pdb"); /["assignment” stmt
m = getpdb("6g21.pdb");
superimpose(m,"::CA",mref,"::CA"); // "call" stmt

0; 1 expression stmt.

3.4.2. DeletéStatement.
nab provides thalelete statement to renve dements ohashed arrays. Theyntax is

delete h_arrayf str |;

whereh_arrayis ahashed array andstris astring valued expression. If the specified element is
in h_arrayit is remaoved; if not, the statement has no effect.

3.4.3. If Statement.

Theif statement is used to choose betweem dptions based on the value of tifie expres-
sion. There are tavkinds ofif statements—the simpié and theif-else . The simpleif con-
tains an expression and a statement. If the expression is tyuedg@zero value), the statement is
executed. If the expression is fald®)(the statement is skipped.

if(exr)
true_stmg

10/17/06 MB Language Reference 58

The if-else statement places twgatements under control of the . One is e&ecuted if the
expression is true, the other if it is false.

if(exr)
true_stmg
else
false_stmt

The single statement in a simpfe or the two datements in aiif-else can be ay nab state-

ment(s) including othdf statements. This can introduce ambiguity as to wifiicis associated with
anelse :

if(expr_1)
if(expr_2)
stmt_1
else
stmt_2

Whichif has theelse , theif on the first line or thd on the second? The rule is thatedse is
associated with the nearest unpaiifed In this example, thelse is associated with thié on the
second line. @ associate theelse with theif on line 1 would require hiding the inngf inside
braces:

if(expr_1)
{
if(exr_2)
stmt_1
}
else
stmt_2

The braces camrt the inneiif into a compound statement removing the ambiguity.

3.4.4. WhileStatement.

Thewhile statement is used taecute the statement under its control as long as thetilie

expression is true (non-zero). A compound statement is required to place more than one statement
under thewvhile statemens control.

while(expr)
stmt

10/17/06 MB Language Reference 59

while(expr)

{
stmt_1
stmt_2
stmt_N

}

3.4.5. For Statement.

Thefor statement is a loop statement that allows the user to include initialization and an incre-
ment as well as a loop condition in the loop headée single statement under the control offtire
statement is»ecuted as long as the condition is true (non-zero). A compound statement is required to
place more than one statement under controffof a The general form of thior statement is

for(exr 1, exr 2, exr 3)
stmt

which behaes like

exr_1;
while(exr_2)
{
stmt
expr_3;
}

expr_3is generally an expression that computes the next value of the loop ingeosr &lnof expr_1,
expr_2 or expr_3 can be omitted. An omitteebpr_2 is considered to be true, thuwigg rise to an
“infinite” loop. Here are somfor loops.

for(i=1;i<=10;i=i+1)

printf("%3d\n", i); /I print 1 to 10
for(; ;) /I "infinite" loop
{
getcmd(cmd); /I Exit better be in
docmd(cmd); /I getcemd() or docmd().
}

nab also includes a special kind fofr statement that is used to rangerall the entries of a hashed

10/17/06 MB Language Reference 60

array or all the atoms of a molecule. The forms are

/I hashed version
for(str in h_array)
stmt

/I molecule version
for(ain mol)
stmt

In the first code fragmensir is string andh_arrayis a hashed arrafhis loop setstr to each ky a

string associated with data m array. Keys ae returned in increasing lexical orddn the second

code fragmena is an atom ananol is a molecule. This loop seésto each atom imol. The first

atom is the first atom in the first residue of the first strand. Once all the atoms in this reselue ha
been visited, it mees to he first atom of the next residue in the first strand. Once all atoms in all
residues in the first strand Jealeen visited, the process is repeated on the second and subsequent
strands in mol until all atoms & keen visited. The order of the strands of molecule is the order in
which the were created usingddstrand() . Residues in each strand are numbered from M. to

The order of the atoms in a residue is the order in which the atoms were listed in the reslib entry or
pdbfile that that residue dees from.

3.4.6. Break Statement.

Execution of abreak statement exits the immediately enclosiog or while loop. By plac-
ing thebreak under control of arf conditional exits can be creatdateak statements are only
permitted insidevhile orfor loops.

for(exr_ 1, exr 2, exr 3)
{

if(exr)
break; I "break" out of loop

3.4.7. ContinueStatement.

Execution of acontinue statement causes the immediately encloging loop to skip to its
next value. If the net value causes the loop control expression to be false, the logieid. econ-
tinue statements are permitted only insideile andfor loops.

for(expr_ 1, exr 2, exr 3)
{

10/17/06 MB Language Reference 61

if(exr)
continue; 1 "continue" with next value

3.4.8. Retun Statement.

Thereturn statement has twuses. It terminatesxecution of the current function returning
control to the point immediately follding the call and when followed by an optionapeession,
returns the value of the expression as the value of the function. A fusaiealtion also ends when
it “runs off the bottom”. When a functiorxecutes the last statement of its definition, it retunren éf
that statement is notraturn . The value of the function in such cases is undefined.

return expr; [| r eturn the value expr
return; 1 return, function value undefined.

3.4.9. CompoundStatement.

A compound statement is a list of statements enclosed in braces. Compound statements are
required when a loop or ah has to control more than one statement.yTdne also required to asso-
ciate anelse with anif other than the nearest unpaired one. Compound statements may include
other compound statements. Ueli€, nab compound statements are not blocks and may not include
declarations.

3.5. Functions.

A function is a named group of declarations and statements tlatigesl as a unit by using the
function’s rame in an xpression. Functions may include special variables called parameters that
enable the same function toork on different data. Alhab functions return a value which can be
ignored in the calling expression. Expression statements consisting of a single function call where the
return value is ignored resemble procedure call statements in other languages.

All parameters to user definedb functions are passed by referenddis means that eactab
parameter operates on the actual data that was passed to the function during the call. Changes made to
parameters during thexeution of the function will persist after the function returns. The oxtgp-
tion to this is if an ®pression is passed in as a parameter to a user dafbefiinction. It this case,
nab evduates the expression, stores igdue in a compiler created temporary variable and uses that
temporary variable as the actual paramdier example if a user were to pass in the constant 1 to an
nab function which in turned used it and then assigned it the value 6, the 6 would be stored in the
temporary location and the external 1 would be unchanged.

3.5.1. FunctionDefinitions.

An nab function definition begins with a header that describes the fundiiome tpe, the func-
tion name and the parameters iffalfi a function does not va parameters, an empty parameter list is
still required. Bllowing the header is a list of declarations and statements enclosed in braces. The
function’s declarations must precede all of its statements. A function can include zero or more

10/17/06 MB Language Reference 62

declarations and/or zero or more statements. The empty function—no declarations and no statements
is legd.

The function header begins with the reserveddaspecifying the type of the function. Alab
functions must be typed. Amab function can return a single value ofyamab type.nab functions
can not returmab arrays. Bllowing the type is an identifier which is the name of the functi®ach
parameter declaration begins with the parameter type followed by its rRerzaneter declarations
are enclosed in parentheses and separated by commas. If a function has no parameters, there is nothing
between the parentheses. Here is the general form of a function definition:

ftype fnamé ptypel parml. ..)
{

decls

stmts

3.5.2. FunctionDeclarations.

nab requires that\ery function be declared or made known to the compiler before it is used.
Unfortunately this is not possible if functions used in one source file are defined in other source files or
if two functions are mutually recuvel To solve these problenmab permits functions to be declared
as well as defined. A function declaration resembles the header of a function definitieaertdm
place of the function bodyhe declaration ends with a semicolon or a semicolon preceded by either
the word ¢ or the wordfortran indicating the external function is written in CEEDRTRANNstead
of nab.

ftype fnamé ptypel parml. ..) flang

3.6. Points and Vectors.

The nab type point is an object that holds thrdleat vaues. Theseralues can represent
the X, Y and Z coordinates of a point or the components afc8v The individual elements of a
point variable are accessed via attributes offise$ added to theaviable name. The thrgmint
attributes are'x" , "y" and"z" . Many nab builtin functions use, return or creapmint values.
When used in this contg the three attributes represent the psiX, Y and Z coordinates.nab
allows users to combine point values with numbers in expressions usieptional algebraic or infix
notation.nab does not support operations between numbergpaimi s where the number must be
corverted into a vector to perform the operation. For example,isfapoint then the gpressionp
+ 1. is an erroras hab does not kne how to expand the scalar 1. into a &ator The following ta-
ble containgiabpoint and vector operationp, q arepoint variables;sa rumeric expression.

10/17/06 MB Language Reference 63

Operator Example Precedence Explanation.

Unary - -p 8 Vector ngation, same asl * p

" p " q 7 Compute the cross or vector producpoefy.
@ pP@ q 6 Compute the scalar or dot productofg.
* sS*p 6 Multiply p by s, same ap * s

/ p /s 6 Dividep bys, s / p not allowed.

+ p +q 5 Vector addition

Binary - P -9 5 Vector subtraction

== p ==q 4 Test ifp andq equal.

I= p !=q 4 Test ifp andq are different.

= p=q 1 Set the value op tog.

3.7. String Functions.

nab provides the follaving awk-like gring functions. Unlile awk, the nab functions do not
have gtional parameters or builtin variables that control the actions ovesesults from these func-
tions. nabstring s ae indexed from 1 to N whereN is the number of characters in the string.

int length(string s);

int index(string s, string t);

int match(string s, string r, int rlength);
string substr(string s, int pos, int len);

int split(string s, string fields[], string fsep);
int sub(string r, string s, string t);

int gsub(string r, string s, string t);

length() returns the length of the strirgg Both ™ and NULL have lengthO. index()
returns the position of the left most occurrence of s. If t is notins, index() returnsO. match
returns the position of the longest leftmost substring tfat matches the regulaxgessionr . The
length of this substring is returnedriength . If no substring ofs matches , match() returnsO
andrlength is set to0. substr() extracts the substring of lengkhn from s beginning at posi-
tion pos. If len is greater than the rest of the stringjibaing atpos, return the substring fromos
to N whereN is the length of thetring . If pos is <1 or >N, return™ .

split() partitionss into fields separated bgep . These field strings are returned in the array
fields . The number of fields is returned as the functialue. The arrafields must be allocated
before split() is called and must be large enough to hold all the field strings. The action of
split() depends on the value fsep . If fsep is a string containing one or more blanks, the fields
of s are considered to be separatednys of white space. Also, leading and trailing white spacg in
do not indicate an empty initial or final fieldHowever, if fsep contains ap value but blank, then
fields are considered to be delimiteddigglecharacters fronfisep and initial and/or trailingsep
characters do represent initial and/or trailing fields with valué$ oNULL and the empty string’

10/17/06 MB Language Reference 64

have O fields. If boths andfsep are composed of only white space tlsealso had fields. Iffsep
is not white space arglconsists of nothing but characters frésep , s will have N + 1 fields of""
whereN is the number of charactersf

sub() replaces the leftmost longest substringtothat matches the regulaxmessionr .
gsub() replaces all nonwerlapping substrings of that match the regulaxpressionr with the
strings.

3.8. Math Functions.

nab provides the following builtin mathematical functions. Simab is intended for chemical
structure calculations whichvedys measure angles in degrees, tlguarent to the trig functions—
cos() ,sin() andtan() — and the return value of theverse trig functions—acos() , asin()
atan() andatan2() —are in degrees instead of radians ag #ne in other languages.

10/17/06

MB Language Reference 65

nab Builtin Mathematical Functions

Inverse Trig Functions.
float acos(float x);
float asin(float x);

float atan(float x);
float atan2(float y, float x);

Return cosi(x) in degees.
Return sin'(x) in degees.
Return tan’(x) in degees.
Return tan’(y / x) in degrees. Bykeeping x and y
separate, 90° can be returned without encounteri
zero dvide. Also,atan2 will return an angle in the

full range [-186, 18(7].

ng a

Trig Functions.

float cos(float x);
float sin(float x);
float tan(float x);

Return cos(x), where x is in degrees.
Return sin(x), where x is in degrees.
Return tan(x), where x is in degrees.

Conversion Functions.
float atof(string str);

int atoi(string str);

Interpret the next run of non blank characterstin
as afloat and return its value. Retuthon error.
Interpret the next run of non blank characterstin
as anint and return its value. Retuéhon error.

Other Functions.
float rand2(int iseed);

float gauss(float mean, float sd, int i);

float ceil(float x);
float cosh(float x);

float exp(float x);

float fabs(float x);

float floor(float x);

float fmod(float x, floaty);

float log(float x);
float log10(float x);

float pow(float x, floaty);
float sinh(float x);
float sqrt(float x);
float tanh(float x);

Return pseudo-random number in (0,If)iseed> 0,
it is ignored; (the true seed is stored internally in
routine). Ifiseed< O, its absolute value is used as

the
5 a

seed to reset the sequence, and the first value of the

new pseudo-random sequence is returned.
Return a pseudo-random number taken from a G

sian distrilution with the gren mean and standand

deviation. Thevaue of i is ignored, and is only
present for backward compatibilityf you wish to
reset the seed, call rand2() with ayaéve agument;

aus-

the rand2() and gauss() routines share a common

seed.

Returnixg

Return the hyperbolic cosine of x.
Return é&.

Return | x |.

Returnfxp

Return rthe remainder of x with respect to yr | < |
y |; the signs of r and y are the same.
Return the natural logarithm of x.
Return the base 10 logarithm of x.
Return X, x > 0.

Return the hyperbolic sine of x.
Return positie gquare root of x, x >= 0.
Return the hyperbolic tangent of x.

10/17/06 MB Language Reference 66

3.9. Systenfunctions.

int exit(inti);
int system(string cmd);

The functionexit() terminates the callingab program with return status. system() invokes a
subshell to xecute cmd. The subshell is alays /bin/sh . The return value ofystem() is the
return value of the subshell and not the commanxkeduted.

3.10. I/OFunctions.

nab uses the C I/O model. Instead of special /0 statemeals)/O is done via calls to special
builtin functions. These function calls V& the same syntax as ordinary function calls fome of
them hae dfferent semantics, in that theccept both aariable number of parameters and the param-
eters can be various typasb uses the underlying C compilgmprintf() /scanf() system to
perform I/O onint , float andstring objects. I/O orpoint is via theirfloatx ,y and z
attributesmolecule 1/0O is covered in the next section, whilgounds can be written usingump-
bounds() . Transformation matrices can be written usitgnpmatrix() , but there is currently no
builtin for reading them. The value of arabfile object may be written by treating as an gae
Input tofile variables is not defined.

3.10.1. Ordinary I/O Functions. nab provides these functions for streamRitLE * 1/O of
int ,float andstring objects.

int fclose(file f);

file fopen(string fname, string mode);
int unlink(string fname);

int printf(string fmt, ...);

int fprintf(file f, string fmt, ...);
string sprintf(string fmt, ...);

int scanf(string fmt, ...);

int fscanf(file f, string fmt, ...);

int sscanf(string str, string fmt, ...);
string getline(file f);

fclose() closes (disconnects) the file representefl dyreturnsO on success antll on fail-
ure. All opennab files are automatically closed when the program terminatesatdg snce the
number of open files is limited, it is a good idea to close open files wheartheo longer needed.
The system callinlink removes (deletes) the file.

fopen() attempts to open (prepare for use) the file nafnathe with modemode. It returns
a \alid nabfile on success, and NULL omifure. Codeshould thus check for a returalue of
NULL, and do the appropriate thing. (An alternatisafe_fopen() sends an error message to

10/17/06 MB Language Reference 67

stderr and exits ondilure; this is sometimes a cmmient alternatie t fopen() itself, fitting
with a general bias afab system functions to exit oraifure, rather than to return error codes that
must aWays be processed.) Here are the most common valuesdde and their meaningsFor
other values, consult grstandard C reference.

fopen() mode values.

" Open for reading. The fillname must exist and be readahle
by the user.
"w" Open for writing. If the file xists and is writable by the user

truncate it to zero length. If the file does neist and if the
directory in which it will &ist is writable by the usgthen cre-
ate it.

a" Open for appending. The file must exist and be writable by the
user.

The three functionprintf() , fprintf() andsprintf() are for formatted (ASCII) out-
put tostdout , the filef and astring . Strictly speaking,sprintf() does not perform output,
but is discussed here because it acts as if “writes” to a string. Each of these functions uses the format
string fmt to direct the coversion of the expressions that fallat in the parameter list. dfmat
strings and expressions are discudsauinat Expr essions The first format descriptor it is used
to corvert the first expression aftémt , the second descriptathe net expression etc. If there are
more &pressions than format descriptors, the extra expressions are mettednlf there are feer
expressions than format descriptors, the program will likely die when the function triegetb rean-
existent data.

The three functionscanf() , fscanf() andsscanf() are for formatted (ASCII) input
from stdin , the filef and the stringtr . Agan, sscanf() does not perform input but the function
behaes like it is “reading” fromstr . The action of these functions is similar to their output counter
parts in that the format expressiorfiint is used to direct the ceersion of characters in the input and
store the results in thexiables specified by the parameters folig fmt . Format descriptors ifmt
correspond to variables follang fmt , with the first descriptor corresponding to the filmtiable, etc.

If there are fewer descriptors than variables, thdraevariables are not assigned; if there are more
descriptors than variables, the program will moseljikdie due to a reference to a notistent
address.

There are tw very important differences betweaab formatted 1/0 and C formatted I/On C,
formatted input is assigned through pointers to the varialles)(In nab formatted 1/O, the com-
piler automatically supplies the addresses of the variables to be assigned The séemmtalifs
when astring object receies data during amab formatted I/Onabstring s ae allocated when
needed. Haever, in the case of gnkind of scanf() to astring or the implied (and hidden) writ-
ing to a string withsprintf() , the number of characters to be written to the string is unknown until
the string has been writtenab automatically allocates strings of length 256 to hold such data with
the idea that 256 is usually big enoughwéeer, there will be cases where it is not big enough and
this will cause the program to die or be@darangely as it will werwrite other data.

Also note that the default precision for floats mab is double precision (se&NAB-
HOME/src/defreal.h , since this could be changed, or may béeddnt on your system fFormats
for floats for thescanffunctions then need to be "%lf" rather than "%f".

The getline() function returns a string that has the next line fromffileThe end-of-line
character has been stripped off.

10/17/06 MB Language Reference 68

3.11. MoleculeCreation Functions.

Thenab molecule type has a comgland dynamic internal structureganized in a three el
hierarcly. A molecule contains zero or more named strands. Strand names are string<loduat-
ters xcept white space and can not exceed 255 characters in length. Each strand in a molecule must
have a wmique name. Strands in flifent molecules may tia the same name. A strand contains zero
or more residues. Residues in each strand are numbered .fidrere is no upper limit on the number
of residues a strand may contain. Residues mames, which need not be unique wéoer, the com-
bination ofstrand-nameres-numis unique for eery residue in a molecule. Finally residues contain
one or more atoms. Each atom name in a residue should be distinct, although this is neither required
nor checked byab. nab uses the following functions to create and modify molecules.

molecule newmolecule();

molecule copymolecule(molecule mol);
int freemolecule(molecule mol);

int freeresidue(residue r);

int addstrand(molecule mol, string shame);
int addresidue(molecule mol, string sname, residue res);
int connectres(molecule mol, string sname,

int res1, string anamel, int res2, string aname2);
int mergestr(molecule moll, string strl, string endl,

molecule mol2, string str2, string end2);

newmolecule() creates an “empty” molecule—one with no strands, residues or atoms. It
returnsNULL if it can not create it.copymolecule() makes a cop of an isting molecule and
returns aNULL on failure. freemolecule() andfreeresidue(are used to deallocate memory set
aside for a molecule or residue. In most programs, these functions are usually not nelagssary
should be used when adar number of molecules are being copied. Once a molecule has been cre-
ated,addstrand() is used to add one or more named strands. Strands can be addgdoaa an
molecule. There is no limit on the number of strands in a molecule. Strands can be added to molecules
created bygetpdb() or other functions as long as the strand names are uraddstrand()
returnsO on success antl on failure. Finallyaddresidue() is used to add residues to a strand.
The first residue is numberddand subsequent residues are numb@re8, etc. addresidue()
also return® on success arttion failure.

nab requires that users explicitly maldl inter-residue bondsconnectres() makes a bond
between tw aoms ofdifferentresidues of the strand with nasieame. It returnsO on success antl
on failure. Atoms in dierent strands can not be bonded. The bonding between atoms in a residue is
set by the residue library entry and can not be changed at runtimenabtievel.

The last functiormergestr() is used to merge wvdrands of the same molecule or gap
strand of the second molecule into a strand of the first. The residues of a strand are ordekrdd from
N, whereN is the number of residues in that stramab imposes no chemical ordering on the residues
in a strand. Haever, dnce the strands are generally ordered, there are four ways to combine the tw
strandsmergestr() uses the tw values'first" and"last" to stand for residues 1 ahd The
four combinations and their meanings are shown in the next table. In thesteblehasN residues
andstr2 hasM residues.

10/17/06 MB Language Reference 69

endl end2 Action

first first The residues oétr2 are reersed and then inserted before those of
strl1 :M, ..,2,1:1,2, ..,N

first last The residues oftr2 are inserted before thosesifl :1,2,..,M:1
,2,.,N

last first The residues oftr2 are inserted after thosestfl :1,2,..,N:1,
2,..M

last last The residues oftr2 are reersed and then inserted after those| of
str1 :1,2,.,N:M, ..., 2,1

3.12. Creating Biopoloymers

molecule linkprot(string strandname, string seq, string reslib);
molecule link_na(string strandname, string seq, string reslib,
string natype, string opts);
molecule getpdb_prm(string pdbfile, string leaprc, string leap_Cmd2,
int savef)

Although mary nab functions dort care what kind of molecule theoperate on, manopera-
tions require molecules that are compatible with the Amber force field libraries (see Chafitee 6).
best and most general way to do this is to use tleap commands, described in Chaptes 8).
link_prot() andlink_na() routines gren here are limited commands that may sometimes be useful, and
are included for backwards compatibility with earlier versions of NAB.

linkprot() takes a strand identifier and a sequence, and returns a molecule with this

sequence. Theolecule has an extended structure, so thawtlye and w angles are all 180 The

reslib input determines which residue library is used; if it is an empty string, the AMBER 94 all-atom
library is used, with chged end groups at the N and C termifill nab residue libraries are denoted

by the sufix .rlb and LEaP residue libraries are denoted by thefigufib . If reslib is set to

"nneut”, "cneut" or "neut”, then neutral groups will be used at the N-terminus, the C-terminus, or both,
respectiely.

The seq string should gie the amino acids using the one-letter code with upper-case letters.
Some non-standard names are: "H" for histidine with the proton od fusition; "h" for histidine
with the proton at the position; "3" for protonated histidine; "n" for an acetyl blocking group; "c" for
an HNMe blocking group, "a" for an NHyroup, and "w" for a ater molecule. If the sequence con-

tains one or more "' characters, the molecule will consist of separate polypeptide strands broken at
these positions.

Thelink_na() routine works much the same way for Bldnd RNA, using an input residue
library to kuild a single-strand with correct local geometry but arbitrary torsion angles connecting one
residue to the m. natype is used to specify either DNor RNA. If the optsstring contains a "5",
the 5’ residue will be "capped" (a hydrogen will be attached to the O5’ atom); if this string contains a
"3" the O3 atom will be capped.

The newer (and generally recommendedywo generate biomolecules uses glegpdb_prm()
function described in Chapter 6.

10/17/06 MB Language Reference 70

3.13. FiberDiffraction Duplexes in NAB

The primary function in NAB for creating Watson-Crick dwgie based on fibre-difaction data
is fd_helix:

molecule fd_helix(string helix_type, string seq, string acid_type);

fd_helix() takes as its arguments three strings - the helix type of the duplex, the sequence of one
strand of the duplex, and the acid type (which is "dna" or "rr@/gilable helix types are as follows:

Helix type options for fd_helix()

arna Right Handed A-RNK (Arnott)
aprna Right Handed A-RM (Arnott)
Ibdna Right Handed B-DN (Langridge)
abdna Right Handed B-DIX (Arnott)
sbdna Left Handed B-DM (Sasisekharan
adna Right Handed A-DM (Arnott)

The molecule returns contains a Watson-Crick double-stranded helix, with the helix axiz along
For a further explanation of the fd_helix code, please see the code comments in the source file
fd_helix.nab.

References for the fibre-diffraction data:

(1) Structuresof synthetic polynucleotides in the A-RNand A-RNA conformations. X-ray
diffraction analyses of the molecule conformations of (polyddeacid) and (polyinosinic
acid).(polygtidylic acid). Arnott, S.; Hukins, D.ML.; Dover, SD.; Fuller W.; Hodgson, A.R.
JMol. Biol. (1973), 81(2), 107-22.

(2) Left-handedDNA helices. Arnott,S; Chandrasekaran, R; Birdsall, D.L.; Leslie, A.G.W
Ratliff, R.L. Nature(1980), 283(5749), 743-5.

(3) Stereochemistrpf nucleic acids and polynucleotidesakshimanarayanan, A.V.; Sasisekha-
ran, V.Biochim. Biophys. Acta04, 49-53.

(4) Fuller W., Wilkins, M.H.F., Wilson, H.R., Hamilton, L.D. and Arnott, S. (1963).Mol. Biol.
12, 60.

(5) Arnott,S.; Campbell Smith,.®.; Chandraseharan, R.Handbook of Biochemistry and Molec-
ular Biology, 3rd Edition. NucleicAcids--\6lume Il Fasman, G.P., ed. (Gidand: CRC Press,
1976), pp. 411-422.

3.14. ReducedRepresentation DM\ M odeling Functions.

nab provides seeral functions for creating the reduced representation models AfdeNcribed
by R. Tan and S. Haey [21]. Thismodel uses only 3 pseudo-atoms to represent a baseTpair
pseudo atom namedE represents the helix axis, the atom narBédrepresents the position of the
sugarphosphate backbone on the sense strand and the atom kpedhts into the major grae.
The plane described by these three atoms (and a corresponding virtual atom that represents the anti
sugar-phosphate backbone) represents quite nicely an all atom watson-crick base pair plane.

10/17/06 MB Language Reference 71

molecule dna3(int nbases, float roll, float tilt, float twist,
float rise);

molecule dna3_to_allatom(molecule m_dna3, string seq, string aseq,
string reslib, string natype);

molecule allatom_to_dna3(molecule m_allatom, string sense,
string anti);

The functiondna3() creates a reduced representationADstructure. dna3() takes as
parameters the number of basdmses , and four helical parametem®ll , tilt , twist , and
rise

dna3_to_allatom() makes an all-atom dna model from a dna3 molecule as inpae
moleculem_dna3 is a dna3 molecule, and the strirsgs] andaseq are the sense and anti sequences
of the all-atom helix to be constructe@bviously the number of bases in the all-atom model should
be the same as in the dna3 model. If the saey is left blank ("), the sequence generated is the
wc_complement() of the sense sequenceeslib names the residue library from which the all-
atom model is to be constructetf. left blank, this will default todna.amber94.rlb. The
last parameter is either "dna "or"rna " and defaults tana if left blank.

The allatom_to_dna3() function creates a dna3 model from a double stranded all-atom
helix. Thefunction tales as parameters the input all-atom molecul@llatom , the name of the
sense strand in the all-atom molecslkense and the name of the anti stra@adii

3.15. Moleculel/O Functions.
nab provides seeral functions for reading and writing molecule and residue objects.

residue getresidue(string rname, string rlib);

molecule getpdb(string fname [, string options |);
molecule getcif(string fname, string blockld);

int putpdb(string fname, molecule mol [, string options]);
int putcif(string fname, molecule mol);

int putbnd(string fname, molecule mol);

int putdist(string fname, molecule mol);

The functiongetresidue() returns a cop of the residue with nammame from the residue
library namedlib . If it can not do so it returns the valNé&JLL

The functiongetpdb() corverts the contents of the PDB file with narfmame into annab
molecule . getpdb() creates bonds betweenydwo @oms in the same residue using this rule:

10/17/06 MB Language Reference 72

gl. 20 Angstroms ifeither atom is a hydrogen
bond(@tom, atorm) if dist(atom, atom;) < 2. 20 Angstroms ifeither atom is a sulphur
Bl. & Angstroms otherwise

Atoms in different residues arevee bonded bygetpdb() . getpdb() creates a e strand each
time the chain id changes or if the chain id remains the same &E® aard is encountered. The
strand name is the chain id if it is not blank &', whereN is the number of that strand in the
molecule beginning witll. For example, a PDB file containing chain with no chain ID, followed by
chainA, followed by another blank chain wouldveathree strands with namé&s" |, "A" and"3" .
getpdb() returns a molecule on success altdl_L on failure.

The optional final argument getpdb can be used for a variety of purposes, which are outlined
in the table bekw.

The (experimental!) functiogetcif s like getpdb , but reads an mmCIF (macro-molecular
crystallographic information file) formatted file, anxtracts "atom-site" information from data block
blockiD . You will need to compile and install teéparse library in order to use this.

The next group of builtins writeavious parts of the molecutgol to the filefname . All return
0 on success antl on failure. If fname exsts and is writable, it isverwritten without warning.
putpdb() writes the moleculeol into the PDB filefname . If the "resid" of a residue has been set
(either by usinggetpdb to create the molecule, or by an explicit operation ima@m routine) then
columns 22-27 of the output pdb file will use it; otherwisah will assign a chain-id and residue
number and use those. In this latter case, a molecule with a single strand/eval lenk chain-id; if
there is more than one strand, each strand is written as a separate chain with"&4aiassigned to
the first strand imol , "B" to the second, etc.

Options flags for putpdb
keyword meaning
-pqr Put charges and radii into the columns following the xyz coordinates.

-nobocc Do not put occuparnycand b-factor into the columns follng the xyz coordi-
nates. thamccupancies and clggs. Thids implied if-pqgr is present, but may
also be used to ga Pace in the output file, or for compatibility with programs
that do not work well if such data is present.

-brook Corvert atom and residue names to thewamtions used in Brooklven PDB
files. Thisoften gves geater compatibility with other software that maypect
these cowentions to hold, but the cearsion may not be what is desired in man
cases. Alsoput the first character of the atom name in column 78, a prelimjnary
effort at identifying it as in the most recent PDB format. If theokflag is not
present, no carersion of atom and residue names is made, and no id is in col-
umn 78.

-nocid Do not put the chain-id (see the descriptiorgepdh, above) in the output ite.
if this flag is present, the chain-id column will be blank). This can be useful
when mag water molecules are present.

-tr Do not start numbering residuesep agan when a ne chain is encountered,
i.e. the residue numbers are conse@utecross chains, as required by some
force-field programs li& Amber.

10/17/06 MB Language Reference 73

putbnd() writes the bonds ahol into fname . Each bond is a pair of integers on a line. The
integers refer to atom records in the corresponding PDB-stylgfitdist() writes the interatomic
distances between all atomsnobl a, aj wherei < j, in this s&en column format.

rnuml rnamel anamel rnum2 rname2 aname?2 distance

3.16. OtherMolecular Functions.

matrix superimpose(molecule mol, string aex1,
molecule r_mol, string aex2);
int rmsd(molecule mol, string aex1,
molecule r_mol, string aex2, float r);
float angle(molecule mol, string aex1, string aex2, string aex3);
float anglep(point ptl, point pt2, point pt3);
float torsion(molecule mol, string aex1, string aex2,
string aex3, string aex4);
float torsionp(point ptl, point pt2, point pt3, point pt4);
float dist(molecule mol, string aex1, string aex2);
float distp(point ptl, point pt2);
int countmolatoms(molecule mol, string aex);
int sugarpuckeranal(molecule mol, int strandnum,
int startres, int endres);
int helixanal(molecule mol);
int plane(molecule mol, string aex, float A, float B, float C);
float molsurf(molecule mol, string aex, float probe_rad);

superimpose() transforms moleculenol so that the root mean square deviation between corre-
sponding atoms imol andr_mol is minimized. The corresponding atoms are those selected by the
atom epressionsaex1l applied tomol andaex2 applied tor_mol . The atom expressions must
select the same number of atoms in each molecule. No checking is done to insure that the atoms
selected by the twaom expressions actually corresporsiiperimpose() returns the transforma-

tion matrix it found. rmsd() computes the root mean square deviation between the pairs of corre-
sponding atoms selected by applysexl to mol andaex2 tor_mol and returns thealue inr.

The two aom expressions must select the same number of atoms. Again, it is tkeasgmhsibility

to insure the tw @&om expressions select corresponding atamsd() returnsO on success and

on failure.

angle() andanglep() compute the angle in geees between three pointangle() uses
atoms expressions to determine therage coordinates of the setnglep() takes as an gument
three explicit points.Similarly, torsion() andtorsionp() compute a torsion angle ingltees
defined by four pointgorsion() uses atom expressions to specify the poifitsese atom»res-
sion match sets of atomsimol. The points are defined by theeeage coordinates of the setist-
sionp() uses four explicipoint s. Both functions retur@ if the torsion angle is not defined.

dist() and distp() compute the distance in Angstroms betweewn ®xplicit atoms.
dist() uses atom expressions to determine which atoms to include in the calcukaticatom

10/17/06 MB Language Reference 74

expression which selects more than one atom results in the distance being calculated fueragke a
coordinate of the selected atondistp() returns the distance betweenotexplicit points. The
functioncountmolatoms() returns the number of atoms selectecby in mol.

sugarpuckeranal() is a function that reports theamous torsion angles in a nucleic acid
structure. helixanal() is an interactie kelix analysis function based on the methods described by
Babcocket al.[22]

Theplane() routine takes an atonxgressionaex and calculates the least-squares plane and
returns the answer in the form z = Ax + By + [Ereturns the number of atoms used to calculate the
plane.

Themolsurf() routine is an NAB adaptation of Paul Berazp'ogram of the same namé.
takes coordinates and radii of atoms matching the atgunessionaexin the input molecule, and
returns the molecular surface area (the area of thergedxcluded surface), in square Angstromia
compute the sobnt-accessible area, add the probe radius to eachsatails (using dor(a in
m) loop), and calmolsurf with a zero value foprobe_rad.

3.17. Delugging Functions.

nab provides the following builtin functions that allothe user to write the contents arious
nab objects to an ASCII file. The file must be opened for writing befoyeohthese functions are
called.

int dumpmatrix(file, matrix mat);
int dumpbounds(file f, bounds b, int binary);
float dumpboundsviolations(file f, bounds b, int cutoff);
int dumpmolecule(file f, molecule mol,
int dres, int datom, int dbond);
int dumpresidue(file f, residue res, int datom, int dbond);
int dumpatom(file f, residue res, int anum, int dbond);
int assert(condition);
int debug(expression(s));

dumpmatrix() writes the 1@loat values ofmat to the filef . The matrix is written as four ws
of four numbers.dumpbounds() writes the distance bounds information containeldl ia the filef
using this eight column format:

atom-numberl atom-number2 lower upper

If binary is set to a non-zero value, egalént information is written in binary format, which can
save dsk-space, and is much faster to read back in on subsequent runs.

10/17/06 MB Language Reference 75

dumpboundsviolations() writes all the bounds violations in the bounds object that are
more tharcutoff and returns the bounds violation egeer dumpmolecule() writes the contents of
mol to the filef . If dres is 1, then detailed residue information will also be writtdéh datom or
dbond is 1, then detailed atom and/or bond information will be writtélumpresidue() writes
the contents of residues to the filef . Agan if datom or dbond is 1, detailed information about
that residues @aoms and bonds will be written. Finallumpatom() writes the contents of the atom
anum of residueres to the filef . If dbond is 1, bonding information about that atom is also written.

Theassert() statement will eadluate the condition expression, and terminate (with an error
message) if the expression is not trldnlike the corresponding "C" language construct (which is a
macro), code is generated at compile time to indicate both the file and line number where the assertion
failed, and to parse the condition expression and print the values ofpsedsions inside itHence,
for a code fragment like:

i=20; MAX=17;
assert(i < MAX);

the error message will provide the assertion thiéed, its location in the code, and the curraaitigs
of "i" and "MAX". If the -noassertflag is set at compile tim@ssert statements in the code are
ignored.

The debug() statement will ealuate and print a comma-separated expression list along with
the source file(s) and line number(s). Continuing the@lesmple, the statement

debug(i, MAX);

would print the values of "i" and "MAX" tetdout and continue xecution. Ifthe-nodebudlag is set
at compile timedebug statements in the code are ignored.

3.18. Time and date routines
NAB incorporates a feinterfaces to time and date routines:

string date();

string timeofday();

string ftime(string fmt);
float second();

The date() routine returns a string in the format "03/08/1999", andtimeofday() routine

returns the current time as "13:45:00". If you need access to more sophisticated time and date func-
tions, theftime() routine is just a wrapper for the standard C rousiniéime , where the format

string is used to determine what is output; see standard C documentatiow fbishworks.

Thesecond() routine returns the number of seconds of CPU utilization since theney of
the process. It is really just a wrapper for the C funatiock()/CLOCKS_PER_SEC , and so the
meaning and precision of the output will depend upon the implementation of the underlying C com-
piler and libraries.Generally speaking, you should be able to time a certain section of code in the fol-
lowing manner:

t1 = second();

10/17/06

..... Il code to be timed
t2 = second();
elapsed =2 - t1;

MB Language Reference

76

10/17/106 Rigid-Bodyransformations 77

4. Rigid-Body Tr ansformations

This chapter describes NAB functions to create and manipulate molecules through a variety of
rigid-body transformations. This capabilityhen combined with distance geometry (described in the
next chapter) offers a powerful approach to ynanoblems in initial structure generation.

4.1. Transformation Matrix Functions.

nab uses 44 matrices to hold coordinate transformationab provides these functions to cre-
ate transformation matrices.

matrix newtransform(float dx, float dy, float dz,

float rx, float ry, float rz);
matrix rot4(molecule mol, string aex1, string aex2, float ang);
matrix rot4p(point p1, point p2, float angle);

newtransform() creates a4 matrix that will rotate an object by degrees about the Z axis

degrees about the Y axisg degrees about the X axis and then translate the rotated objdgt, oy,

dz along the X, Y and Z axes. All rotations and transformations are with respect the standard X, Y and
Z axes ;entered at (0,0,0)ot4() androtdp() create transformation matrices that rotate an object
about an arbitrary axis. The rotation amount is igreles.rot4() uses tw a@om expressions to

define an axis that goes fromex1 to aex2 . If an aom expression matches more that one atom in

mol, the average of the coordinates of the matched atoms are used. If an atom expression matches no
atoms inmol, the zero matrix is returnedotdp() uses gplicit points instead of atomxpressions

to specify the axis. Ip1 andp2 are the same, the zero matrix is returned.

4.2. FrameFunctions.

Every nab molecule has a “frame” which is three orthonormal vectors and their origin. The
frame acts lik a landle attached to the molecule allowing contndrats mosement. Wwo frames
attached to different molecules alldor precise positioning of one molecule with respect to the.other
These functions are used in frame creation and manipulation. All @mmrsuccess antl on failure.

int setframe(int use, molecule mol, string org,
string xtail, string xhead,
string ytail, string yhead);

int setframep(int use, molecule mol, point org,
point xtail, point xhead,
point ytail, point yhead);

int alignframe(molecule mol, molecule r_mol);

setframe() and setframep() create coordinate frames for molecai@! from an origin and
two independent vectors. bBetframe() , the origin and tw vectors are specified by atompees-
sions. These atom expressions match sets of atomslinThe arerage coordinates of the selected
sets are used to define the origorg(), an X-axis xtail to xhead) and a Y-axis ytail to
yhead). The Z-axis is created as %¥. Since it is unlilely that the original X and Y axes are

10/17/106 Rigid-Bodyransformations 78

orthogonal, the parametase specifies which of them is to be a real axisudé == , then the
specified X-axis is the real X-axis and Y is recreated frofK.4f use == , then the specified
Y-axis is the real ¥axis and X is recreated fromx¥. setframep() works exactly the sameay
except the vectors and origin are specified as explaiiit s.

alignframe() transformsmol to superimpose its frame on the frame ahol . If r_mol
is NULL, alignframe() transformamol to superimpose its frame on the standard, X drections
centered at (0,0,0).

4.3. Functionsfor working with Atomic Coordinates. nab provides sgeral functions for
getting and setting user defined sets of molecular coordinates.

int setpoint(molecule mol, string aex, point pt);

int setxyz_from_mol(molecule mol, string aex, point pts[]);
int setxyzw_from_mol(molecule mol, string aex, float xyzwl[]);
int setmol_from_xyz(molecule mol, string aex, point pts[]);
int setmol_from_xyzw(molecule mol, string aex, float xyzwl[]);
int transformmol(matrix mat, molecule mol, string aex);

residue transformres(matrix mat, residue res, string aex);

setpoint() setspt to the ®&erage \alue of the coordinates of all atoms selected by the atom
expression aex. If no aoms were selected it returnd, otherwise it returns a0.
setxyz_from_mol() copies the coordinates of all atoms selected by the atpmnessionaex to
thepoint arraypt . It returns the number of atoms selectsdtmol_from_xyz() replaces the

coordinates of the selected atoms from the values itt returns the number of replaced coordinates.
The routinesetxyzw_from_mol andsetmol_from_xyzw work in the same ay, except that
they use four-dimensional coordinates rather than three-dimensional sets.

transformmoil() applies the transformation matnrat to those atoms ofol that were
selected by the atonxeressionaex. It returns the number of atoms selectiednsformres()
applies the transformation matnmat to those atoms afes that were selected by the atompees-
sionaex and returns a transformedpyof the input residue. It returM$ULL if the operation failed.

4.4. SymmetryFunctions.

Here we describe a set ofAB routines that provide an interface for rigid-body transformations
based on crystallographic, point-group, or other symmetiliagse are primarily highdevel ways to
creating and manipulating sets of transformation matrices corresponding to common types of symme-
try operations.

4.4.1. Matrix Creation Functions.
iNtMAT _cube(point pts[3], matrix mats[24])
iNtMAT _ico(point pts[3], matrix mats[60])
intMAT _octa(point pts[3], matrix mats[24])

iNtMAT _tetra(point pts[3], matrix mats[12])
intMAT _dihedral(point pts[3], int nfold, matrix mats[1])
intMAT _cyclic(point pts[2], float ang, int cnt,

matrix mats[1])

10/17/106 Rigid-Bodyransformations 79

iNtMAT _helix(point pts[2], float ang, float dst,
int cnt, matrix mats[1])

intMAT _orient(point pts[4], float angs[3], matrix mats[1])
intMAT _rotate(point pts[2], float ang, matrix mats[1])
intMAT _translate(point pts[2], float dst, matrix mats[1])

These tw groups of functions produce arrays of matrices that can be applied to objects to gener
ate point group symmetries (first group) or useful transformations (second gidgppperations are
defined with respect to a center and a set ef apecified by the points in the ar@g[] . Every
function requires a center and one axis whichpaisgl] and the ectorpts[l] -pts[2] . The
other two points (if required) define tw additional directions: pts[l] - pts[3] and
pts[l] - pts[4] .How these directions are used depends on the function.

The point groups generated by the functid&T_cube() , MAT _ico() , MAT octa() and
MAT tetra() have three internal 2-fold as. Whilethese 2-fold are orthogonal, the 2 directions
specified by the three points jots[] need only be independent (not parallel). The 2-fold axes are
constructed in thisalshion. Axis-lis along the directiopts[1] - pts[2] . Axis-3 is along the
vector pts[1] -pts[2] x pts[l] -pts[3] and axis-2 is recreated along the vector axis-3
axis-1. Each of these four functions creates a fixed number of matrices.

Dihedral symmetry is generated by an N-fold rotation about an axis followed by a 2-fold rotation
about a second axis orthogonal to the first aM&T_dihedral() produces matrices that generate
this symmetry The N-fold axis ispts[0] - pts[l] and the second axis is created by the same
orthogonalization process described\aboUnlike the previous point group functions the number of
matrices created OYAT dihedral() s not fixed but is equal to®2nfold

MAT _cyclic() createscnt matrices that produce uniform rotations about the axis
pts[l] -pts[2] . The rotations are in multiples of the angleg beginning with 0°, and increas-
ing by ang until cnt matrices hee been createdcnt is required to be > O,ubang can be 0O, in
which caseMAT_cyclic returnscnt copies of the identity matrix.

MAT helix() createscnt matrices that produce a uniform helical twist about the axis
pts[l] -pts[2] . The rotations are in multiples ahg and the translations in multiples d$t .
cnt must be > 0, but eithesing or dst or both may be zerolf ang is not O, lut dst s,
MAT helix() produces a uniform plane rotation and is egant toMAT_cyclic() . Anang of
0 and a non-zeralst produces matrices that generate a uniform translation along thelfakisth
ang anddst are 0, theMAT _helix() createxnt copies of the identity matrix.

The three functionsMAT _orient() , MAT_rotate() and MAT _translate() are not
really symmetry operationsub are auxiliary operations that are useful for positioning the objects
which are to be operated on by the true symmetry operafas of these functionMAT _rotate()
and MAT _translate() produce a single matrix that either rotates or translates an object along the axis
pts[l] -pts[2] . A zeroang ordst is acceptable in which case the function creates an identity
matrix. Except for a different user interface these functions are equélent to thenab builtins
rot4p() andtran4p()

MAT orient() creates a matrix that rotates a object about the thesptsfl] - pts[2]
pts[l] -pts[3] and pts[l] -pts[4] . The rotations are specified by the values of the array
angs[] , with ang[l] the rotation about axis-1 etc. The rotations are applied in the order axis-3,
axis-2, axis-1. The axes remained fixed throughout the operation and zeroanegteave acceptable.

10/17/106 Rigid-Bodyransformations 80

If all three angles are zelAT _orient() creates an identity matrix.

4.4.2. Matrix I/O Functions.

intMAT _fprint(file f, int nmats, matrix mats[1])
iNtMAT _sprint(string str, int nmats, matrix mats[1])
intMAT _fscan(file f, int smats, matrix mats[1])
intMAT _sscan(string str, int smats, matrix mats[1])

string MAT_getsyminfo()

This group of functions is used to read and wnigddmatrix variables. Thetwo functions
MAT_fprint() andMAT _sprint() write the the matrix to the file or the stringstr . The num-
ber of matrices is specified by the paramateats and the matrices are passed in the amags][]

The two functionsMAT fscan() and MAT _sscan() read matrices from the file or the
string str into the arraymats[] . The parametesmats is the size of the matrix array and if the
source file or string contains more thremats only the firstsmats will be returned. These wfunc-
tions return the number of matrices read unless there the nhumber of matrices is greataathan
the last matrix was incomplete in which case/ttedurn-1 .

In order to understand the last function in this grouptAT_getsyminfo() it is necessary to
discuss both the internal structure tieb matrix type and one of its most important us&he nab
matrix type is used to hold transformation matrices. Although these are atomic objectaiah the
level, they are actually4 x 4 matrices where the first three elements of the fousthare the X Y and
Z components of the translation part of the transformation. The matrix print functions write each
matrix as four lines of four numbers separated by a single s&wedlarly the matrix read functions
expect each matrix to be represented as four lines of four white spgaau(aber of tabs and spaces)
separated numbers. The print functions #863.6e for each number in order to produce output with
aligned columns, but the scan functions only require that each matrix be contained in four lines of four
numbers each.

Most nab programs useénatrix variables as intermediates in creating structures. The struc-
tures are then sad and the matrices disappear when the prograits.e Recentlynab was used to
create a set of routines called a “symmetry exrvThisis a set ohab programs that work together
to create matrix streams that are used to assemble composite objects. In orderitonostkgeneral,
the symmetry server produces only matrices leaving it to the user to applySimsa.these programs
will be used to create hierarchies of symmetries or transformations we decided that the external repre-
sentation (files or strings) of matrices would consist af kimds of information — required lines of
row values and optional lines beginning with the charagteome of which are used to contain infor
mation that describes Wwahese matrices were created.

MAT_getsyminfo() is used to extract this symmetry information from either a matrix file or
a gring that holds the contents of a matrix file. Each time the user BBAE fscan() or
MAT_sscan() , any symmetry information present in the source file or string isedan private
buffer. The previous contents of thisiffer are @erwritten and lost. MAT_getsyminfo() returns
the contents of thisuffer. If the huffer is emptyindicating no symmetry information was present in
either the source file or stringlAT_getsyminfo() returnsNULL

10/17/106 Rigid-Bodyransformations 81

4.5. Symmetryserver programs

This section describes a setr@b programs that are used together to create composite objects
described by a hierarchical nest of transformations. There are four programs for creating and operat-
ing on transformation matricesnatgen , matmerge , matmul and matextract , a program,
transform , for transforming PDB or point files, anddyrogramstss_init andtss_next for
searching spaces defined by transformation hierarchies. In addition to these programs, all of this func-
tionality is available directly at thaab level via theMAT_andtss_ builtins described abee.

4.5.1. matgen

The progranmatgen creates matrices that correspond to a symmetry or transformation opera-
tion. It has one required argument, the name of a file containing a description of this opéraéon.
created matrices are written $tdout . A single matgen may be used by itself or twor nore
matgen programs may be connected in a pipeline producing nested symmetries.

matgen -create sydef-1| matgen symdef-2| . .. | matgen symdef-N

Because anatgen can be in the middle of a pipeline, it automatically looks for an stream of matrices
onstdin . This means the firghatgen in a pipeline will wait for arEOF(generally Ctl-D) from the
terminal unless connected to an empty file or\edemt. Inorder to &oid the nuisance of ang to
create an empty matrix stream the finsttgen in a pipeline should use thereate flag which tells
matgen to ignorestdin

If input matrices are read, each input matrix left multiplies the first generated matrix, then the
second etc. The table belshows the effect of anatgen performing a 2-fold rotation on an input
stream of three matrices.

Input: IM4, IM5, IM3
Operation: 2-fold rotationR;, R,
Output: IMy xRy, IMy x Ry, IM3 X Ry, IMg X Ry, IM5 X Ry, IM3 X R,

4.5.2. SymmetryDefinition Files.

Transformations are specified in text files containingrsé lines of leyword/value pairs.These
lines define the operation, its associateelseand other parameters such as angles, a distance or count.
Most keywords hae a efault value, although the operation, center and axes aysakequired.
Keyword lines may be in anorder. Blank lines and most lines starting with a shatpare ignored.
Lines beginning witH#S{ , #S+ and#S} are structure comments that describe tiee matrices were
created. Thesknes are required to search the space defined by the transformation kienartheir
meaning and use is oamed in the section on “Searching Transformation Spackslomplete list of
keywords, their acceptable values and defaults is showmbelo

10/17/106 Rigid-Bodyransformations 82

Keyword Possible \alues DefaultValue
symmetry cube, cyclic , dihedral , dodeca, he- None
lix ,ico ,octa ,tetra
transform orient ,rotate ,translate . None
name Any string of nonblank characters. mPid
noid frue ,false . false
axestype absolute , relative . relative
center Any three numbers separated by tabs or spacesNone
axis ,axis 1% None
axis2 None
axis3 None
angle ,angle 1! Any number 0
angle2 0
angle3 0
dist 0
count Any integer 1

1l.axis andaxisl are synonyms as aamgle andanglel .

Thesymmetry andtransform keywords specify the operation. One or the othériot both must
be specified.

The name keyword names a particular symmetry operation. The default namarimediately
followed by the process IDgen2286. name is used by the transformation space seaarch routines
tss_init andtss_next and is described later in the section “Searching Transformation Spaces”.

Thenoid keyword with valuetrue suppresses generation of the identity matrix in symmetry
operations. &r example, thedywords below

symmetry cyclic

noid false

center 0 00
axis 0 01
count 3

produce three matrices which perform rotations of 0°, 120° and 240° about the Zfaxisd is

true , only the two non-identity matrices are created. This option is useful in building objects with
two or three orthogonal 2-fold &s and is discussed further in the example “Icosahedron from Rota-
tions”. Thedefault value ohoid is false

Theaxestype , center andaxis* keywords defined the symmetryesx Thecenter and
axis* keywords each require a point value which is three numbers separated by tabs or spaces.
Numbers may integer or real and in fixed or exponential format. Internally all numbers aecbn
tonab typefloat which is actually double precisiofNo space is permitted between the minus sign
of a ngaive number and the digits.

10/17/106 Rigid-Bodyransformations 83

The interpretation of these points depends on the value ofefjweoid axestype . Ifitis
absolute then the ags are defined as theotorscenter - axisl , center - axis2 andcen-

ter maxis3 . If it relative , then the ams are vectors whose directions dbdesaxi s1,
O-axi s2 and O-axi s3 with their origins atcenter . If the value ofcenter is 0,0,0, then
absolute and relatre ae equvaent. Thedefault valueaxestype is relative ; center and

theaxis* do not hae defaults.

The angle keywords specify the rotation about theeaxanglel is associated witlaxisl
etc. Notethatangle andanglel are synogms. Theangle is in degrees, with posiikeing in the
counterclockwise direction as you sight from thés point to thecenter point. Eitheran intgyer
or real \alue is acceptable. No space is permitted between the minus signgatigeneimber and its
digits. All angle* keywords hae a @fault value oD.

Thedist keyword specifies the translation along an axis. The pesitrection is fromcen-

ter to axis . Either integer or realalue is acceptable. No space is permitted between the minus

sign of a ngative rumber and its digits. The default valuedidt isO.

Thecount keyword is used in three relatedays. For thecyclic vaue of thesymmetry it
specifiesount matrices, each representing a rotation of 8@t °. It also specifies the same rota-
tions about the non 2-fold axis dihedral symmetry For helix symmetry it indicates that
count matrices should be created, each with a rotatiangfe °. In all cases the default valuelis

This table shows whichewords are used and/or required for each type of operation.

symmetry name |noid axestype center axes | angles | dist gount
cube m Pid | false relative Required| 1,2 - -
cyclic m Pid | false relative Required | 1 - - D=1
dihedral m Pid | false relative Required | 1,2 | - D=1
dodeca m Pid | false relative Required | 1,2 | - -
helix m Pid false relative Required | 1 1,D=0 D=0 D=1
ico m Pid | false relative Required | 1,2 | - -
octa m Pid | false relative Required | 1,2 | - -
tetra m Pid false relative Required | 1,2 | - -
transform name naqid axestype center axes | angles | dist gount
orient m Pid | - r elative Required | All All,.D=0 |- -
rotate m Pid | - r elative Required | 1 1,D=0 |- -
translate m Pid | - r elative Required | 1 - D =0 -

4.5.3. matmege

Thematmerge program combines 2-4 files of matrices into a single stream of matrices written

to stdout . Input matrices are in files whose names avengon as gguments on thenatmerge
command line.For example, the command line below

matmerge A.mat B.mat C.mat

copies the matrices frorA.mat to stdout , followed by those oB.mat and finally those of

10/17/106 Rigid-Bodyransformations 84

C.mat . Thusmatmerge is similar to the Unidcat command. Thelifference is that while tlyeare
called matrix files, the can contain special comments that describ& Hwe matrices the contain

were created. When matrix files are gedt, these comments must be collected and grouped so that
they are kept together in gfurther matrix processing. All of this is described in the section “Search-
ing Transformation Spaces”.

45.4. matmul

The matmul program takes tfiles of matrices, and creates avrgream of matrices formed
by the pair wise product of the matrices in the input streams. Tenagrices are written tetd-
out . If the number of matrices in thedvinput files difer, the last matrix of the shorter file is repli-
cated and applied to all remaining matrices of the longerFibe example, if the file3.mat has three
matrices and the fil®.mat has five, then this command

matmul 3.mat 5.mat

would result in the third matrix @&.mat multiplying the third, forth and fifth matrices 6fmat .

4.5.5. matextract

Thematextract is used to eract matrices from the matrix stream presentedtdm and
writes them tostdout . Matrices are numbered from 1 to N, where N is the number of matrices in
the input stream. The matrices are selected Wpgitheir numbers as the arguments tortiegex-
tract command. Eaclargument is comma or space separated list of one or more ranges, where a
range is either a number orawumbers separated by a dash (A range beginning with starts with
the first matrix and a range ending wittends with the last matrix. The rangeselects all matrices.
Here are some examples.

Command Action

matextract 2 Extract matrix number 2.

matextract 2,5 Extract matrices number 2 and 5.

matextract 2 5 Extract matrices number 2 and 5.

matextract 2-5 Extract matrices number 2 up to and including 5.

matextract -5 Extract matrices 1 to 5.

matextract 2- Extract all matrices beginning with number 2.

matextract - Extract all matrices.

matextract 2-4,7 13 15,19- Extract matrices 2 to 4, 7, 13, 15 and all matrices
numbered 19 or higher.

4.5.6. transbrm

Thetransform program applies matrices to an object creating a composite object. The matri-
ces are read frostdin and the ne object is written testdout . transform takes one ajument,
the name of the file holding the object to be transformeshsform is limited to two types of
objects, a molecule in PDB format, or a set of points inxafie, three space/tab separated num-
bers/line. Thename of object file is preceded by a flag specifying its type.

10/17/106

Rigid-Bodyransformations

Command

Action

transform -pdb X.pdb
transform -point X.pts

Transform a PDB format file.
Transform a set of points.

85

10/17/106 Distanc&eometry 86

5. DistanceGeometry.

The second main element inPAR for the generation of initial structures is distance geometry
The next subsection\gs a brief overview of the basic theoryand is followed by sections \ging
details about the implementation in NAB.

5.1. Metric Matrix Distance Geometry.

A popular method for constructing initial structure that satisfy distance constraints is based on a
metric matrix or "distance geometry" approach [11,23]. If we consider describing a macromolecule in
terms of the distances between atoms, it is clear that there ayecaomatraints that these distances
must satisfysince forN atoms there ar&l(N —1)/2 distances but only8 coordinates. Generabn-
siderations for the conditions required to "embed" a set of interatomic distances into a realizable three-
dimensional object forms the subject of distance geom@&tng basic approach starts from thetric
matrix that contains the scalar products of the veotptisat give the positions of the atoms:

gi = XX 1)

These matrix elements can be expressed in terms of the distgndgs and d;q:
gj = 3(d+df—df (2)

If the origin ("0") is chosen at the centroid of the atoms, then it can be shown that distances from this
point can be computed from the interatomic distances al@néundamental theorem of distance
geometry states that a set of distances can correspond to a three-dimensional object only if the metric
matrix g is rank three, i.e. if it has three postiand N-3 zero eigar@ues. Thisis not a trivial theo-

rem, lut it may be made plausible by thinking of the eigenanalysis as a principal component analysis:
all of the distance properties of the molecule should be describable in terms of three "components,”
which would be the, y andz coordinates. lfve denote the eigeector matrix aswv and the eigeral-

uesAiy, the metric matrix can be written in twvays:

3 3
Oj = 2 Xik Xjk = 2 Wik Wi Ag 3
k=l k=

The first equality follows from the definition of the metric teng&ay. (1); the upper limit of three in
the second summation reflects the fact that a rank three matrix has only three non-zeauesyen
Eqg. (3) then praides an expression for the coordinatgsn terms of the eigemlues and eigerectors

of the metric matrix:

Xk = /‘ﬁ Wik (4)

If the input distances are not exact, then in general the metric matrix wéllrhae than three
non-zero eigevalues, but an approximate scheme can be made by using Eq. (4) with the tese lar
eigervalues. Sinceinformation is lost by discarding the remaining eigetors, the resulting dis-
tances will not agree with the input distancas, Wwill approximate them in a certain optimakhion.

A further "refinement" of these structures in three-dimensional space can then be usedv® impro
agreement with the input distances.

In practice, gen goproximate distances are not known for most atom pairs; rathercan set
upper and lever bounds on acceptable distances, based on ¥hkerbstructure of the protein and on

10/17/106 Distanc&eometry 87

the observed NOE cross peakBhen particular instances can be generated by choosing (often ran-
domly) distances between the upper and lower bounds, and embedding the resulting metric matrix.

Considerable attention has been paid recently to wimgahe performance of distance geome-
try by examining the ways in which the bounds are "smoothed" and by which distances are selected
between the bounds [24,25]. The use of triangle bound inequalities tovamprtsisteng among the
bounds has been used for mamars, and NAB implements the "random pairwise metrization" algo-
rithm developed by Jay Ponder [13]. Methodsdithese are important especially for underconstrained
problems, where a goal is to generate a reasonably randomudigtribf acceptable structures, and
the difference between individual members of the ensemble may be quite large.

An alternatve pocedure, which we call "random embedding”, implements the procedure of
deGrootet al.for satisfying distance constraints [26]. This does not use the embedding idea discussed
above, but rather randomly corrects imttilual distances, ignoring all couplings between distances.
Doing this a great martimes turns out to actually find fairly good structures in ynases, although
the properties of the ensembles generated for underconstrained problems are not well understood.
similar idea has been w#oped by Agrafiotis [27], and we Y& alopted a ersion of his "learning
parameter" strategy into our implementation.

Although results undoubtedly depend upon the nature of the problem and the constraints, in
mary (most?) cases, randomized embedding will be both faster and better than the metric matrix strat-
egy. Given its speed, randomized embedding should generally be tried first.

5.2. Creating and manipulating bounds, embedding structugs A variety of metric-matrix
distance geometry routines are included as builtimain

bounds newbounds(molecule mol, string opts);

int andbounds(bounds b, molecule mol,
string aex1, string aex2, float Ib, float ub);
int orbounds(bounds b, molecule mol,
string aex1, string aex2, float Ib, float ub);
int setbounds(bounds b, molecule mol,
string aex1, string aex2, float Ib, float ub);
int showbounds(bounds b, molecule mol,
string aexl, string aex2);
int useboundsfrom(bounds b, molecule moll, string aex1,
molecule mol2, string aex2, float deviation);
int setboundsfromdb(bounds b, molecule mol,
string aexl1, string aex2, string dbase, float mul);
int setchivol(bounds b, molecule mol, string aex1,
string aex2, string aex3, string aex4, float vol);
int setchiplane(bounds b, molecule mol, string aex);
float getchivol(molecule mol, string aex1, string aex2,

string aex3, string aex4);
float getchivolp(point p1, point p2, point p3, point p4);

10/17/106 Distanc&eometry 88

int tsmooth(bounds b, float delta);

int geodesics(bounds b);

int dg_options(bounds b, string opts);
int embed(bounds b, float xyz[]);

The call tonewbounds() is necessary to establish a bounds matrix for further work. This rou-
tine sets lower bounds to van dea&ls limits, along with bounds deed from the input geometry for
atoms bonded to each othamd for atoms bonded to a common atoires §o-called 1-2 and 1-3 inter
actions.) Uppeand lower bounds for 1-4 interactions are set to the maximum and minimum possibili-
ties (the max éyn, "Van der Waals limits") andanti distances).newbounds() has astring as
its last parameteihis string is used to pass in options that control the detailsvothase routines
execute. The string can BULL, ™ or contain one or moreptions aurrounded by white space. The
formats of an option are

- namesvalue
- nameto select the default value if it exists.

The options tanewbounds() are listed belw.

Option type Default Action
newbounds()
-rbm string None The walue of the option is the name of a file contain-

ing the bounds matrix for this molecule. This file
would ordinarily be made by the dumpbounds com-
mand.

-binary If this flag is present, bounds read in with thiem
will expect a binary file created by tdempbounds
command.

-nocov If this flag is present, no walent (bonding) informas
tion will be used in constructing the bounds matrix,

-nchi int 4 The option containing theelword nchi allocatesn
extra chiral atoms for each residue of this molecyle.
This allows for additional chirality information to be
provided by the userThe default is 4 extra chira
atoms per residue.

The next fie routines use atonxpressionsaaexl andaex2 to select tw sets of atoms.Each
of these four routines returns the number of bounds set or chaRgedach pair of atomsa(l in
aexl anda2in aex2) andbounds() sets the lower bound to maxyrrent_lIb, Ib) and the upper
bound to the min ¢urrent_ub, ub. If ub < current_Ibor if Ib > current_ub the bounds for that pair
are unchanged. The routimebounds() works in a similar fashion, except that it uses the less
restrictve d the two sets of bounds, rather than the more restdctine. Thesetbounds() call
updates the boundsy@writing whatever was there.showbounds() prints all the bounds between

10/17/106 Distanc&eometry 89

the atoms selected in the first atoxpression and those selected in the second atpression. The
useboundsfrom() routine sets the the bounds between all the selected atonmliaccording to

the geometry of a reference molecute®l2 The bounds are set betweesmrg pair of atoms selected

in the first atom xpressionaexlto the distance between the corresponding pair of atoms selected by
aex2in the reference molecule. In addition, a slack tedeyiation is used to allev some \ariance

from the reference geometry by decreasing the lower bound and increasing the upper bound between
evey pair of atoms selected. The amount of increase or decrease depends on the distance between the
two aoms. Thusadeviationof 0.25will result in the lower bound set betweerot@&oms to be 75%

of the actual distance separating the correspondiogitvms selected in the reference moleci8én-

ilarly, the upper bound betweendvetoms will be set to 125% of the actual distance separating the
corresponding te aoms selected in the reference molecier instance, the call

useboundsfrom(b, moll, "1:2:C1’,N1", mref, "3:4:C1’,N1", 0.10);

sets the laver bound between the C1' and N1 atoms in strand 1, residue 2 of moledit® 90% of

the distance between the corresponding pair of atoms in strand 3, residue 4 of the reference molecule,
mref Smilarly, the upper bound between the C1’ and N1 atoms selectadlirs set to 110% of the
distance between the corresponding pair of atomzr@l A deviationof 0.0 sets the upper andver

bounds betweervery pair of atoms selected to be the actual distance between the corresponding refer
ence atomslf aexlselects the same atomsaex2 the bounds between those atoms selected will be
constrained to the current geometmhus the call,

useboundsfrom(b, mol1, "1:1:", mol1, "1:1", 0.0);

essentially constrains the current geometry of all the atoms in strand 1, residue 1, by setting the upper
and lower bounds to the actual distances separating each atornugatoundsfrom() only

checks the number of atoms selectedabyland compares it to the number of atoms selected by
aex2 If the number of atoms selected by both atom expressions are not equal, an error message is out-
put. Note,howerer, that there is no checking on the atom types selected by either spoesson.

Hence, it is important to understand the method in whadh atom expressions areauated. ©r

more information, refer to Section 2.6, “Atom Names and Atom Expressions”.

The useboundsfrom() function can also be used with distance geometry "templates"”, as
discussed in the next subsection.

The routinesetchivol() uses four atom expressions to selecicdy four different atoms
and sets the volume of the chiral (ordered) tetrahedrgndéseribe tovol . Settingvol to O forces
the four atoms to be planaetchivol() returnsO on success antl on failure. setchivol()
does not affect gndistance bounds ib and may precede or follotriangle smoothing.

Similar tosetchivol() , setchiplane() enforces planarity across four or more atoms by
setting the chiral @ume to0 for every quartet of atoms selected bgx . setchiplane() returns
the number of quartets constrainddote: If the number of chiral constraints set isgar than the
default number of chiral objects allocated in the calhéwbounds() , a ciral table eerflow will
result. Thusjt may be necessary to allocate space for additional chiral objects by specifyiggra lar
number for the optionchiin the call tonewbounds()

10/17/106 Distanc&eometry 20

getchivol() takes as an argument four atorpeessions and returns the chiral volume of the
tetrahedron described by those atorifsmore than one atom is selected for a particular point, the
atomic coordinate is calculated from therage of the atoms selecte&imilarly, getchivolp()
takes as an argument four parameters of pgiat and returns the chiral volume of the tetrahedron
described by those points.

After bounds and chirality lva teen set in this ay, the general approach would be to call
tsmooth() to carry out triangle inequality smoothing, followed émbed() to create a three-
dimensional object. This might then be refined against the distance bounds by ateegjadient
minimization routine. The tsmooth() routine takes te@ arguments: a bounds object, and a toler
ance parametatelta which is the amount by which an upper bound may exceed a lower bound with-
out triggering a triangle errofFor most circumstancedgltawould be chosen as a small numbike
0.0005, to allev for modest round-&f In some circumstances, lwever, deltacould be lager, to dlow
some significant inconsistencies in the bounds (in the hopes that the problems would be fixed in subse-
guent refinement steps.) If thk@mooth() routine detects a violation, it will (arbitrarily) adjust the
upper bound to equal the lower bourdeally, one should fix the bounds inconsistencies before pro-
ceeding, bt in some cases this fix will allothe refinements to proceedea when the underlying
cause of the inconsistenis not corrected.

For lager systems, thesmooth() routine becomes quite time-consuming as it scales O(N"3).
In this case, a more efficient triangle smoothing routyemdesics() is used. geodesics()
smoothes the bounds matrix via the triangle inequality using a sparse reasion\vof a shortest path
algorithm.

Theembed routine takes a bounds object as input, and returns a four-dimensional array of coor
dinates; (values of the 4-th coordinate may be nearly zero, depending @iuthefk4d see belav.)
Options for hav the embed is done are passed in throughlgh@ptionsroutine, whose option string
hasname=valuepairs, separated by commas or whitespadéwed options are listed in the fole
ing table.

10/17/106

Distanc&eometry

Options parametarfor dg_options

keywod default meaning

ddm none Dump distance matrix to this file.

rdm none Instead of creating a distance matrix, read it from this
file.

dmm none Dump the metric matrix to this file.

rmm none Instead of creating a metric matrix, read it from this
file.

gdist 0 If set to non-zero alue, use a Gaussian distriton
for selecting distances; this will Y& a nean at the
center of the allwed range, and a standardid¢ion
equal to 1/4 of the range. If gdist=0, select distances
from a uniform distribution in the allowed range.

randpair 0. Use random pair-wise metrization for this percentage
of the distancesj.e., randpair=10. would metrize
10% of the distance pairs.

eamax 10 Maximum number of embed attempts before bailing
out.

seed -1 Initial seed for the random number generator.

91

10/17/106 Distanc&eometry 92

Options parameterfor dg_options (cont.)
keywod default meaning

pembed 0 If set to a non-zeroalue, use the "proximity embed-
ding" scheme of de Groet al, [26] and Agrafiotis

[27], rather than metric matrix embedding.

shuffle 1 Set to 1 to randomize coordinates inside a box of di-
mensiornrbox at the beginning of theembedscheme;

if 0, use whateer coordinates are fed to the routine

rbox 20.0 Size, in Angstroms, of each side of the cubic into
which the coordinates are randomly created in|the

proximity-embed procedure, shuffleis set.

riter 1000 Maximum number of cycles for random-embed pro-
cedure. Eachkycle selects 1000 pairs for adjustment.

slearn 1.0 Starting \alue for the learning parameter in proximity
embedding; see [27] for details.

kchi 1.0 Force constant for enforcement of chirality can-
straints.

kad 1.0 Force constant for squeezing out the fourth dimen-

sional coordinatelf this is non-zero, a penalty func-
tion will be added to the bounds-violation emer
which is equal to 0.5 k4d * w * w, wherew is the
value of the fourth dimensional coordinate.

sqviol 0 If set to non-zero value, use parabolas for the vipla-
tion energy when upper onder bounds are violated;
otherwise use functions based on those irdtfeom
program. Se¢he code irembed.c for details.

Ibpen 3.5 Weighting factor for lever-bounds violations, relate
to upper-bounds violations. The default penalizes
lower bounds 3.5 times as much as the \@igmt
upperbounds violations, which is frequently appro-
priate distance geometry calculations on molecules.

ntpr 10 Frequeng at which the bounds matrix violations will
be printed in subsequent refinements.
pencut -1.0 If pencut >= 0.0, individual distance and chirality vi-

olations greater than pencut will be printed out (alpng
with the total energy)wery ntpr steps.

Typical calling sequencesThe following segment shows some ways in which these routines can
be put together to do some simple embeds:

1 molecule m;

2 bounds b;

3 float fret, xyz[10000 J;
4 int ier;

5

6 m = getpdb(argv[2]);

10/17/106 Distanc&eometry 93

b = newbounds(m,™);
tsmooth(b, 0.0005);

© 00 N

10 dg_options(b, "gdist=1, ntpr=50, k4d=2.0, randpair=10.");
11 embed(b, xyz);

12 ier = conjgrad(xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 200);
13 printf("conjgrad returns %d\n", ier);

14

15 setmol_from_xyzw(m, NULL, xyz);

16 putpdb("new.pdb”, m);

In lines 6-8, the molecule is created by reading in a pdb file, then bounds are created and
smoothed for it. The embed options (established in line 10) include 10% random pairwise metrization,
use of Gaussian distance selection, squeezing out the 4-th dimension with a force constant of 2.0, and
printing esery 50 steps. The coordinatesvd®ped in theembedstep (line 11) are passed to a conju-
gae gradient minimizer (see the description below), which will minimize for 200 steps, using the
bounds-violation routineb_violas the target functionFinally, in lines 15-16, thesetmol_from_xyzw
routine is used to put the coordinates fromxyearray back into the molecule, and avryadb file is
written.

More comple and representate examples of distance geometry areegi in the Examples
chapter belw.

5.3. Distancegeometry templates.

The useboundsfrom() function can be used with structures supplied by the, wseby
canonical structures supplied with thab distribution called "templates”"These templates include
stacking schemes for all standard residues in a ACBMDNA, C-DNA, D-DNA, T-DNA, Z-DNA,
A-RNA, or A-RNA stack. Alsoincluded are the 28 possible basepairing schemes as described in
Saenger[28].The templates are in PDB format and are locat&§NiABHOME/dgdb/basepairs/
and$NABHOME/dgdb/stacking/

A typical use of these templates would be to set the bounds betweesstdues to some per
centage of the idealized distance described by the template. In this case, the template would be the
reference molecule (the second molecule passed to the funcAadiypical call might be:

useboundsfrom(b, m, "1:2,3:??,H?["T]", getpdb(PATH +
"gc.bdna.pdb™), "::??,H?["T]", 0.1);

where PATH is SNABHOME/dgdb/stacking/ . This call sets the bounds of all the base
atoms in residues 2 (@QU) and 3 (CYT) of strand 1 to be within 10% of the distances found in the
template.

The basepair templates are named so that the first field of the template name is the one-character
initials of the two individual residues and the next field is the Roman numeral corresponding to same
bonding scheme described by Sangefd20. Note: since no specific sugar or backbone conformation
is assumed in the templates, the non-base atoms should mféteaced.The base atoms of the tem-
plates are shwin figures 5 and 6.

The stacking templates are named in the same manner as the basepair teiimatiest two
letters of the template name are the one-character initials of theswlues imolved in the stacking

94

Distanc&eometry

10/17/106

R WA A

aa.l.pdb

Ehe AP R

ag.IX.pdb

3t

at.XXIlIl.pdb

(Hoogsteen)

5

ca.XXV.pdb

ol

ct.XVll.pdb

5

ga.X.pdb

aa.ll.pdb

ag.Vlil.pdb

H

at.XXIV.pdb

(Reversed Hoogsteen)

aa.V.pdb

ag.X.pdb

au.XX.pdb

(Watson- Cnck)

FRe B

ca.XXVl.pdb

TR

ct.XVIll.pdb

SN

ga.Xl.pdb

cc.XIV.pdb

eiss

cu.XVIl.pdb

e

gc.XIX.pdb

(Watson-Crick)

Y

aa.Va.pdb

JEng

ag.IX.pdb

R

au.XXl.p

(Reversed Watson -Crick)

0

cc.XV.pdb

ehes

cu.XVlll.pdb

0,

gc. XXll.pdb

(Reversed Watson-Crick)

3%

ac.XXV.pdb

Rees

at.XX.pdb
(Watson-Crick)

X

au.XXlll.pdb

(Hoogsteen)

33 5

cg.XIX.pdb

(Watson-Crick)

e

ga.IX.pdb

ey

ac.XXVl.pdb

pelhte

at.XXl.pdb

(Reversed Watson-Crick)

fagst

au.XXIV.pdb

(Reversed Hoogsteen)

T

cg.XXll.p

(Reversed Watson -Crick)

g o

ga.Vlil.pdb

e B

gg.lll.pdb

gg.IV.pdb

(aa-gg).

Figure 5 Basepair templates for use witkeboundsfrom()

95

Distanc&eometry

10/17/106

I

g9.Vl.pdb

ielay

gu.XXVIl.pdb

$t b

tc.XVil.pdb

2

tt.XVI.pdb

geges

ua.XXl.pdb

(Reversed Watson -Crick)

T

ug.XXVllil.pdb

XX X

uu.XVl.pdb

£ IR

g9.Vll.pdb
gu.XXVIll.pdb

s

tc.XVIll.pdb

Tk

tt.XVla.pdb

Seared

ua.XXlll.pdb

(Hoogsteen)

7

ut.XIl.pdb

1 5y

uu.XVla.pdb

o e H Ry

gg.Vlla.pdb

gg.Via.pdb

gt. XXVII pdb

A AT

ta.XX.pdb
(Watson- Crlck)

R Sof

tg.XXVIl.pdb

ol

tu.Xll.pdb

7 P

ua.XXIV.pdb

(Reversed Hoogsteen)

SRS

ut.Xlll.pdb

ta.XXI.p

(Reversed Watson Crlck)

tg.XXVIil.pdb

X0

tu.XI11.pdb

H &

uc.XVIl.pdb

XX

ut.XVI.pdb

ta.XXIll.pdb

(Hoogsteen)

5

tt.X11.pdb

e

tu.XVl.pdb

3t

uc.XVIll.pdb

Ry AE

gt.XXVIILpdb

T

ta.XXIV.pdb

(Reversed Hoogsteen)

g

tt.XI1l.pdb

peeoas

ua.XX.pdb
(Watson- Crlck)

BoR st

ug.XXVll.pdb

LERL O

uu.Xll.pdb

uu.XIll.pdb

(9g-uu).

scheme (5’ residue, then 3’ residue) and the second field is the actual helical patterna¢rna

Figure 6. Basepair templates for use witkeboundsfrom()

represents the helical pametes of drna). Thefollowing stacking shemes are included in iz

10/17/106

distribution:

aa.a-rna.pdb ca.adna.pdb ga.adna.pdb ta.bdna.pdb
aa.adna.pdb ca.arna.pdb ga.arna.pdb ta.cdna.pdb
aa.arna.pdb ca.bdna.pdb ga.bdna.pdb ta.ddna.pdb
aa.bdna.pdb ca.cdna.pdb ga.cdna.pdb ta.tdna.pdb
aa.cdna.pdb ca.ddna.pdb ga.ddna.pdb tc.adna.pdb
aa.ddna.pdb ca.tdna.pdb ga.tdna.pdb tc.bdna.pdb
aa.tdna.pdb cc.a-rna.pdb gc.a-rna.pdb tc.cdna.pdb
ac.a-rna.pdb cc.adna.pdb gc.adna.pdb tc.ddna.pdb
ac.adna.pdb cc.arna.pdb gc.arna.pdb tc.tdna.pdb
ac.arna.pdb cc.bdna.pdb gc.bdna.pdb tg.adna.pdb
ac.bdna.pdb cc.cdna.pdb gc.cdna.pdb tg.bdna.pdb
ac.cdna.pdb cc.ddna.pdb gc.ddna.pdb tg.cdna.pdb
ac.ddna.pdb cc.tdna.pdb gc.tdna.pdb tg.ddna.pdb
ac.tdna.pdb cg.a-rna.pdb gc.zdna.pdb tg.tdna.pdb
ag.a-rna.pdb cg.adna.pdb gg.a-rna.pdb tt.adna.pdb
ag.adna.pdb cg.arna.pdb gg.adna.pdb tt.bdna.pdb
ag.arna.pdb cg.bdna.pdb gg.arna.pdb tt.cdna.pdb
ag.bdna.pdb cg.cdna.pdb 09.bdna.pdb tt.ddna.pdb
ag.cdna.pdb cg.ddna.pdb gg.cdna.pdb tt.tdna.pdb
ag.ddna.pdb cg.tdna.pdb gg.ddna.pdb ua.a-rna.pdb
ag.tdna.pdb cg.zdna.pdb gg.tdna.pdb ua.arna.pdb
at.adna.pdb ct.adna.pdb gt.adna.pdb uc.a-rna.pdb
at.bdna.pdb ct.bdna.pdb gt.bdna.pdb uc.arna.pdb
at.cdna.pdb ct.cdna.pdb gt.cdna.pdb ug.a-rna.pdb
at.ddna.pdb ct.ddna.pdb gt.ddna.pdb ug.arna.pdb
at.tdna.pdb ct.tdna.pdb gt.tdna.pdb uu.a-rna.pdb
au.a-rna.pdb cu.a-rna.pdb gu.a-rna.pdb uu.arna.pdb
au.arna.pdb cu.arna.pdb gu.arna.pdb

ca.a-rna.pdb ga.a-rna.pdb ta.adna.pdb

Distanc&eometry

96

5.4. Boundsdatabases.

In addition to canonical templates, it is also possible to specify bounds information from a
database of known molecular structures. Thisvides the option to use data obtained from actual
structures, rather than from an idealized, canonical conformation.

The functionsetboundsfromdb() sets the bounds of all pairs of atoms between tloe tw
residues selected laex1 andaex2 to a statistically @eraged distance calculated from kwostruc-
tures plus or minus a multiple of the standardatéon. Thestatistical information is kept in database
files. Currentlythere are three types of database files - Those containing bounds information between
Watson-Crick basepairs, those containing bounds information between helically stacked residues, and
those containing intra-residue bounds information for residuesyircamformation. Thestandard
deviation is multiplied by the parametetul and subtracted from theeage distance to determine the
lower bound and similarly added to thesi@ge distance to determine the upper bound of all base-base
atom distances. Base-backbone bounds, that is, bounds between pairs of atoms in which one atom is a

10/17/106 Distanc&eometry 97

base atom and the other atom is a backbone atom, are set to be looser than base-ba&Speaitims.

cally, the lower bound between a base-backbone atom pair is set to the smallest measured distance of
all the structures considered in creating the datalfiseilarly, the upper bound between a base-back-

bone atom pair is set to the largest measured distance of all the structures considered. Base-base, and
base-sugr bounds are set in a similar mann&his was done tovaid imposing false constraints on

the atomic bounds, since Watson-Crick basepairing and stacking does not preglguectic back-

bone and sugar conformatiosetboundsfromdb() first searches the current directory tiirase

before checking the default database locatdABHOME/dgdb

Each entry in the database file has six fieltlse atoms whose bounds are to be set, the number
of separate structures sampled in constructing these statisticyethgeadistance between theotw
atoms, the standard deviation, the minimum measured distance, and the maximum measured distance.
For example, the databadelina.basepair.db has the following sample entries:

A:C2-T:C1' 424 6.167 0.198 5.687 6.673
A:C2-T:C2 424 3.986 0.175 3.554 4.505
A:C2-T:C2' 424 7.255 0.304 5.967 7.944
A:C2-T:C3" 424 8.349 0.216 7.456 8.897
A:C2-T:C4 424 4.680 0.182 4.122 5.138
A:C2-T:C4" 424 8.222 0.248 7.493 8.800
A:C2-T:C5 424 5.924 0.168 5.414 6.413
A:C2-T:C5" 424 9.385 0.306 8.273 10.104
A:C2-T:C6 424 6.161 0.163 5.689 6.679
A:C2-T:C7 424 7.205 0.184 6.547 7.658

The first column identifies the atoms from the adenosine C2 atomrittuy thymidine atoms in a
Watson-Crick basepairThe second column indicates td&4 structures were sampled in determining
the net four columns: thewrage distance, the standard deviation, and the minimum and maximum
distances.

The databases were constructing using the coordinates from all the kooleid acid structures
from the Nucleic Acid Database (NDBhttp://www.ndbserver.ebi.ac.uk:5700/NDB/
If one wishes to remakthe databases, the coordinates of all the NDB structures shouIWbE)ald»ed
and lept in the$NABHOME/coords directory The databases are made by issuing the command
$NABHOME/dgdb/make_databases dblistwheredblistis a list of nucleic acid types (i.e., bdna,
arna,etc.). If one wants to add mestructures to the structure repository$ABHOME/coords, it
is necessary to malaure that the first tevletters of the pdb file identify the nucleic acid type, al
bdna pdb files must begin witidl.

Thenab functions used to create the databases are locagABHOME/dgdb/functions
The stacking databases were constructed asmv&illdf two residues stacked 5’ to 3’ in a helixvea
fewer than ten interesidue atom distances closer than°2(ﬁAarger than 9.0Aand if the normals
between the base planes are less than 20.0°, the residues were considerdd Statlase plane is
calculated as the normal to the N1-C4 and midpoint of the C2-N3 and Née@¥ss Thdirst atom
expression gien to setboundsfromdb() specifies the 5’ residue and the second atgpnession
specifies the 3’ residue. The source for this functigetstackdist.nab

Similarly, the basepair databases were constructed by measuring tigeataaa distances of cor
responding residues in a helix to check for hydrogen bondbpegcifically if an A-U basepair has an
N1-N3 distance of between Z.3#d 3.ZAand a N6-O4 distance of between 28dd 3.3A then the
A-U basepair is considered aatin-Crick basepair and is used in the datab&s€-G basepair is

10/17/106 Distanc&eometry 98

considered Watson-Crick paired if the N3-N1 distance is betweenah8/8.3A the N4-O6 distance
is between 2.34&nd 3.7A and the O2-N2 distance is between 28#d 3.7A

The nucleotide databases contain all the distance information between atoms in the same residue.
No residues in the coordinates directory are excluded from this database. The intent wasthe allo
residues of this database to assume all possible conformations and ensure that a nucleotide residue
would not be biased to a particular conformation.

For the basepair and stacking databases, setting the paramuéterl.Oresults in lower bounds
being set from thevarage database distance minus one standafidti®, and upper bounds as the
aveaage database distance plus one standasdtas, between base-base atoms. Base-backbone and
base-sugr upper and lwer bounds are set to the maximum and minimum measured datahass v
respectrely. Note howeverthat a stacking multiple of 0.0 may not correspond to consistent bounds.
A gadcking multiple of 0.0 will pvbably have conflicting bounds information as the bounds informa-
tion is derived from many different structures.

The three different database types vided with the nab distribution are named
nucleic_acid_type.database_tyile. The following databases are included in the distribution:

adna.basepair.db
adna.stack.db
adna.nucleotide.db
arna.basepair.db
arna.stack.db
arna.nucleotide.db
bdna.basepair.db
bdna.stack.db
bdna.nucleotide.db
trna.nucleotide.db
trna.stack.db
zdna.basepair.db
zdna.stack.db
zdna.nucleotide.db

10/17/106 Moleculamechanics and molecular dynamics 99

6. Molecular mechanics and molecular dynamics.

The initial models created by rigid-body transformations or distance geometry are often in need
of further refinement, and molecular mechanics and dynamics can often be usefabbehas fcil-
ities to allav molecular mechanics and molecular dynamics calculations to be carried out. At present,
this uses the AMBER program LEaP to set up the parameters and topology; the force field calculations
and manipulations li& minimization and dynamics are done by routines inrthle suite. Aversion
of LEaP is included in the AB distribution, and is accessed by thap() discussed bela. A later
chapter gies a nore detailed description.

6.1. Basicmolecular mechanics routines

molecule getpdb_prm(string pdbfile, string leaprc, string leap_cmd2,
int savef);

int readparm(molecule m, string parmfile);

int mme_init(molecule mol, string aexp, string aexp2,
point xyz_ref], file f);

int mm_options(string opts);

float mme(point xyz[], point grad][], int iter);

float mme_rattle(point xyz[], point grad[], int iter);

int conjgrad(float x[], int n, float fret, float func(),

float rmsgrad, float dfpred, int maxiter);

int md(int n, int maxstep, point xyz[], point f[],
float v], float func);

int getxv(string filename, int natom, float start_time,
float x[], float v[]);

int putxv(string filename, string title, int natom, float start_time,
float x[], float v[]);

int getxyz(string filename, int natom, float xyz[]);

int putxyz(string filename, int natom, float xyz[]);

void mm_set_checkpoint(string filename);

Thegetpdb_prm() is a lot like getpdb() itself, except that it creates a molecule (and the
associated force field parameters) that can be used in subsequent molecular mechanics caltulations.
is often adequate to eert an input PDB file into a NAB molecule. (If this routirel$, you be able to
fix things up by editing your input pdb file, and/or by modifying l&wegorc or leap_cmd2strings; if
this doesrt work you will have © run tleap by hand, create a prmtop file, and use readparm() to read
this in.)

Theleaprc string is passed to LEaéhd identifies which parameter and force field libraries to
load. Samplédeaprc files are iISNABHOME/leap/cmd , and there is no dafilt. Theleap_cmd2

10/17/106 Moleculamechanics and molecular dynamics 100

string is interpreted after the molecule has been read in to a unit calledypitally, commands_2

would modify the molecule, say by adding or removing bonds, etc. The final paresagtdr will

save the intermediate files if non-zero; otherwise, all intermediate files created will beetknget-
pdb_prm() returns a molecule whose force field parameters are already populated, and hence is
ready for further force-field manipulation.

readparm reads an AMBER parameter-topology file, createtldgp or with other AMBER
programs, and sets up a data structure which we call a "parmstruct”. This is part of the malecule, b
is not directly accessible (yet) tab programs. @u would use this command as an alteveatd
usinggetpdb_prm() . You need to be sure that the molecule used inmghdparm() call has
been created by callingetpdb() with a PDB file that has been created by tleap itéelfthat has
exactly the Amber atoms in the correct order). As noted/glibereadparm() routine is primarily
intended for cases whegetpdb_prm() fails (i.e. when you need to rutteapby hand.

setxyz_from_mol() copies the atomic coordinates afol to the arrayxyz . set-
mol_from_xyz() replaces the atomic coordinatesnebl with the contents okyz . Both return
the number of atoms copied wittDandicating an error occurred.

Thegetxv() andputxv() routines read and write Amber-style restart files theé fwaordi-
nates andelocities. Thesgetxyz() andputxyz() routines read and write restart files thatéha
coordinates only (and notelocities). Thecoordinates are written at higher precision than to an
AMBER restart file, i.e., with sufficiently high precision to restamnea Newton-Raphson minimiza-

tion where the error in coordinates may be on the orde03f. Theputxyz() routine is used in
conjunction with themm_set_checkpoint() routine to write checkpoint or restart filehe
checkpoint files are written at iteration intaels that are specified by tinehkor nchk2parameters to
themm_options() routine (see belw). Thecheckpoint file names are determined by the filename
string that is passed tmm_set checkpoint() . If filename contains one or more %d format
specifiers, then the file name will be a modificatiorfitfname wherein the leftmost %d difename

is replaced by the iteration count. If filename contains no %d format spebifierthe file name will

be filenamawith the iteration count appended on the right.

Themme_init function must be called aftenm_options and before calls tmme. It sets up
parameters for future force fielgauations, and takes as inputaab molecule. Thestringaexp is
an atom gpression that indicates which atoms are to be allowed %@ inaninimization or dynamics:
atoms that do not mataexp will have their positions in the gradient vector set to zefoNULL
atom expression will alle al atoms to mee. The second stringexp2 identifies atoms whose posi-
tions are to be restrained to the positions in the atyayref . The strength of this restraint will be
given by thewcons variable set in mm_optionsA NULL value foraexp2 will cause all atoms to be
constrained. Thdast parameter tonme_init is a file pointer for the output trajectory fil&his
should be NULL if no output file is desired.

mm_options is used to set parameteram_options must be called beformme_init ; if
you change options through a callnbon_options without a subsequent call me_init you may
get incorrect calculations with no error messagesveBe Theopts string contains é&yword/value
pairs of the fornkeyword=value separated by white space or commAlowed values are shm
in the accompanying table.

10/17/106

Moleculamechanics and molecular dynamics

Options parametarfor mm_options

101

keywod
ntpr

e_debug
gb_debug
gb2_debug
nchk
nchk2
nsnb

cut

scnb

scee

wcons

dim

kad

default
10

10000
10000
25

8.0
2.0

1.2

0.0

1.0

meaning
Frequeng of printing of the energy and its comp
nents.
If non-zero printout additional components of the
ergy.
If non-zero printout information about Born fin
deriatives.
If non-zero printout information about Born secg
deriatives.
Frequenc of writing checkpoint file during firs
derivative alculation, i.e., in the mme() routine.
Frequenc of writing checkpoint file during secon
derivative alculation, i.e., in the mme2() routine.
Frequeng at which the non-bonded list is updated.
Non-bonded cutoff, in Angstroms.
Scaling factor for 1-4 nonbonded interactions adéf
corresponds to the all-atom Amber force fields.
Scaling fctor for 1-4 electrostatic interactionsle-

t

o

fault corresponds to the 1994 and later Amber farce

fields.
Restraint weight for keeping atoms close to their
sitions inxyz_ref (seemme_ini}.

po-

Number of spatial dimensions; supported values dre 3

and 4.

Force constant for squeezing out the fourth dimen-

sional coordinate, if dim=4. If this is non-zero,

penalty function will be added to the bounds-vigla-

tion enegy, which is equal to 0.5 k4d * w * w,

wherew is the \alue of the fourth dimensional ceqr

dinate.

10/17/106

Moleculamechanics and molecular dynamics

102

Options parameterfor mm_options (continued)

keywod
dt

rattle

tautp

gamma_|In

tempO
vlimit
ntpr_md
ntwx

zerov

tempi

genmass

default
0.001
0.0

0

2.0

300.
20.

10

10.

meaning
timestep, ps.
initialtime, ps.

If set to 1, bond lengths will be constrained to their

equilibrium alues, for dynamics; default is not to i
clude such constraint$\ote: if you want to use rattl

(effectively "shake") for minimization, you do not

need to set this parameter; rathgrass the
mme_rattle() function toconjgrad()
temperature coupling parameterps. Thetime con-

stant determines the strength of the weak-coupling

("Berendsen") temperature bath [2%ettautpto a
very large value (e.g. 9999999.) in order to turh
coupling and reert to Newtonian dynamics.This
variable only has an &fct if gamma_Ilrremains at itg
default wvalue of zero; ifgamma_lnis not zero,

Langevin dynamics is assumed, as discussedavbelo

Collision frequenyg for Langevin dynamics, in gs
Values in the range 2-5 Psoften give aceptable
temperature control, while allowing transitions

take pace [30]. Values near 50 pscorrespond to the
collision frequeng for liquid water and may be use

ful if rough ptysical time scales for motion are de-
sired. Theso-called BBK integrator is used here

[31].

taget temperature, K

maximum absolutealue of ay component of theer
locity vector

printingfrequeng for dynamics information to stdo
frequenyg for dumping coordinates to traj_file

if non-zero, then the initial velocities will be set
zero.

if zelov=0 andtemp#0, then the initial velocities wil
be randomly chosen for this temperature. If b
zepv and tempi are zero, the elocities passed int
the md() function will be used as initiaklocities;
this is combination is useful to continue afiséng
trajectory.

of

—

U

to

oth

The general mass to use for MD if individual masses

are not read from a prmtop file; value in amu.

10/17/106

Moleculamechanics and molecular dynamics

103

Options parameterfor mm_options (continued)

keywod
diel

dielc

gb

rgbmax

ghsa

surften
gb_debug

epsext

kappa

default
C

1.0

999.

0.005

78.5

0.0

meaning
Code for the dielectric model. "C"\gs a delectric

constant of 1; "R" mads the dielectric constant equal

to distance in Angstroms; "RL" uses the sigmoi
function of Ramstein & Leery, PNAS 85, 7231

(1988); "RL94" is the same thingubspeeded up as

suming one is using the Cornadt al force field;

dal

"R94" is a distance-dependent dielectric, again with

speedups that assume the Coragdl.force field.
This is the dielectric constant used fam-GBsimu-
lations. Itis implemented in routinenme_init()
by scaling all of the chges by sqrt(dielc)

This means that you need to set this (if desired) in

mm_options() before callingnme_init()

If set to 1, use the Hawkins, Cramer Truhlar (HCT)

form of pairwise generalized Born model for sol
tion. Seeref [32]. for details of the implementatio
this is equialent to theigb=1 option in Amber Set
diel to "C" if you use this option.

Setting gb=2 turns on the "OnufvieBashford, Case
(OBC) variant of GB [33,34], withh=0.8, 5=0.0 and
y=2.909. Thisis equvalent to theigh=2 option in
Amber8. Settinggbh=5 just changes thales ofa,

B and y to 1.0, 0.8, and 4.85, respeety, corre-
sponding to thégb=>5 option in Amber8.

A maximum value for considering pairs of atoms
contribute to the calculation of the fe€tive Born

radii. Thedefault value means that there ideef

tively no cutof. Calculationswill be sped up by us
ing smaller values, say around 15. A or so.

-

If setto 1, add a swa€e-area dependent energy equal

to surfen*SASA, where surften is discussed el
and SASA is an approximate surface area teAB

uses the "LCPO" approximation\atoped by Veis-
er, Shenkin, and Still [35].

Surface tension (segbsa above) in kcal/mol-A2.

If set to 1, print out detailed information about the

generalized Born calculation®©nly useful for small
molecules, since it generates voluminous output.

Exterior dielectric for generalized Born; interior di-

electric is alvays 1.

Inverse of the Debye-Huek length, if gb is turned

on, in AL

10/17/106 Moleculamechanics and molecular dynamics 104

The mme() function takes a coordinate set and returns the energy in the function value and the
gradient of the energy igrad . The input parametater is used to control printing (see thipr vari-
able) and non-bonded updates (ssel). Themme_rattle() function has the same interfacet b
constrains the bond lengths and returns a corrected gradient. If you want to minimize with constrained
bond lengths, semiime_rattleand notmmeto theconjgradroutine.

The conjgrad() function will carry out conjugte gradient minimization of the function
func that depends upon parameters, whose initial values are in tharray The functionfunc
must be of the fornfunc(x[], g[], iter) , Wwherex contains the inputalues, and the func-
tion value is returned through the function call, and its gradient with respeahtough theg array.
The iteration number is passed throuigh , which func can use for whater purpose it wants; a
typical use wuld just be to determine when to print results. The input parardfgeed is the
expected drop in the functioralue on the first iteration; generally only a rough estimate is needed.
The minimization will proceed untinaxiter steps hee been performed, or until the root-mean-
square of the components of the gradient is lessrthagrad. The value of the function at the end
of the minimization is returned in the varialilet . conjgrad can return a variety of exit codes:

Return codes for conjgrad routine

>0 minimizationcorverged; gives number of final iteration

-1 bad line search; probably an error in the relation of| the
function to its gradient (perhaps from round-ibfy ou
push too hard on the minimization).

-2 searchdirection was uphill

-3 eceeded the maximum number of iterations

-4 couldnot further reduce function value

Finally, the md function will run maxstep steps of molecular dynamics, usifnc as the
force field (this would typically be set to a function 8kmme) Thenumber of dynamical variables is
given as nput parametenm: this would be 3 times the number of atoms for ordinary casésyight be
different for other force fields or function¥he array(], f{] andv[] hold the coordinates, gra-
dient of the potential, andelocities, respeactély, and are updated as the simulation progreBse
method of temperature regulation (if any) is specified by #énablestautpandgamma_Irthat are set
in mm_options()

Note: In versions of NAB up to 4.5.2, there was an additional input varialel{p calledminv
that resered space for the werse of the masses of the patrticles; this hag been remwed. This
change is not backwards compatible: you must modifstiag NAB scripts that calind() to remwe
this variable.

6.2. Typical calling sequences.

The following segment shows somays in which these routines can be put together to do some
molecular mechanics and dynamics:

1 I carry out molecular mechanics minimization and some simple dynamics
2 molecule m, mi;

3 int ier;

4 float m_xyz[dynamic], f_xyz[dynamic], v[dynamic];

5 float dgrad, fret, dummy[2];

10/17/106 Moleculamechanics and molecular dynamics 105

6
7 mi = bdna("gcgc");
8 putpdb(mi, "temp.pdb");
9 m = getpdb_prm("temp.pdb", "leaprc.ffo4", ", 0)
10
11 allocate m_xyz[3*m.natoms]; allocate f_xyz[3*m.natoms |;
12 allocate v[3*m.natoms |;
13 setxyz_from_mol(m, NULL, m_xyz);
14
15 mm_options("cut=25.0, ntpr=10, nsnb=999, gamma_In=5.0");
16 mme_init(m, NULL, "::ZZZ7", dummy, NULL);
17 fret = mme(m_xyz, f xyz, 1);
18 printf("Initial energy is %8.3f0, fret);
19
20 dgrad = 0.1;
21 ier = conjgrad(m_xyz, 3*m.natoms, fret, mme, dgrad, 10.0, 100);
22 setmol_from_xyz(m, NULL, m_xyz);
23 putpdb("gcgc.min.pdb”, m);
24
25 mm_options("tautp=0.4, temp0=100.0, ntpr_md=10, tempi=50.");
26 md(3*m.natoms, 1000, m_xyz, f xyz, v, mme);
27 setmol_from_xyz(m, NULL, m_xyz);
28 putpdb("gcgc.md.pdb”, m);

Line 7 creates an nab moleculeyamab creation method could be used here. Then a temporary
pdb file is created, and this is used to generate a NAB molecule that can be used for force-field calcula-
tions (line 9). Lines 11-13 allocate some memoand fill the coordinate array with the molecular
position. Linesl5-17 initialize the force field routine, and call it once to get the initialggnérhe
atom epression "::ZZZ" will match no atoms, so that there will be no restraints on the atoms; hence
the fourth argument taime_init can just be a place-holgance there are no reference positions for
this example. Minimizationtakes place at line 21, which will cathmerepeatedlyand which also
arranges for its own printout of resultSinally, in lines 25-28, a short (1000-step) molecular dynamics
run is made. Note the the initialization routimene_init mustbe called before calling thevaua-
tion routinesnmeor md

Elaboration of the the alile sheme is generally straightfoand. For example, a simulated
annealing run in which the et temperature is slowly reduced to zero could be written as swecessi
calls tomm_options (setting thetempO parameter) andhd (to run a certain number of steps with
the nev tarmget temperature.) Note also that routines other thiarecould be sent tgonjgrad and
md any routine that takes the same three arguments and returns a float fuati®rcould be used.

In particular the routinesdb_viol (to get violations of distance bounds from a bounds matrix) or
mme4(to compute molecular mechanics energies in four spatial dimensions) could be use&drhere.
you can write yourwn nab routine to do this as wellFor some examples, see thgbrna gbrna_long
andrattle_mdprograms in th&éNABHOME!/test directory.

10/17/106 Moleculamechanics and molecular dynamics 106

6.3. Secondlerivatives and normal modes

Russ Brown has contributedweodes that compute analytically the secondvdgvies of the
Amber functions, including the generalized Born terms. This capability resides in the three functions
described here.

float mme2(float x[], float g[], float h[], float mass][], int iter);

float newton(float x[], int n, float fret, float funcl(), float func2(),
float rms, float nradd, int maxiter);

float nmode(float x[], int n, float func(), int eigp);

These routines construct and manipulate a Hessian (secowatidenmatrix), allowing one (for
now) to carry out Nevton-Raphson minimization and normal mode calculatidiiee mme2() routine
takes as input @*natom vector of coordinatex[] , and returns a gradienteetorg[] , a Hessian
matrix, stored columnwise in 3tnatom x 3*natonmvector h[] , and the masses of the system, in a
vector m[] of lengthnatom The iteration ariableiter is just used to control printing. At present,
these routines only work fgb=0 or 1

Users will generally not cainme2() directly, but will pass this as an argument to one of the
next two routines.

The newton() routine takes a input coordinate§ and a size parametar(must be set to
3*natom). It performs Neton-Raphson optimization until the root-mean-square of the gradent v
tor is less thamms, or until maxiter steps hee been takn. For now, the input functiorfunci()
must bemme() andfunc2() must bemme2(). The valuenradd will be added to the diagonal of
the Hessian before the step equations areedphhis is generally set to zero, but can be set something
else under particular circumstances, which we do not discuss here [36].

Generally you only want to try Newton-Raphson minimization (which can be vepgresve)

after you hae gtimized structures witltonjgrad() to an rms gradient of or so. In most
cases, it should only taka snall number of iterations then to go down to an rms gradient of about

1012 or so, which is somewhere near the precision limit.
Once a good minimum has been found, you can usentioele() function to compute normal
modes and thermochemical parameters. The first thgeenants are the same asriewton() , and

the final integer gies the number of eigeectors to compute. These will be written to an Amber
compatible Vecs file. Thereare currently nmab routines that use this format.

Here is a typical calling sequence:

molecule m;
float x[4000], fret;

m = getpdb_prm("mymolecule.pdb”);

mm_options("cut=999., ntpr=50, nsnb=99999, diel=C, gb=1, dielc=1.0");
mme_init(m, NULL, "::Z", x, NULL);

setxyz_from_mol(m, NULL, x);

0O ~NO O WDNLPRE

10/17/106

10
11
12
13
14
15
16
17

Moleculamechanics and molecular dynamics

/I conjugate gradient minimization
conjgrad(x, 3*m.natoms, fret, mme, 0.1, 0.001, 2000);

/I Newton-Raphson minimization
mm_options("ntpr=1");
newton(X, 3*m.natoms, fret, mme2, 0.00000001, 0.0, 6);

//get the normal modes:
nmode(X, 3*m.natoms, mme2, 0);

107

10/17/06 Sampl&lAB applications 108

7. SampleNAB applications.

This chapter provides a variety ofaenples that use the basic NAB functionality described in
earlier chapters to savinteresting molecular manipulation problen@ur hope is that the ideas and
approaches illustrated here will facilitate construction of similar programs te &bbr problems.

7.1. DuplexCreation Functions.

nab provides a variety of functions for creating Watson/Crick dxgde A short description of
four of them is gien in this section. All four of these functions are writtematb and the details of
their implementation is a@red in the sectio@reating Watson/Crick Duplexesof theUser Manual.
You should also look at the functiofd_helix() to see hw to create duple helices that corre-
spond to fibre-diffraction models. As with the PERL language, "there is more than one way to do it."

molecule bdna(string seq);

string wc_complement(string seq, string rlib, string rlt);

molecule wc_helix(string seq, string rlib, string natype,
string cseq, string crlib, string cnatype,
float xoffset, float incl, float twist, float rise,
string options);

molecule dg_helix(string seq, string rlib, string natype,
string cseq, string crlib, string cnatype,
float xoffset, float incl, float twist, float rise,
string options);

molecule wc_basepair(residue res, residue cres);

bdna() corverts the character strirgeq containing one or mora, C, Gor Ts (or their lover
case equialents) into a uniform ideal ¥son/Crick B-form DM duplex. Each basepair has an X-of
set of 2.25Aan nclination of -4.96° and a helical step of 3°38#%e and 36.0° twist. The first charac-
ter of seq is the 5’ base of the straidense" of the molecule returned kydna() . The other
strand is calledanti" . The phosphates of the &b’ bases hee been replaced by hydrogens and
and hydrogens ke been added to the swO3’ atoms of the three prime basésina() returns
NULLIf it can not create the molecule.

wc_complement() returns astring that is the Viltson/Crick complement of itsgument
seq. EachC, G T (U) in seq is replaced by CandA. The replacements fék depends iflt s
DNA or RNA. Ifitis DNA, Ais replaced byl. If itis RNA Alis replaced byJ. wc_complement()
considers lower case and upper case letters to be the samevaysl raturns upper case letters.
wc_complement() returnsNULL on error Note that the while the orientations of thgument
string and the returned string are opposite, their absolute orientaticmnsdafeneduntil they are used
to create a molecule.

wc_helix() creates a uniform duptefrom its arguments. The bagrands of the returned
molecule are called'sense” and"anti" . The two sequencesseq andcseq must specify Vat-
son/Crick base pairs. Note the that must be specifiddveer-casestrings, such as "ggt". The
nucleic acid type (DN or RNA) of the sense strand is specifiedratype and of the complemen-
tary strandcseq by cnatype . Two residue libraries-#ib andcrlib — permit creation of
DNA:RNA heteroduplzes. If eitherseq or cseq (but not both) isNULL only the specified strand of
what would hge keen a uniform dupleis created. Theptions string contains some combination

10/17/06 Sampl&lAB applications 109

of the strings "s5", "s3", "ab" and "a3"; these indicate which §i) ah the ends of the helices should

be "capped" with ydrogens attached to the O5’ atom (in place of a phosphate) if "s5" or "a5" is speci-
fied, and a proton added to the O3’ position if "s3" or "a3" is specifiedlank string indicates no
capping, which would be appropriate if this section of helix were to be inserted inge@artalecule.

The string "s5a5s3a3" would cap the 5" and 3’ ends of both the "sense" and "anti" strands, leading to a
chemically complete moleculavc_helix() returnsNULLon error.

dg_helix() is the functional equélent of wc_helix() but with the backbone geometry
minimized via a distance constraint error functiaag_helix() takes the same arguments as
wc_helix()

wc_basepair() assembles tavnucleic acid residues (assumed to be in a standard orientation)
into a two granded molecule containing one Watson/Crick base ph& two drands of the ne
molecule arésense” and"anti" . ItreturnsNULLon error.

10/17/06 Sampl&lAB applications 110

7.2. naband Distance Geometry.

Distance geometry is a method whichweits a molecule represented as a set of interatomic dis-
tances and related information into a 3-D structaed has seeral builtin functions that are used
together to provide metric matrix distance geometap also provides théounds type for holding
a nmolecules dstance geometry information. Bounds object contains the molecuteinteratomic
distance bounds matrix and a list of its chiral centers and thleimes.nab uses chiral centers with a
volume of0 to enforce planarity.

Distance geometry hasvgeal advantages. It is unique in itsvper to create structures froreny
incomplete descriptions. It easily incorporatesw‘leesolution structural data” such as that kst
from chemical probing since these kinds xp&riments generally return only distance bounds. And it
also provides an ajent method by which structures may be described functionally.

Thenab distance geometry package is described more fully in the sétfi@l anguage Ref-
erence Generally the functionnewbounds() creates and returnsk®unds object corresponding
to the moleculemol. This object contains twthings—a distance bounds matrix containing initial
upper and lower bounds fovesy pair of atoms inmol and a initial list of the molecules chiral centers
and their wlumes. Once bounds object has been initialized, the modeller uses functions from the
middle of the distance geometry function list to tighten, loosen or set other distance bounds and chiral-
ities that correspond to experimental measurements or parts of thesggdethesis. The four func-
tionsandbounds() , orbounds() , setbounds anduseboundsfrom() work in similar fash-
ion. Each uses twvaom expressions to select pairs of atoms frooi. In andbounds() , the cur
rent distance bounds of each pair are comparathsth andub and are replaced by , ub if they
represent tighter boundsrbounds() replaces the current bounds of each selectedipdir, ub
represent looser boundsetbounds() sets the bounds of all selected pairslig ub. use-
boundsfrom() sets the bounds between each atom selected in the first expression to a percentage of
the distance between the atoms selected in the second gtoession. Ifthe two a@om expressions
select the same atoms from the same molecule, the bounds between all the atoms selected will be con-
strained to the current geometisetchivol() takes four atom expressions that must seleatty
four atoms and sets the volume of the tetrahedron enclosed by those atains $ettingvol to 0
forces those atoms to be planagetchivol() returns the chiral volume of the tetrahedron
described by the four points.

After all experimental and model constrainta/dndeen entered into thieounds object, the
functiontsmooth() applies a process called “triangle smoothing” to them. This tests each triple of
distance bounds to see if thean form a triangle. If thecan not form a triangle then the distance
bounds do notwen represent a Euclidean object let alone a 3-D dhehis occurs,tsmooth()
quits and returns & indicating &ilure. Ifall triples can form trianglessmooth() returns &. Tri-
angle smoothing pulls in the & upper bounds. After all, the maximum distance betweerstwns
can not exceed the sum of the upper bounds of the shortest path between them. Triangle smoothing can
also increase lower bounds, but this process is much les$ivef & it requires one or more e
lower bounds to begin with.

The functionembed() takes the smoothed bounds andats them into a 3-D object. This
process is called “embedding”. It does this by choosing a random distance for each pair of atoms
within the bounds of that paiSometimes the bounds simply do not represent a 3-D object and
embed() fails, returning the &lue 1. This is rare and usually indicates the that the distance bounds
matrix part of thebounds object contains errors. If the distance set does endoegyrad() can
subject newly embedded coordinates to caajgigradient refinement against the distance and chiral-
ity information contained itbounds . The refined coordinates can replace the current coordinates of
the molecule inmol. embed() returns a0 on success andonjgrad() returns an exit code

10/17/06 Sampl&lAB applications 111

explained further in théanguage Refeencesection of this manual. The call émnbed() is usually
placed in a loop with each westructure saed &ter each call to see theveisity of the structures the
bounds represent.

In addition to the explicit bounds manipulation functiomsb provides an implicit way of set-
ting bounds between interacting residughe functionsetboundsfromdb() is for use in creating
distance and chirality bounds for nucleic acidgtboundsfromdb() takes as an argument daw
atom expressions selectingawesidues, the name of a database containing bounds information, and a
number which dictates the tightness of the bouras.instance, if the datababdna.stack.dlis spec-
ified, setboundsfromdb() sets the bounds between the@tesidues to what tlyavould be if the
were stacked in strand in a typical Watson-Crick B-form dupl8imilarly, if the databasarna.base-
pair.dbis specified setboundsfromdb() sets the bounds between theotigsidues to what tlye
would be if the two residues form a typical Watson-Crick basepair in an A-form helix.

7.2.1. RefineDNA Backbone Geometry.

As mentioned prgously, wc_helix() performs rigid body transformations on residues and
does not correct for poor backbone geometlging distance geometrgeveal techniques arevail-
able to correct the backbone geomethy program 7, an 8-basepair dna sequence is created using
wc_helix() . A new bounds object is created on line 14, which automatically sets all the 1-2, 1-3,
and 1-4 distance bounds information according the geometry of the model. Since this madescule w
created usingvc_helix() , the O3'-P distance between adjacent stacked residues is often not the
optimal 1.595°Aand hence, the 1-2, 1-3, and 1-4, distance bounds setvalyounds() are incor
rect. W& want to presem the position of the nucleotide baseswbeer, since this is the helix whose
backbone we wish to minimizeHence the call tausseboundsfrom() on line 17 which sets the
bounds from eery atom in each nucleotide base to the actual distanceetp ether atom in eery
other nucleotide basdn geneal, the likelihood of a distance geometefinement to satisfy a given
bounds criteria is pportional to the number of (consistent) bounds set supporting that criteria
other words, the more bounds that are set supportingem gonformation, the greater the chance that
conformation will resole dter the refinement.An example of this concept is the use usfe-
boundsfrom() in line 17, which works to preservaur rigid helix conformation of all the
nucleotide base atoms.

We @an correct the backbone geometry bgrarriting the erroneous bounds with more appropri-
ate bounds.n lines 19-29, all the 1-2, 1-3, and 1-4 boundslwing the O3'-P connection between
strand 1 residues are set to that whiculd be appropriate for an idealized phosphate link&iei-
larly, in lines 31-41, all the 1-2, 1-3, and 1-4 bound®liring the O3’-P connection among strand 2
residues are set to an idealized conformation. This techniguedsivef snce all the 1-2, 1-3, and 1-4
distance bounds created bgwbounds() include those of the idealized nucleotides in the nucleic
acid librariesdna.amber94.rlb , rna.amber94.rlb , etc. contained inreslib . Hence, by
setting these bounds and refining against the distancgyeharction, we are spreading the ’error’
across the backbone, where the ’error’ is the departure from the idealizedsofprmation and ide-
alized phosphate linkage.

On line 43, we smooth the bounds matrix, and on line 44 veeagsibstantial penalty for deéat-
ing from a 3-D refinement by setting k4d6. Notice that there is no need to embed the molecule in
this program, as the actual coordinates are sufficient foredinement.

1 /[Program 7 - r efine backbone geometry using distance function

10/17/06 Sampl&lAB applications 112

2 molecule m;

3 bounds b;

4 string seq, cseq;

5 inti;

6 float xyz[dynamic], fret;

7

8 seq = "acgtacgt";

9 cseq = wc_complement("acgtacgt”, ", "dna");
10
11 m = ve¢_helix(seq, "dna.amber94.rlb", "dna", cseq, "dna.amber94.rlb",
12 "dna", 2.25, -4.96, 36.0, 3.38, "");
13
14 b = newbounds(m, ";
15 allocate xyz[4*m.natoms];
16
17 useboundsfrom(b, m, "::?2?,H?["T']", m, "::??,H?['T']", 0.0);
18 for (i=1;i<m.nresidues/2 ;i=i+ 1)
19 setbounds(b,m, sprintf("1:%d:03™,i),
20 sprintf("1:%d:P",i+1), 1.595,1.595);
21 setbounds(b,m, sprintf("1:%d:03™,i),
22 sprintf("1:%d:05™,i+1), 2.469,2.469);
23 setbounds(b,m, sprintf("1:%d:C3™,i),
24 sprintf("1:%d:P",i+1), 2.609,2.609);
25 setbounds(b,m, sprintf("1:%d:03™,i),
26 sprintf("1:%d:01P",i+1), 2.513,2.513);
27 setbounds(b,m, sprintf("1:%d:03™,i),
28 sprintf("1:%d:02P",i+1), 2.515,2.515);
29 setbounds(b,m, sprintf("1:%d:C4™,i),
30 sprintf("1:%d:P",i+1), 3.550,4.107);
31 setbounds(b,m, sprintf("1:%d:C2™,i),
32 sprintf("1:%d:P",i+1), 3.550,4.071);
33 setbounds(b,m, sprintf("1:%d:C3™,i),
34 sprintf("1:%d:01P",i+1), 3.050,3.935);
35 setbounds(b,m, sprintf("1:%d:C3™,i),
36 sprintf("1:%d:02P",i+1), 3.050,4.004);
37 setbounds(b,m, sprintf("1:%d:C3™,i),
38 sprintf("1:%d:05™,i+1), 3.050,3.859);
39 setbounds(b,m, sprintf("1:%d:03™,i),
40 sprintf("1:%d:C5™,i+1), 3.050,3.943);
41
42 setbounds(b,m, sprintf("2:%d:P",i+1),
43 sprintf("2:%d:03™",i), 1.595,1.595);
44 setbounds(b,m, sprintf("2:%d:05™,i+1),
45 sprintf("2:%d:03™,i), 2.469,2.469);
46 setbounds(b,m, sprintf("2:%d:P",i+1),
47 sprintf("2:%d:C3™,i), 2.609,2.609);
48 setbounds(b,m, sprintf("2:%d:01P",i+1),

10/17/06 Sampl&lAB applications 113

49 sprintf("2:%d:03™,i), 2.513,2.513);
50 setbounds(b,m, sprintf("2:%d:02P",i+1),

51 sprintf("2:%d:03™,i), 2.515,2.515);
52 setbounds(b,m, sprintf("2:%d:P",i+1),

53 sprintf("2:%d:C4™,i), 3.550,4.107);
54 setbounds(b,m, sprintf("2:%d:P",i+1),

55 sprintf("2:%d:C2™,i), 3.550,4.071);
56 setbounds(b,m, sprintf("2:%d:01P",i+1),

57 sprintf("2:%d:C3™,i), 3.050,3.935);
58 setbounds(b,m, sprintf("2:%d:02P",i+1),

59 sprintf("2:%d:C3™,i), 3.050,4.004);
60 setbounds(b,m, sprintf("2:%d:05™,i+1),

61 sprintf("2:%d:C3™,i), 3.050,3.859);
62 setbounds(b,m, sprintf("2:%d:C5™,i+1),

63 sprintf("2:%d:03™,i), 3.050,3.943);
64 }

65 tsmooth(b, 0.0005);

66 dg_options(b, "seed=33333, gdist=0, ntpr=100, k4d=4.0");

67 setxyzw_from_mol(m, NULL, xyz);

68 conjgrad(xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500);

69 setmol_from_xyzw(m, NULL, xyz);

70 putpdb("acgtacgt.pdb”, m);

The approach of Program 7 idegdtive kut has a disadvantage in that it does not scale linearly
with the number of atoms in the molecule. In particulamooth() and conjgrad() require
extensve CPU cycles for large numbers of residu&sr this reason, the functiotg_helix() was
created. dg_helix() takes uses the same method of Program 7, but employs a 3-basepair helix
template which tneerses the ng helix as it is being constructed. In thisaythe helix is built in a
piecavise manner and the maximum number of residues considered in each refinement is less than or
equal to six.This is the preferred method of helix construction for large, idealized canonicatetuple

7.2.2. RN\ Pseudoknots.

In addition to the standard helix generating functioady provides etensve support for gener
ating initial structures from @ structural information. As an example, we will describe the construc-
tion of a model of an RA pseudoknot based on a small number of secondary and tertiary structure
descriptions. Sheand Tinoco J. Mol. Biol. 247,963-978, 1995) used the molecular mechanics pro-
gram X-PLOR to determine the three dimensional structure of a 34 nucleotilesd®fence that
folds into a pseudoknot. This pseudoknot prometedrame shifting in Mouse Mammaryumor
Virus. A pseudoknot is a single stranded nucleic acid molecule that contaifmmpvoperly nested
hairpin loops as shown in Figure BAIMR distance and angle constraints werevedrd into a three
dimensional structure using adwage restrained molecular dynamics protocol. Here we sloav a
three-dimensional model can be constructed using justvekdg features devied from the NMR
investigation.

Program 8 uses distance geometry feéd by minimization and simulated annealing to create a
model of a pseudoknot. Distance geometry codgnien line 20 with the call tnewbounds() and
ends on line 53 with the call ®mbed() . The structure created with distance geometry is further
refined with molecular dynamics in lines 58-74. Note that very little structural informatiovers -gi

10/17/06 Sampl&lAB applications 114

S L B e L

Figure 4 Single stranded RAI (top) folded into a pseudokn@bottom). Thédlack and dark gay base
pairs can be staked.

only connectiity and general base-base interactions. The stacking and base-pair interactions here are
derived from NMR evidence, but in other cases might arise from other sortgefiments, or as a
model hypothesis to be tested.

The 20-base RN sequence is defined on line 9. The molecule itself is created with the
link_na() function call which creates an extended conformation of th& sfduence and caps the
5" and 3’ ends.Lines 15-18 define arrays that will be used in the simulated annealing of the structure.
The bounds object is created in line 20 which automatically sets the 1-2, 1-3, and 1-4 distance bounds
in the molecule. The loop in lines 22-25 sets the bounds of each atom in each residue base to the
actual distance tovery other atom in the same basEhis has the effect of enforcing the planarity of
the base by treating the base somewhatdikigid body In lines 27-45, bounds are set according to
information stored in a databas€he setboundsfromdb() call sets the bounds from all the atoms
in the two goecified residues to R0 multiple of the standard d&tion of the bounds distances in the
specified databasepecifically line 27 sets the bounds between the base atoms of the first and second
residues of strand 1 to be within one standaxdation of atypical aRNA stacked pair Similarly, line
39 sets the bounds between residues 1 and 13 to be thatical Watson-Crick basepairsFor a
description of thesetboundsfromdb() function, see Chapter 1.

Line 47 smooths the bounds matrix, by attempting to adjyssets of bounds that violate the
triangle equality Lines 49-50 initialize some distance geometsiables by setting the random num-
ber generator seed, declaring the type of distance distnily hav often to print the energy refinement
process, declaring the penalty for using a 4th dimension in refinement, and which atoms to use to form
the initial metric matrix.The coordinates are calculated and embedded into a 3D coordinateyarray
by theembed() function call on line 51.

The coordinatexyz are subject to a series of conjugate gradient refinements and simulated
annealing in lines 53-63Line 65 replaces the old molecular coordinates with the neéined ones,
and lastlyon line 66, the molecule iswad as ‘pseudoknot.pdb”.

1 /l Program 8 - create a pseudoknot using distance geometry
2 molecule m;

3 float xyz[dynamic],f[dynamic],v[dynamic];

4 bounds b;

10/17/06

© 00 ~N O U

10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Sampl&lAB applications 115

int i, seqlen;
float fret;
string seq, opt;

seq = "gcggaaacgccgcguaagcg';

seqglen = length(seq);

m = link_na("1", seq, "rna.amber94.rlb", "rna", "35");
allocate xyz[4*m.natoms |;

allocate f[4*m.natoms |;

allocate v[4*m.natoms J;

b = newbounds(m, ");
for(i=1;i<=seqglen;i=i+1){

useboundsfrom(b, m, sprintf("1:%d:??,H?["T]", i), m,
sprintf("1:%d:??,H?["'T]", i), 0.0);

}

setboundsfromdb(b, m, "1:1:", "1:2:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:2:", "1:3:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:3:", "1:18:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:18:", "1:19:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:19:", "1:20:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:8:", "1:9:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:9:", "1:10:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:10:", "1:11:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:11:", "1:12:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:12:", "1:13:", "arna.stack.db", 1.0);

setboundsfromdb(b, m, "1:1:", "1:13:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:2:", "1:12:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:3:", "1:11:", "arna.basepair.db”, 1.0);

setboundsfromdb(b, m, "1:8:", "1:20:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:9:", "1:19:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:10:", "1:18:", "arna.basepair.db”, 1.0);

tsmooth(b, 0.0005);
opt = "seed=571, gdist=0, ntpr=50, k4d=2.0, randpair=5.";

dg_options(b, opt);
embed(b, xyz);

10/17/06 Sampl&lAB applications 116

53 for (i=3000;i>2800;i=i-100)

54 conjgrad(xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500);
55

56 dg_options(b, "ntpr=1000, k4d=0.2");

57 mm_options("ntpr_md=50, zerov=1, tempO0=" +sprintf("%d.",i));
58 md(4*m.natoms, 1000, xyz, f, v, db_viol);

59

60 dg_options(b, "ntpr=1000, k4d=4.0");

61 mm_options("zerov=0, temp0=0., tautp=0.3");

62 md(4*m.natoms, 8000, xyz, f, v, db_viol);

63 }

64

65 setmol_from_xyzw(m, NULL, xyz);

66 putpdb("pseudoknot.pdb”, m);

The resulting structure of Program 8 is shown in Figure 5. This structure had an final total
enegy of 9.41 units.The helical region, shown as polytubes, shows stacking and wc-pairing interac-
tions and a well-defined right-handed helical twidf. course, good modeling of a "real" pseudoknot
would require putting in more constraints, but this example should illustratetdiget started on
problems lile this.

10/17/06 SamplelAB applications 117

Figure 5 20-base example RNpseudoknot

10/17/06 Sampl&lAB applications 118

7.2.3. NMRrefinement for a protein

Distance geometry techniques are often used to create starting structures in NMR refinement.
Here, in addition to the ealent connections, one makes use of a set of distance and torsional
restraints devied from NMR data. While WB is not (yet?) a fully-functional NMR refinement pack-
age, it has enough capabilities to illustrate the basic ideas, and could be the starting pointilibe a fle
procedure. Hersve give an illustration of hev the rough structure of a protein can be determined
using distance geometry and NMR distance constraints; the structures obtained here would then be
candidates for further refinement in programs K«plor or Amber.

The program belw illustrates a general procedure for a primarily helicalADd\hding domain.
Lines 15-22 just construct the sequence in @eneled conformation, such that bond lengths and
angles are correct, but none of the torsions are correct. The bond lengths and angles anmeeused by
bounds() to construct the "o@lent" part of the bounds matrix.

1 /I Program 8a. General driver routine to do distance geometry
2 /I on proteins, with DYANA-like dstance restraints.
3
4 #define MAXCOORDS 12000
5
6 molecule m;
7 atom a,
8 bounds b;
9 int ier,i, numstrand, ires,jres;
10 float fret, rms, ub;
11 float xyz[MAXCOORDS], ff MAXCOORDS], v[MAXCOORDS |;
12 file boundsf;
13 string iresname,jresname,iat,jat,aex1,aex2,aex3,aex4,line,dgopts,seq;
14
15 /I sequence of the mrf2 protein:
16 seq = "RADEQAFLVALYKYMKERKTPIERIPYLGFKQINLWTMFQAAQKLGGYETITARRQWKHIY"
17 + "DELGGNPGSTSAATCTRRHYERLILPYERFIKGEEDKPLPPIKPRK";
18
19 /I build this sequence in an extended conformation, and construct a bounds
20 /I matrix just based on the covalent structure:
21 m = linkprot("A", seq, ™);
22 b = newbounds(m, "™);
23
24 /I read in constraints, updating the bounds matrix using "andbounds™:
25
26 /I distance constraints arbasically those from Y.-C. Chen, R.H. Whitson
27 /I Q. Liu, K. Itakua and Y Chen, "A novel DNA-binding motif shares
28 /I structural homology to DN replication and repair nucleases and
29 /I polymenses,” Natue Surct. Biol. 5:959-964 (1998).
30

31 boundsf = fopen("mrf2.7col", "r");
32 while(line = getline(boundsf) }{

10/17/06

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Sampl&lAB applications

sscanf(line, "%d %s %s %d %s %s %lf", ires, iresname, iat,
jres, jresname, jat, ub);

/I translations for YANA-style pseudoatoms:
if(iat == "HN"){ iat = "H"; }
if(jat == "HN"){ jat = "H"; }

if(iat == "QA"){ iat = "CA"; ub += 1.0; }
if(jat == "QA"){ jat = "CA"; ub += 1.0; }

if(iat == "QB"){ iat = "CB"; ub += 1.0; }

if(jat == "QB"){ jat = "CB"; ub += 1.0; }

if(iat == "QG"){ iat = "CG"; ub += 1.0; }

if(jat == "QG"){ jat = "CG"; ub += 1.0; }

if(iat == "QD"){ iat = "CD"; ub += 1.0; }

if(jat == "QD"){ jat = "CD"; ub += 1.0; }

if(iat == "QE"){ iat = "CE"; ub += 1.0; }

if(jat == "QE"){ jat = "CE"; ub += 1.0; }

if(iat == "QQG"){ iat = "CB"; ub += 1.8; }

if(jat == "QQG"){ jat = "CB"; ub += 1.8; }

if(iat == "QQD"){ iat = "CG"; ub += 1.8; }

if(jat == "QQD"){ jat = "CG"; ub += 1.8; }

if(iat == "QG1"){ iat = "CG1"; ub += 1.0; }
if(jat == "QG1"){ jat = "CG1"; ub += 1.0; }
if(iat == "QG2"){ iat = "CG2"; ub += 1.0; }
if(jat == "QG2"){ jat = "CG2"; ub += 1.0; }
if(iat == "QD1"){ iat = "CD1"; ub += 1.0; }
if(jat == "QD1"){ jat = "CD1"; ub += 1.0; }
if(iat == "QD2"){ iat = "ND2"; ub += 1.0; }
if(jat == "QD2"){ jat = "ND2"; ub += 1.0; }
if(iat == "QE2"){ iat = "NE2"; ub += 1.0; }
if(jat == "QE2"){ jat = "NE2"; ub += 1.0; }

aex1l ="" + sprintf("%d", ires) + ":" + iat;
aex2 ="" + sprintf("%d", jres) + ":" + jat;
andbounds(b, m, aex1, aex2, 0.0, ub);

}

fclose(boundsf);

/I add in helical chirality constraints to force right-handed helices:
/I (hardwire in locations 1-16, 36-43, 88-92)
for(i=1; i<=12; i++){

aex1 ="" + sprintf("%d", i) + ":CA";

aex2 ="" + sprintf("%d", i+1) + ":CA";

aex3 ="" + sprintf("%d", i+2) + ":CA";

aex4 ="" + sprintf("%d", i+3) + ":CA";

setchivol(b, m, aex1, aex2, aex3, aex4, 7.0);

119

10/17/06

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Sampl&lAB applications

for(i=36; i<=39; i++){
aex1 ="" + sprintf("%d", i) + ":CA";
aex2 ="" + sprintf("%d", i+1) + ":CA";
aex3 ="" + sprintf("%d", i+2) + ":CA";
aex4 ="" + sprintf("%d", i+3) + ":CA";
setchivol(b, m, aex1, aex2, aex3, aex4, 7.0);
}
for(i=88; i<=89; i++){
aex1 ="" + sprintf("%d", i) + ":CA";
aex2 ="" + sprintf("%d", i+1) + ":CA";
aex3 ="" + sprintf("%d", i+2) + ":CA";
aex4 ="" + sprintf("%d", i+3) + ":CA";
setchivol(b, m, aex1, aex2, aex3, aex4, 7.0);

}

/I set up some options for the distance geometry calculation
/I here use the random embed method:

dgopts = "ntpr=10000,rembed=1,rbox=300.,riter=250000,seed=8511135";

dg_options(b, dgopts);

/I do triangle-smoothing on the bounds matrix, then embed:
geodesics(b); embed(b, xyz);

/I now do conjugate-gradient minimization on the resulting structures:

/I first, weight the chirality constraints heavily:
dg_options(b, "ntpr=20, k4d=5.0, sqviol=0, kchi=50.");
conjgrad(xyz, 4*m.natoms, fret, db_viol, 0.02, 1000., 300);

I/l next, squeeze out the fourth dimension, and increase penalties for
/I distance violations:

dg_options(b, "k4d=10.0, sqviol=1, kchi=50.");

conjgrad(xyz, 4*m.natoms, fret, db_viol, 0.02, 100., 400);

/I transfer the coordinates from the "xyz" array to the molecule
/I itself, and print out the violations:

setmol_from_xyzw(m, NULL, xyz);

dumpboundsviolations(stdout, b, 0.5);

I/l do a final short molecular-mechanics "clean-up":
putpdb(m, "temp.pdb");

m = getpdb_prm("temp.pdb", "leaprc.ffo4", ™, 0);
setxyz_from_mol(m, NULL, xyz);

mm_options("cut=10.0");
mme_init(m, NULL, "::ZZZ7", xyz, NULL);
conjgrad(xyz, 3*m.natoms, fret, mme, 0.02, 100., 200);

120

10/17/06 Sampl&lAB applications 121

127 setmol_from_xyz(m, NULL, xyz);
128 putpdb(argv[3] + ".mm.pdb", m);

Once the cedent bounds are created, the the bounds matrix is modified by constraints con-
structed from an NMR analysis program. This particular example uses the format AN Pro-
gram, but NAB could be easily modified to read in other formats as well. Here axdiade from
themrf2.7colfile:

1 ARG+ QB 2 ALA QB 7.0
4 GLU- HA 93LYS+ QB 7.0
5 GLN QB 8 LEU QQD 9.9
5 GLN HA 9 VAL QQG 6.4
85 ILE HA 92 ILE QD1 6.0
5 GLN HN 1 ARG+ O 2.0
5 GLN N 1 ARG+ O 3.0
6 ALA HN 2 ALA O 2.0
6 ALA N 2 ALA O 3.0

The format should be selkplanatory with the final number giving the upper bound. Code in lines
31-69 reads these in, and translates pseudo-atom coelé@@D" into atom names. Lines 71-93 add

in chirality constraints to ensure right-handed alpha-helices: distance constraints alone do not distin-
guish chirality so alditions like this are often necessaryrhe "actual" distance geometry stepsetak
place in line 101, first by triangle-smoothing the bounds, then by embedding them into a three-dimen-
sional object. The structures at this point are actually generally quite bad, so "real-space" refinement
is carried out in lines 103-112, and a final short molecular mechanics minimization in lines 119-126.

It is important to realize that mgrmf the structures for the ab® ssheme will get "stuck”, and
not lead to good structures for the complélelicalproteins are especially @iult for this sort of dis-
tance geometpsince helices (orven parts of helices) start out left-handed, and it is netgd possi-
ble to easily covert these to right-handed structurd=or this particular example, (using differeralv
ues for theseedin line 97), we find that about 30-40% of the structures are "acceptable", in the sense
that further refinement in Amber yields good structures.

10/17/06 Sampl&lAB applications 122

7.3. Building Larger Structures.

While the DM\ duplex is locally rather stiff, mapn DNA molecules are sufficiently long that the
can be bent into a wideasiety of both open and closed curves. Some examples would be simple
closed circles, supercoiled closed circles thathalaxed into circles with twists and the nucleosome
core fragment where the duplgself is wound into a short helix. This section shows hab can be
used to “wrap” DM around a curve. Three examples are provided: the first produces closed circles
with or without supercoiling, the second creates a simple model of the nucleosome core fragment and
the third shows hae to wind a duple around a more arbitrary open cergpecified as a set of points.
The examples are fairly general but do require that the curves bedglathooth so that the deforma-
tion from a linear dupbeat each step is small.

Before discussing thexamples and the general approactytbse, it will be helpful to define
some terminologyThe helical axis of a base pair is the helical axis defined by an idealBdDpex
that contains that base paifhe base pair plane is the mean plane of both bases. The origin of a base
pair is at the intersection the base paiglical axis and its mean plane. Finally the rise is the distance
between the origins of adjacent base pairs.

The overall strategy for wrapping DN around a cure is to geate the curve, find the points on
the cunre that contain the base pair origins, place the base pairs at these points, oriented so that their
helical axes are tangent to the auend finally rotate the base pairs so thaythavethe correct heli-
cal twist. In all theexamples belw, the points are chosen so that the rise is constant. This is by no
means an absolute requirementt i does simplify the calculations needed to locate base pairs, and is
generally true for the gently bending cesvthese examples are designedlfoexamples 1 and 2, the
cunve is dmple, either a circle or a helix, so the points that locate the base pairs are computed directly
In addition, the bases are rotated about their original helical axes so thbave¢he correct helical
orientation before being placed on the curve.

However, this method is inadequate for the more complicated curves that can be handled by
example 3. Here each base is placed on theecsovhat its helical axis is aligned corregtlyut its
helical orientation with respect to the previous base is arbiltasythen rotated about its helical axis
so that it has the correct twist with respect to the previous base.

7.4. ClosedCircular DNA.

This section describes Wwdo usenab to male dosed circular dupbe DNA with a uniform rise
of 3.38A Since the distance between adjacent base pairs is fixed, the radius of the circle that forms the
axis of the dupbe depends only on the number of base pairs and/én dpy this rule:

rad = rise/(2sin180/nbp))

wherenbpis the number of base paire ¥e wly this is so, consider the triangle b<ormed by the
center of the circle and the centers ob taljacent base pairs. Thedwong sides are radii of the circle
and the third side is the rise. Since the the base pairs are uniformlyutistradout the circle the
angle between the twadii is 360hbp. Now consider the right triangle in the top half of the original
triangle. The angle at the center is I8 the opposite side i$se/2 andrad follows from the defini-
tion of sin.

10/17/06 Sampl&lAB applications 123

base i+l

rad\‘
rise/2
180nbp
C .

base i

In addition to the radius, the helical twist which is a function of the amount of supercoiling must
also be computed. In a closed circularMiolecule, the last base of the duphaust be oriented in
such a way that a single helical step will superimpose it on the first base. In circles based on ideal B-
DNA, with 10 bases/turn, this requires that the number of base pairs in the beilerultiple of 10.
Supercoiling adds or subtracts one or more whole turns. The amount of supercoiling is specified by the
Alinking numberwhich is the number of extra turns to add or subtract. If the original circledpitD
turns, the supercoiled circle will /@ npb10+ Alk turns. As each turn represents 360° of twist and
there arebpbase pairs, the twist between base pairs is:

(nbp10+ Alk) x 360nbp

At this point, we are ready to create models of circular DNA. Bases are added to model in three
stages. Each base pair is created usingahbebuiltin wc_helix() . Itis originally in the XY plane
with its center at the origin. This makes it eement to create the DAcircle in the XZ plane. After
the base pair has been created, it is rotated aroungritbaical axis to gie it the proper twist, trans-
lated along the global X axis to the point where its center intersects the circle and finally rotated about
the Y axis to mee it to its final location. Since the first base pair would be both twisted about Z and
rotated about Y 0°, those steps are skipped for base one. A detailed description follows the code.

1 /I Program 9 - Create closed circular DNA.
2 #define RISE 3.38
3
4 int b, nbp, dlk;
5 float rad, twist, ttw;
6 molecule m, m1,;
7 matrix matdx, mattw, matry;
8 string sbase, abase;
9 int getbase();
10
11 if(argc 1= 3){
12 fprintf(stderr, "usage: %s nbp dlk\n", argv[1]);
13 exit(1);
14 }
15
16 nbp = atoi(argv[21]);
17 if(Inbp || nbp % 10)}
18 fprintf(stderr,
19 "%s: Num. of base pairs must be multiple of 10\n",
20 argv[1]);

10/17/06

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Sampl&lAB applications

exit(1);
}

dlk = atoi(argv[3]);

twist = (nbp / 10 + dlk) * 360.0 / nbp;
rad = 0.5 * RISE / sin(180.0 / nbp);

matdx = newtransform(rad, 0.0, 0.0, 0.0, 0.0, 0.0);

m = rewmolecule();
addstrand(m, "A");

addstrand(m, "B");

ttw = 0.0;
for(b=1;b<=nbp;b=b+1){

getbase(b, sbase, abase);

m1 = wc_helix(

sbase, ", "dna", abase, ",
"dna", 2.25, -4.96, 0.0, 0.0);

if(b>1)
mattw = newtransform(0.,0.,0.,0.,0.,ttw);
transformmol(mattw, m1, NULL);

}

transformmol(matdx, m1, NULL);

if(b>1)
matry = newtransform(
0.,0.,0.,0.,-360.*(b-1)/nbp,0.);
transformmol(matry, m1, NULL);

}

mergestr(m, "A", "last", m1, "sense", "first");
mergestr(m, "B", "first", m1, "anti", "last");
if(b>1)
connectres(m, "A", b-1,"03™, b, "P");
connectres(m, "B", 1, "O3™, 2, "P");
}

ttw = ttw + twist;
if(ttw >= 360.0)
ttw = ttw - 360.0;

124

10/17/06 Sampl&lAB applications 125

68 connectres(m, "A", nbp, "O3™, 1, "P");
69 connectres(m, "B", nbp, "O3™, 1, "P");
70

71 putpdb("circ.pdb”, m);

72 putbnd("circ.bnd", m);

The code requires integer arguments which specifthe number of base pairs and tklak-
ing numberor the amount of supercoiling. Lines 11-24 process thenaents making sure that the
conform to the moded’ sssumptions. Idines 11-14, the code checks that there geetty three agu-
ments (thenab program$ name is argument one), and exits with a error message if the number of
arguments is different. Next lines 16-22 set the number of base php3$ éd test to ma& certain it
is a nonzero multiple of 10, again exiting with an error message if it is not. Finalyinkeng num-
ber (dlk) is st in line 24. The helical twist and circle radius are computed in lines 26 and 27 in accor-
dance with the formulas ddoped abwe. Line 29 creates a transformation matrixatdx , that is
used to mee each base from the global origin along the X-axis to the point where its center intersects
the circle.

The circular DM is built in the molecule ariablem which is initialized and gien two drands,
"A" and"B" in lines 30-32. Theariablettw in line 34 holds the total twist applied to each base pair
The molecule is created in the loop from lines 35-66. The base pair numhbsrcfrnverted to the
appropriate strings specifying theadwucleotides in this pairThis is done by the functioget-
base() . This source of this function must be provided by the user who is creating the circles as only
he or she will kn the actual DM sequence of the circle. Once theothases are specified there
passed to theab builtin wc_helix() which returns a single base pair in the XY plane with its cen-
ter at the origin. The helical axis of this base pair is on the Z-axis with the 5’-3’ direction oriented in
the positve Z-direction.

One or three transformations is required to position this base in its correct place in the circle. It
must be rotated about the Z-axis (its helical axis) so that it is one additional unit of yeist libe
previous base. This twist is done in lines 43-46. Since the first base needs 0° twist, this step is skipped
for it. In line 48, the base pair is nml in the positve drection along the X-axis to place the base
pair’s aigin on the circle. Finallythe base pair is rotated about the Y-axis in lines 50-54 to bring it to
its proper position on the circle. Again, since this rotation is 0° for base 1, this step is also skipped for
the first base.

In lines 56-57, the newly positioned base paimibis added to the growing moleculermNote
that since the taw drands of DM\ are antiparallel, thésense" strand ofmlis added after the last
base of the A" strand ofmand the"anti" strand ofmlis added before the first base of tiB
strand ofm For all but the first base, the newly added residues are bonded to the resigdielate
(or precede). This is done by thedtwalls to connectres() in lines 59-60. Again, due to the
antiparallel nature of DNA, the neresidue in théA" strand is residub, but is residuel in the"B"
strand. In line 63-65, the total twidtw) is updated and adjusted to keep in in the range [0,360).
After all base pairs va been added the loop exits.

After the loop exit, since this is@osedcircular molecule the first and last bases of each strand
must be bonded and this is done with the talls toconnectres() in lines 67-68. The last step is
to save the molecules cordinates and connectivity in lines 71-72. Tiad builtin putpdb() writes
the coordinate information in PDB format to the fitérc.pdb" and thenab builtin putbnd()
sa/es the bonding as pairs of integers, one pair/line in the'dite.bnd" , Where each integer in a
pair refers to al\TOMecord in the previously written PDB file.

10/17/06 Sampl&lAB applications 126

7.5. Nucleosomé/iodel

While the DM\ duplex is locally rather stiff, mapn DNA molecules are sufficiently long that the
can be bent into a wideasiety of both open and closed curves. Some examples would be simple
closed circles, supercoiled closed circles thathelaxed into circles with twists, and the nucleosome
core fragment, where the dupliself is wound into a short helix.

The overall strategy for wrapping DN around a cure is to geate the cum, find the points on
the cune that contain the base pair origins, place the base pairs at these points, oriented so that their
helical axes are tangent to the curve, and finally rotate the base pairs soythavétiee correct heli-
cal twist. In the example belp the simplifying assumption is made that the rise is constant at 3.38
angstronA.

The nucleosome core fragment [37] is composed of dUpMA wound in a left handed helix
around a central protein core. A typical core fragment has about 145 base pairs>oDéfpliorm-
ing about 1.75 superhelical turns. Measurements ofwa@lbdimensions of the core fragment indi-
cate that there isevy little space between adjacent wraps of the duplex. A sideofia shematic of
core particle is shown belo

Computing the points at which to place the base pairs on a helix requires us to spiral an inelastic
wire (representing the helical axis of the bent duplex) around a cylinder (representing the protein
core). The system is described by four numbers of which only three are independgreareTtie
number of base pairs the number of turns its makes around the protein tcdéine “winding” anglegd
(which controls hw quickly the the helix adances along the axis of the core) and the helix radius
Both the the number of base pairs and the number of turns around the core can be measured. The
leaves two dhoices for the third parameteéince the relationship of the winding angle to tiverall
particle geometry seems more clear than that of the radius, this code lets the user specify the number
of turns, the number of base pairs and the winding angle, then computes the helical radius and the dis-
placement along the helix axis for each base pair:

d=3.384dn(6);, ¢=36Q/(n-1) (_&dy)
(= 3.38(n—-1) cosE)

2t
whered andg are the displacement along and rotation about the protein core axis for each base pair.

(_&rad)

These relationships are easily gedi. Let the nucleosome core particle be oriented so that its
helical axis is along the globalakis and the lower cap of the protein core is in the XZ pl&@un-
sider the circle that is the projection of the helical axis of thé bdblex onto the XZ plane. As the
duplex spirals along the core particle it will go around the citctanes, for a total rotation @&6Q°.

The duple containsn —1 geps, resultin@6Q/(n —1)° of rotation between succegsibase pairs.

10/17/06

Sampl&lAB applications 127

O©CoOoO~NOOOTA,WNPE

/I Program 10. Create simple nucleosome model.
#define PI 3.141593

#define RISE 3.38

#define TWIST 36.0

int b, nbp; int getbase();

float nt, theta, phi, rad, dy, ttw, len, plen, side;
molecule m, m1,;

matrix matdx, matrx, maty, matry, mattw;

string sbase, abase;

nt = atof(argv[2]); I number of turns

nbp = atoi(argv[31]); 1 number of base pairs
theta = atof(argv[41]); // winding angle

dy = RISE * sin(theta);
phi = 360.0 * nt / (nbp-1);
rad = ((nbp-1)*RISE*cos(theta))/(2*PInt);

matdx = newtransform(rad, 0.0, 0.0, 0.0, 0.0, 0.0);
matrx = newtransform(0.0, 0.0, 0.0, -theta, 0.0, 0.0);

m = rewmolecule();
addstrand(m, "A"); addstrand(m, "B");
ttw = 0.0;
for(b=1;b<=nbp;b=b+1){
getbase(b, sbase, abase);
m1l = wc_helix(sbase, "™, "dna", abase, ™, "dna",
2.25,-4.96,0.0,0.0);
mattw = newtransform(0., 0., 0., 0., 0., ttw);
transformmol(mattw, m1, NULL);
transformmol(matrx, m1, NULL);
transformmol(matdx, m1, NULL);
maty = newtransform(0.,dy*(b-1),0., 0.,-phi*(b-1),0.);
transformmol(maty, m1, NULL);

mergestr(m, "A", "last", m1, "sense", "first");
mergestr(m, "B", "first”, m1, "anti", "last");
if(b>1)
connectres(m, "A", b -1, "03™, b, "P");
connectres(m, "B", 1, "O3™, 2, "P");
}
ttw += TWIST; if(ttw >= 360.0) ttw -= 360.0;

}
putpdb("nuc.pdb”, m);

Finding the radius of the superhelix is a little tyickn general a single turn of the helix will not

contain an intgral number of base pairs. For example, using typical numbers of 1.75 turns and 145
base pairs requires82 9 base pairs to makane turn. An approximate solution can be found by con-

sidering the ideal superhelix that the AMuplex is wrapped aroundLet L be the arc length of this
helix. ThenL cos@) is the arc length of its projection into the XZ plarfeince this projection is an

10/17/06 Sampl&lAB applications 128

ovewound circle,L is also equal t@rrt, wheret is the number of turns amds the unknown radius.
Now L is not known but is approximatedy38(n —1). Substituting and solving far gives Bg. (_&rad).

The resultinghab code is shown in Program Zhis code requires three arguments—the num-
ber of turns, the number of base pairs and the winding amglénes 15-17, the helical risaly),
twist (phi) and radius fad) are computed according to the formulasdeped abwe.

Two constant transformation matricesatdx andmatrx are created in lines 19-2thatdx is
used to mee the newly created base pair along the X-axis to the circle that is thestpetijéction
onto the XZ planematrx is used to rotate the webase pair about the X-axis so it will be tangent to
the local helix of spirally wound dupleThe model of the nucleosome will be built in the molecule
which is created and\gn two drands"A" and"B" in line 23. The wriablettw will hold the total
local helical twist for each base pair.

The molecule is created in the loop in lines 25-43. The user specified fugettmase()
takes the number of the current base gajrahd returns tw grings that specify the actual nucleotides
to use at this position. Theseawrings are coverted into a single base pair using theb builtin
wc_helix() . The nev base pair is in the XY plane with its origin at the global origin and its helical
axis along Z oriented so that the 5’-3’ direction is positi

Each base pair must be rotated about its Z-axis so that when it is added to the global helix it has
the correct amount of helical twist with respect to the previous base. This rotation is performed in lines
29-30. Oncehe base pair has the correct helical twist it must rotated about the X-axis so that its local
origin will be tangent to the global helical axes (line 31).

The properly-oriented base is nextved into place on the global helix in twgtages in lines
32-34. It is first moed dong the X-axis (line 32) so it intersects the circle in ¥i& plane that is pro-
jection of the dupbe€s helical axis. Then it is simultaneously rotated about and displaced along the
global Y-axis to mge it to final place in the nucleosome. Since both theseements are with respect
to the same axis, thean be combined into a single transformation.

The newly positioned base pairnml is added to the gwing molecule inmusing two calls to
thenab buitin mergestr() . Note that since the wvdrands of a DI duplex are antiparallel, the
base of the'sense" strand ofmoleculeml is addedafter the last base of thBA" strand of
moleculemand the base of th@anti" strand of moleculenlis beforethe first base of th&B"
strand of moleculen For all base pairsxeept the first one, the webase pair must be bonded to its
predecessorFinally, the total twist fw) is updated and adjusted to remain in the interval [0,360) in
line 42. After all base pairs @ been created, the loop exits, and the molecule is written out. The
coordinates are sed in PDB format using the@ab builtin putpdb()

7.6. “Wrapping” DNA Around a Path.

This last code deglops two nab programs that are used together to wrap BARbund a more
general open cuevgecified as a cubic spline through a set of points. The first program takes the ini-
tial set of points defining the cunand interpolates them to produce awset of points with one point
at the location of each base pdine nev set of points alays includes the first point of the original set
but may or may include that last point. Thesavrmints are read by the second program which actu-
ally bends the DNA.

The overall strategy used in thisxample is slightly different from the one used in both the circu-
lar DNA and nucleosome codes. In those codesas possible to directly compute both the orientation
and position of each base paihis is not possible in this case. Here only the location of the base
pair's arigin can be computed directiWhen the base pair is placed at that point its helical axis will be

10/17/06 Sampl&lAB applications 129

tangent to the cuevand point in the right direction, but its rotation about this axis will be arbitrary

will have o rotated about its me helical axis to gre the proper amount of helical twist to stack it
properly on the previous basblow if the helical twist of a base pair is determined with respect to the
previous base pajmither the first base pair is left in arbitrary orientation, or some otagrmust be
devised to define the helical of it. Since this orientation will depend both on the awtvts ultimate

use, this code leas this task to the user with the result that the helical orientation of the first base pair
is undefined.

7.6.1. Intempolating the Curve.

This section describes the code that finds the base pair origins along theThisvprogram
takes an ordered set of points

P1 P2; 5 Pn
and interpolates it to produce annset of points
NPy, NP2, -+ +5 NPm

such that the distance between eaphandnp.; is constant, in this case equal to 3.38 which is the
rise of an ideal B-DW duplex. The interpolation begins by setting, to p; and continues through the
p; until a nev point np,, has been found that is within the constant distangs, teithout having gone
beyond it.

The interpolation is done viapline() [38] and splint() , two routines that perform a
cubic spline interpolation on a tabulated function

yi = f(x)

In order forspline() /splint() to work on this problem, terthings must be done. These func-
tions work on a table dfx;, y;) pairs, of which we hee mly the y;. Howeve, dnce the only require-
ment imposed on the is that thg be nonotonically increasing we can simply use the sequence 1, 2,

, n for the x;, producing the producing the tabl@,y;). The second difficulty is that
spline() /splint() interpolate along a one dimensional @but we need an interpolation along
a three dimensional cuev Thisis solved by creating three different splines one for each of the three
dimensions.

spline() /splint() perform the interpolation in tw geps. The functiorspline() is
called first with the original table and computes the value of the secondtigterid each point. In
order to do this, the values of the secondwvdivie & two points must be specified. In this code these
points are the first and last points of the table, and ahees chosen are 0 (signified by the uglik
value of1e30 in the calls tespline()). After the second desdtives havebeen computed, the inter
polated values are computed using one or more cafglitt()

What is unusual about this interpolation is that the points at which the interpolation is te be per
formed are unknen. Instead, these points are chosen so that the distance between each point and its
successor is the constarglve RISE, set here to 3.38 which is the rise of an ideal BAD8Uplex.

Thus, we hee b search for the points and most of the code it to doing this search. The details
follow the listing.

1 /I Program 11 - Build DNA along a curve
2 #define RISE 3.38

10/17/06

© 0o ~NO O~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Sampl&lAB applications

#define EPS 1e-3
#define APPROX(a,b) (fabs((a)-(b))<=EPS)
#define MAXI 20

#define MAXPTS 150
int npts;
float a[MAXPTS];

float X[MAXPTS], y[MAXPTS], z[MAXPTS];
float x2[MAXPTS], y2[MAXPTS], z2[MAXPTS |;

float tmp][MAXPTS];

string line;

inti, li, ni;

float dx, dy, dz;

float la, Ix, ly, 1z, na, nx, ny, nz;
float d, tfrac, frac;

int spline();

int splint();

for(npts = 0; line = getline(stdin); ¥
npts = npts + 1;
a[npts] = npts;
sscanf(line, "%lf %lf %lf",
X[npts], y[npts], z[npts]);
}

spline(a, x, npts, 1e30, 1e30, x2, tmp);
spline(a, y, npts, 1e30, 1e30, y2, tmp);
spline(a, z, npts, 1e30, 1e30, z2, tmp);

li=1;la=1.0;Ix=x[1]; ly = y[1]; Iz = z[1];
printf("%8.3f %8.3f %8.3\n", Ix, ly, 1z);

while(li < npts }{
ni=Ili+1;
na=a[nil];
nx=x[ni];ny=y[ni];nz=2z[ni];
dx=nx-Ix;dy=ny-ly; dz=nz - lz;
d = sgrt(dx*dx + dy*dy + dz*dz);
if(d > RISE){
tfrac = frac = .5;
for(i=1;i<=MAXIL;i=i+1)
na = la + tfrac * (a[ni] - la);
splint(a, x, X2, npts, na, nx);

130

10/17/06 Sampl&lAB applications 131

50 splint(a, y, y2, npts, na, ny);

51 splint(a, z, z2, npts, na, nz);

52 dx=nx-Ix;dy=ny-ly; dz=nz - lz;
53 d = sgrt(dx*dx + dy*dy + dz*dz);
54 frac = 0.5 * frac;

55 if(APPROX(d, RISE))

56 break;

57 else if(d > RISE)

58 tfrac = tfrac - frac;

59 else if(d < RISE)

60 tfrac = tfrac + frac;

61 }

62 printf("%8.3f %8.3f %8.3f\n", nx, ny, nz);
63 }else if(d < RISE){

64 li = ni;

65 continue;

66 }else if(d == RISE){

67 printf("%8.3f %8.3f %8.3f\n", nx, ny, nz);
68 li = ni;

69 }

70 la = na;

71 Ix = nx; ly = ny; Iz = nz;

72 }

Execution bgins in line 25 where the points are read frstdin one point or three num-
bers/line and stored in the three arrgayy andz. The independent variable for each spline, stored in
the arraya is created at this time holding the numbg&te npts . The second derdtives for the three
splines, one each for interpolation along the X, Y and Z directions are computed in linesEB2:84.
call to spline() has two arguments set tde30 which indicates that the second detive \alues
should be 0 at the first and last points of the table. The first point of the interpolated set is set to the
first point of the original set and writtengtout in lines 36-37.

The search that finds theweoints is lines 39-72. @ e hav it works consider the figure
below. The dots mankd p;, p,, P, correspond to the original points that define the spline. The cir
cles marlked np;, np,, Np; represent the mepoints at which base pairs will be placed. The eusra
function of the parametex, which as it ranges from 1 tgptssweeps out the cuevrom (X, yi, ;) to
(Xnpts Ynpts Znptd- Since the original points will in general not be the correct distance aparvevéha
find nev points by interpolating between the original points.

The search works by first finding a point of the original table that is atRé8Et distance from
the last point found. If the last point of the original table is aotehough from the last point found,
the search loop exits and the program endsveder, if the search does find a point in the original ta-
ble that is at lea®RISE distance from the last point found, it starts an interpolation loop in lines 47-61
to zero on the best value athat will produce a ne point that is the correct distance from thevpre
ous point. After this point is found, them@oint becomes the last point and the loop is repeated until
the original table is exhausted.

The main search loop uskes to hold the inde of the point in the original table that is closest to,
but does not pass, the last point found. The loop begins its search for the next point by assuming it will

10/17/06 Sampl&lAB applications 132

be before the next point in the original table (lines 40-42). It computes the distance between this point
(nx,ny,nz) and the last pointlx ,ly ,Iz) inlines 43-44 and then takes one of three actions depending

it the distance is greater thBASE (lines 46-62), less thaRISE (lines 64-65) or equal tRISE (lines

67-68).

If this distance is greater th&ISE, then the desired point is between the last point found which
is the point generated b and the point corresponding afni] . Lines 46-61 perform a bisection
of the interval ka ,a[ni]], a process that splits this interval in half, determines which half contains
the desired point, then splits that half and continues in this fashion until the either the distance between
the last and e points is close enough as determined by the maE®ROX() or MAXI subdivisions
have keen at made, in which case thevimint is taken to be the point computed after the last gisbdi
sion. After the bisection the wepoint is written tostdout (line 62) and eecution skips to line
70-71 where the mevaluesna and 6x,ny,nz) become the lastaluesla and (x ,ly ,Iz) and then
back to the top of the loop to continue the interpolation. The nfeeRROX() defined in line 4, tests
to see if the absolute value of the difference between the current distarRES&ni$ less tharEPS
defined in line 3 a403. This more complicated test is used instead of simply testing for equality
because floating point arithmetic is inexact, which means that while it will get close to the target dis-
tance, it may neer actually reach it.

If the distance between the last and candidate points is lesRIB8&n the desired point lies
beyond the point aa[ni] . In this case the action is lines 64-65 is performed which advances the can-
didate point tdi+2 then goes back to the top of the loop (line 38) and tests to see that tkissinde
still in the table and if so, repeats the entire process using the point corresporafinr@lo . If the
points are close togethehis step may be taken more than once to look for thké cendidate at
afli+2] , a[li+3] , etc. Eventually it will find a point that iISRISE beyond the last point at which
case it interpolates or it runs out points, indicating that the next point lies beyond the last point in the
table. If this happens, the last point found, becomes the last point oftlsetrend the process ends.

The last case is if the distance between the last point found and the pajimi at is exactly
equal toRISE. If it is, the point ag[ni] becomes the mepoint andli is updated tani . (lines
67-68). Then lines 70-71 argeeuted to updatéa and (x ,ly ,Iz) and then back to the top of the
loop to continue the process.

nps

np; np,
P2 Pn P2 Pn P2 Pn
npy npy npy

7.6.2. Driver Code.

This section describes the main routine oveirof the second program which is the actual/ON
bender This routine reads in the points, then cpllédna() (described in the next section) to place
base pairs at each point. The points are either readdidim or from the file whose name is the
second command lineg@ument. The source of the points is determined in lines 8-18, bilimg if
the command line contained a single arguments or in the segandeant if it was present. If thegar
ment count was greater thanotwthe program prints an error message and exits. The points are read in
the loop in lines 20-26. Anline with a# in column 1 is a comment and is ignored. All other lines are

10/17/06 Sampl&lAB applications 133

assumed to contain three humbers which are extracted from the lstieéng,and stored in the point
arraypts by thenab builtin sscanf() (lines 23-24). The number of points is kephjpts . Once
all points hae keen read, the loop exits and the point file is closed if it issttih . Finally, the
points are passed to the functiputdna() which will place a base pair at each point ancedhe
coordinates and connedty of the resulting molecule in the pair of fileka.path.pdb and
dna.path.bnd

1 /I Program 12 - DNA bender main program
2 string line;
3 file pf;
4 int npts;
5 point pts[5000 J;
6 int putdna();
7
8 iflargc==1)
9 pf = stdin;
10 else if(argc > 2){
11 fprintf(stderr, "usage: %s [path-file \n",
12 argv[1],argv[2]);
13 exit(1);
14 Yelse if(!(pf = fopen(argv[2], "r")) X
15 fprintf(stderr, "%s: can’t open %s\n",
16 argv[1],argv[2]);
17 exit(1);
18 }
19
20 for(npts = 0; line = getline(pf);){
21 if(substr(line, 1, 1) !="#"){
22 npts = npts + 1;
23 sscanf(line, "%lf %lf %lf",
24 pts[npts].x, pts[npts].y, pts[npts 1.z);
25 }
26 }
27
28 if(pf I= stdin)
29 fclose(pf);
30
31 putdna("dna.path”, pts, npts);

7.6.3. WrapDNA.

Every nab molecule contains a frame, a wable handle that can be used to position the
molecule. A frame consists of three orthogonal unit vectors and an origin that can be placed in an arbi-
trary position and orientation with respect to its associated molecule. When the molecule is created its
frame is initialized to the unit vectors along the global X, Y and Z axes with the origin at (0,0,0).

nab provides three operations on frames. figcan be defined by atonxgressions or absolute
points Eetframe() andsetframep()), one frame can be aligned or superimposed on another
(alignframe()) and a frame can be placed at a point on an axsZframe()). A frame is

10/17/06 Sampl&lAB applications 134

defined by specifying its origin, twpoints that define its X direction anddvpoints that define its Y
direction. The Z direction is X¥. Since it is comenient to not require the original X and Y be orthog-
onal, both frame creation builtins alldhe user to specify which of the original X or Y directions is to
be the true X or Y direction. If X is chosen then Y is recreated freX; #f Y is chosen then X is
recreated from ¥Z.

When the frame of one molecule is aligned on the frame of andtigeframe of the first
molecule is transformed to superimpose it on the frame of the seédrile same time the coordi-
nates of the first molecule are also transformed to maintain their original position and orientation with
respect to their own frame. In this way frames provide a way to precisely position one molecule with
respect to anotherhe frame of a molecule can also be positioned on an axis defined Ippitws.

This is done by placing the framnserigin at the first point of the axis and aligning the fraang-axis
to point from the first point of the axis to the second. After this is done, the orientation of the frame’
Xand Y vectors about this axis is undefined.

Frames hee wo aher properties that need to be discussed. Although wiienbalign-
frame() is normally used to position twmolecules by superimposing their frames, if the second
molecule (represented by the second argumealigoframe()) has the specialalue NULL, the
first molecule is positioned so that its frame is superimposed on the global X, Y aed @itxits
origin at (0,0,0). The second property is that whah applies a transformation to a molecule (or just
a abset of its atoms), only the atomic coordinates are transformed. Thesfi@igie’ and its orthogo-
nal unit vectors remain untouched. While this may at first glance seem odd, it makes possible the fol-
lowing three stage process of setting the molesudtaime, aligning that frame on tlggobal frame,
then transforming the molecule with respect to the globed axd origin which provides a e@nient
way to position and orient a molecuteframe at arbitrary points in space. With all this in mind, here is
the source tputdna() which bends a B-DN duplex about an open space curve.

1 /I Program 13 - place base pairs on a curve.
2 point s_ax| 41;
3 int getbase();
4
5 int putdna(string mname, point pts[1], int npts)
6 {
7 int p;
8 float tw;
9 residue r;
10 molecule m, m_path, m_ax, m_bp;
11 point pl, p2, p3, p4;
12 string sbase, abase;
13 string aex;
14 matrix mat;
15
16 m_ax = newmolecule();
17 addstrand(m_ax, "A");
18 r = g etresidue("AXS", "axes.rlb");
19 addresidue(m_ax, "A", r);
20 setxyz_from_mol(m_ax, NULL, s_ax);

10/17/06

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Sampl&lAB applications 135

m_path = newmolecule();
addstrand(m_path, "A");

m

rewmolecule();

addstrand(m, "A");
addstrand(m, "B");

for(p=21;p<npts;p=p+1){

}

setmol_from_xyz(m_ax, NULL, s_ax);
setframe(1, m_ax,
":ORG", ":ORG", "::SXT", ":ORG", "::CYT");
axis2frame(m_path, pts[p], pts[p+11]);
alignframe(m_ax, m_path);
mergestr(m_path, "A", "last”, m_ax, "A", "first");
if(p>1)
setpoint(m_path, sprintf("A:%d:CYT",p-1), pl);
setpoint(m_path, sprintf("A:%d:ORG",p-1), p2);
setpoint(m_path, sprintf("A:%d:ORG",p), p3);
setpoint(m_path, sprintf("A:%d:CYT",p), p4);
tw = 36.0 - torsionp(p1, p2, p3, p4);
mat = rotdp(p2, p3, tw);
aex = sprintf(":%d:", p);
transformmol(mat, m_path, aex);
setpoint(m_path, sprintf("A:%d:ORG",p), p1);
setpoint(m_path, sprintf("A:%d:SXT",p), p2);
setpoint(m_path, sprintf("A:%d:CYT",p), p3);
setframep(1, m_path, p1, p1, p2, p1, p3);
}

getbase(p, sbase, abase);
m_bp = wc_helix(sbase, ", "
abase, ", "
2.25,-5.0,0.0,0.0);
alignframe(m_bp, m_path);
mergestr(m, "A", "last", m_bp, "sense", "first");
if(p > 1){
connectres(m, "A", p-1,"03™, p, "P");
connectres(m, "B", 1, "P", 1, "O3™);

putpdb(mname + ".pdb", m);
putbnd(mname + ".bnd", m);

10/17/06 Sampl&lAB applications 136

putdna() takes three guments—hame, a gring that will be used to name the PDB and bond
files that hold the bent duplepts an array of points containing the origin of each base pair and
npts the number of points in the arrgutdna() uses four moleculesa_ax holds a small artificial
molecule containing four atoms that is a proxy for the some of the asesl placing the base pairs.
The moleculem_path will eventually hold one copof m_ax for each point in the input arrayhe
moleculem_bp holds each base pair after it is createdmay helix() and mwill eventually hold
the bent dna. Once again the functgwtbase() (to be defined by the user) provides the mapping
between the current point)Xand the nucleotides required in the base pair at that point.

Execution ofputdna() begins in line 16 with the creation of_ax. This molecule is gen
one strand'A" , into which is added one cpmf the special residudXS from the standarehab
residue library'axes.rlb" (lines 17-19). This residue contains four atoms na@®R& SXT, CYT
andNZT. These atoms are placed so tB®Gs at (0,0,0) an&XT, CYTandNZT are 1 Aalong the
X, Y and Z axes respeetly. Thus the residu@XS has the wact geometry as the molecules initial
frame—three unit ectors along the standard axes centered on the origin. The initial coordinates of
m_ax are saed in the point arrays_ax . The moleculesn_path andmare created in lines 22-23
and 25-27 respeuwtly.

The actual DM bending occurs in the loop in lines 29-62. Each base pair is added ansag®
process that uses_ax to properly orient the frame oh_path , so hat when the frame of nethe
base pair irm_bp is aligned on the frame @h_path , the nev base pair will be correctly positioned
on the curve.

Setting up the frame is done is lines 30-49. The procegasby restoring the original coordi-
nates ofm_ax (line 30), so that the the ato®RGis at (0,0,0) an&XT, CYTandNZT are each 1A
along the global X, Y and Z as. These atoms are then used to redefine the framme a¢ (line
32-33) so that it is equal to the three standard unit vectors at the global origirth&ldrame of
m_path is aligned so that its origin is pts[p] and its Z-axis points fromts[p] to pts[p+1]

(line 34). The call talignframe() in line 34 transformsn_ax to align its frame on the frame of
m_path , which has the effect of mong m_ax so that the aton®RGis atpts[p] and theORG—
NZT vector points twardspts[p+1] . A copy of the newly positionedth_ax is merged intan_path

in line 35. The result of this process is that each time around thenbogath gets a ne residue that
resembles a coordinate frame located at the point théase pair is to be added.

Whennab sets a frame from an axis, the orientation of its X and Y vectors is arbitvaile
this does not matter for the first base pair for whichaientation is acceptable, it does matter for the
second and subsequent base pairs which must be rotated about their Z axis spliaatthe proper
helical twist with respect to the previous base.dirs rotation is done by the code in lines 37-48. It
does this by considering the torsion angle formed by the fours at@¥i$-and ORGof the preious
AXSresidue anddRGandCYT of the currenfAXSresidue. The coordinates of these points are -deter
mined in lines 37-40. Since this torsion angle is a erdidr the helical twist between pairs of the bent
duple, it must be 36.0°. The amount of rotation required @ githe correct twist is computed in
line 41. A transformation matrix that will rotate thenn&XSresidue about th®@RG-ORGaxis by this
amount is created in line 42, the atom expression that namaX8wesidue is created in line 43 and
the residue rotated in line 44. Once thevmesidue is gien the correct twist the framen_path is
moved to the nev residue in lines 45-48.

The base pair is added in lines 51-60. The user defined fumggtibase() corverts the point
nubmer p) into the names of the nucleotides needed for this base pair which is createchaly the
builtin wc_helix() . It is then placed on the cwin the correct orientation using by aligning its
frame on the frame ah_path that we hae just created (line 55). Thewegair is merged intanand
bonded with the pxéous base pair if ityéts. Afterthe loop exits, the bend DINduplex coordinates

10/17/06 Sampl&lAB applications 137

are s@e @& FDB and it connectivity as a bnd file in the callsptadpb() andputbnd() in lines
64-65, whereupoputdna() returns to the caller.

7.7. Building peptides

The next example was created by Paul Beroza to construct peptidesveithiagikbone torsion
angles. Thedea is to callinkprot to create a peptide in an extended conformation, then to set
frames and do rotations to construct the proper torsions. This can be used as just a stand-alone pro-
gram to perform this task, or as a source for ideas for constructing similar functionality imadther
programs.

/I Program 14 -- build a peptide sequence

/["peptide"” is an nab program that will generate a pdb file given a structure
/[type and a sequence. It was created by Paul Beroza.

/l The command line syntax for peptide is:
/I % peptide structure sequence pdbout [-lib libfile]

/I where "structure" defines the type of structure to be created and "sequence"
/l'is a string o of 1 letter amino acid codes. For example:

Il % peptide ALPHA AAAAA aaaa.pdb
/I will create and alanine pentapeptide in an alpha helical structure.

/I The structure definitions are stored in a library file that can be specified
/I on the command line (the "-lib libfile" option), or by default is in
/I SNABHOME/reslib/conf.lib.

/I 've included a sample library "conf.lib" This file looks like:

/I ALPHA 1 alpha helix
/I phi -57.0 psi -47.0 omega 180.0

/I ABETA 1 anti-parallel beta sheet

/I phi -139.0 psi 135.0 omega -178.0
I

I

/I The file contains sets of definitions, one for each structure type. The
/I definitions above are separated by a blank line, but that is not necessary.
/I Each time peptide finds a line that begins with an alphanumeric character,

10/17/06 Sampl&lAB applications

/I it initializes a new structure type with the first string in the line as its
/I identifying string. The <structure> on the command line must match one of
/I the structure types in the "conf.lib" file.

/I The next field on the structure type line is the number of residues in the

/I structure. The following lines must contain the phi psi and omega values
/ for each of the residues in the structure type. The angles may be in any
/I order, but the string defining the angle must precede its floating point

Il value.

/I'If the number of residues = 1, it is a special structure for which the phi

/I psi and omega values are the same for all residues in the structure. For
/I these structure types, the <sequence> may be of any length. For other

/I structure types, the number of residues in <sequence> must agree with the
/I number of residues in the corresponding structure type in the "conf.lib"

/[file. The resulting pdb file is written to standard out.

/I Please let me know of any bugs or suggestions.

/I Enjoy,

/l Paul Beroza <pberoza@info.combichem.com>

#define MAXRES 500

#define USAGE "Usage: %s structure_type sequence pdbout <-lib XXX>\n", argv[1]

int fix_angles(molecule m1, int i, int nr, float omega, float psi, float phi)

{

/latom expressions to rotate about angles:
string omega_string, psi_string, phi_string;

/latom expressions for backbone atoms:
string npos, cpos, capos, nmlpos, cmlpos, camlpos;

point n_xyz, ca_xyz, ¢_xyz; //coords for res i bb
point cm1_xyz; //coords for resi- 1 bb
point u, v, zax, p_head, p_tail;

point va, vb, vc;

float ao, rot_angle, phiO, psiO, omega0;
atom a;

int ii;

matrix mat;

if (i>nr)nr=i

omega_string = sprintf(":%d-%d:", i, nr);
psi_string = sprintf(":%d:0|:%d-%d:", i - 1, i, nr);

138

10/17/06 Sampl&lAB applications 139

phi_string = sprintf(":%d:C*,0*,?[A-Z]*|:%d-%d:*", i, i + 1, nr);
npos = sprintf(":%d:N", i);

cpos = sprintf(":%d:C", i);

capos = sprintf(":%d:CA", i);

cmlpos = sprintf(":%d:C", i - 1);

camlpos = sprintf(":%d:CA", i - 1);

nmlpos = sprintf(":%d:N", i - 1);

/[create z - axis for rotation to get
/I C(i - 1) - N(i) - CA(i) bond angle = 121.9;

setpoint(m1, npos, n_xyz);
setpoint(m1, capos, ca_xyz);
setpoint(m1, cpos, c_xyz);
setpoint(m1, cmlpos, cml_xyz);

U = ca_xyz-n_xyz;
VvV = cml_xyz-n_xyz
zax=u"v;

a0 = angle(m1, cm1pos, npos, capos);
rot_angle =121.9 - a0;

p_tail = n_xyz;
p_head = n_xyz + zax;

mat = rotdp(p_head, p_tail, rot_angle);
transformmol(mat, m1, omega_string);

psiO = torsion(m1, nm1pos, camlpos, cm1pos, npos);
rot_angle = psi - psiO;

mat = rot4(m1, camlpos, cmlpos, rot_angle);
transformmol(mat, m1, psi_string);

omega0 = torsion(m1, camlpos, cmlpos, npos, capos);
rot_angle = omega - omegao;

mat = rot4(m1, cm1pos, npos, rot_angle);
transformmol(mat, m1, omega_string);

phiO = torsion(m1, cm1pos, npos, capos, cpos);
rot_angle = phi - phi0;

mat = rot4(m1, npos, capos, rot_angle);
transformmol(mat, m1, phi_string);

return O;

h

#define MAXTEMPLATES 50

10/17/06 Sampl&lAB applications 140

int match_template(file f, float phi[1], float psi[1], float omega[1],
string struct_type, int nres)

{
string line;
int ir, template_nres, ntemp, found;
string ttype, template_name[MAXTEMPLATES];
string s1, s2,s3;
float f1, f2, f3;
string ftmp;
found = 0;
ntemp = 0;

while (line = getline(f)) {

sscanf(line, "%s %d", ttype, template_nres);

if (ttype =="")
continue;

if (template_nres < 1) {
fprintf(stderr, "template has no residues\n");
exit(0);

}

++ntemp;

template_name[ntemp] = ttype;

if (ttype != struct_type) {

for (ir = 1; ir <= template_nres; ir++)
line = getline(f);
continue;

}

found = 1,

if (template_nres =1 && template_nres = nres) {

fprintf(stderr, "template has %d atoms and sequence has %d\n",
template_nres, nres);

exit(0);

}

for (ir = 1; ir <= template_nres; ir++) {
line = getline(f);

sscanf(line, "%s %lf %s %lf %s %lf", s1, f1, s2, 2, s3, 13);
if (s1 =="phi") phi[ir] = f1;

else if (s1 == "psi") psi[ir] = f1;

else if (s1 == "omega") omega]ir] = f1,;

if (s2 == "phi") phi[ir] = 2;
else if (s2 == "psi") psi[ir] = f2;
else if (s2 == "omega") omegalir] = f2;

if (s3 == "phi") phi[ir] = f3;
else if (s3 == "psi") psi[ir] = f3;
else if (s3 == "omega") omegalir] = f3;

10/17/06 Sampl&lAB applications 141

/ltemplate_nres == 1 is a special case for which all
/I residues in the sequence adopt the 1 triplet of phi / psi / omega values

if (template_nres == 1) {
for (ir = 2; ir <= nres; ir++) {
phifir] = phi[1];
psi[ir] = psi[1];
omega]ir] = omegall];

}
}
break;
}
if (ffound) {
fprintf(stderr, "template not found\n");
fprintf(stderr, "must be one of:");
for (ir = 1; ir <= ntemp; ++ir)
fprintf(stderr, " %s", template_namelir]);
fprintf(stderr, "\n");
exit(0);
}
return O;

h

/Imain routine: process the input, then call the above routines

int ir, nr;

string seq, struct_type;

molecule m1;

float omega[MAXRES], psiiIMAXRES], phi[MAXRES];
point ax, center;

atom a;

file conformation_file;

string outfile;

int ac;

if (argc '=4 && argc 1= 6) {
fprintf(stderr, USAGE);
exit(1);
}
if (argc > 4) {
if (argv[5] !'="-lib") {
fprintf(stderr, USAGE);
exit(1);
}
conformation_file = fopen(argv[6], "r");
if (conformation_file == NULL) {
fprintf(stderr, "conformation file not found %s\n", argv[6]);
exit(1);

10/17/06 Sampl&lAB applications 142

}
} else{
conformation_file = fopen(getenv("NABHOME") + "/reslib/conf.lib", "r");
if (conformation_file == NULL) {
fprintf(stderr, "conformation file not found %s\n",
getenv("NABHOME") + "/reslib/conf.lib");
exit(1);
}
}

struct_type = sprintf("%s", argv[2]);
seq = sprintf("%s", argv[3]);

nr = length(seq);

outfile = argv[4];

if (nr > MAXRES) {
fprintf(stderr, "MAXRES exceeded\n");
exit(0);

}

/lget the needed phi, psi and omega values from a template:
match_template(conformation_file, phi, psi, omega, struct_type, nr);

/lgenerate a structure in the extended conformation:
m1l = linkprot("new", seq, ");

/ladjust the phi, psi, and omega angles:
for (ir = 2; ir <= nr; ++ir){
fix_angles(ml, ir, nr, omegalir], psi[ir - 1], phi[ir]);

}

putpdb(outfile, m1);

LEaP Intr oduction Page 143

8. LEaP

8.1. Introduction

LEaP is a module from the AMBER suite of programs, which can be used to generate force field
files compatible with WB. Usingtleap, the user can:

Read AMBER PREP input files

Read AMBER PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules
Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and NAB

This is a simplified version of the LEaP documentatitboes not describe elements that are not sup-
ported by NAB; these include the graphical user iaterf commands related to periodic boundary
simulations, and items related to perturbation calculatidnsore complete account can be had in the
the Amber Users’ Manualwhich is aailable athttp://amber.scripps.edu

8.2. Concepts

In order to diectively use LEaP it is necessary to understand the philgsogiind the program,
especially of concepts of LEai®dmmands, variablesind objects.In addition to exploring these con-
cepts, this section also addresses the use of external files and libraries with the program.

8.2.1. Commands

A researcher uses LEaP by entering commands that manipulate objects. An object is just a basic
building block; some examples of objects arEOMs, RESIDUEs, UNITs, andARMSETs. The
commands that are supported within LEaP are described throughout the manual and are defined in
detail in the "Command Reference" section.

The heart of LEaP is a command-line interface that accepts text commands which direct the pro-
gram to perform operations on objects. All LEaP commands &ree of the following tw forms:

command argumentl argument2 argument3 ...
variable = command argumentl argument?2 ...

For example:

edit ALA
trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by whitespace. Some com-
mands return objects which are then associated with a variable using an assignment (=) statement.
Each command acts upon its arguments, and some of the commands modifgtineénds’ contents.

LEaP Concepts Page 144

The commands themselves are case- inseasifihat is, in the abe example,edit could hae keen
entered a&dit , eDiT , or any combination of upper and lower case charact8isilarly, loadPdb
could hae keen entered a number of different ways, includoegdpdb . In this manual, we fre-
guently use a mixed case for commantlée d this to enhance the t&rences between commands
and as a mnemonic vee. Thuswhile we writecreateAtom , createResidue , and create-

Unit in the manual, the user can usg ease when entering these commands into the program.

The arguments in the command text maybjectssuch as NUMBERs, STRINGS, or LISTs or
they may bevariables These tw subjects are discussed next.

8.2.2. \ariables

A variableis a handle for accessing an objeatvariable name can beyaalphanumeric string
whose first character is an alphabetic charag¢fdphanumeric means that the characters of the name
may be letters, numbers, or special symbols such as "*". The following special symbols should not be
used in variable names: dollar sign, comma, period, pound sign, equal sign, space, semicolon, double
guote, or list open or close characters { and.EaP commands should not be used as variable names.
Variable names are case-sensiti'ARG" and "ag" are different ariables. ¥riables are associated
with objects using an assignment statement not @imdigular computer languages such as FBRN
or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers ={1.22.33.445678}

In the abee examples, bothmole and MOLEare variable names, whose contents are the same
(6.02E23). Despitéhe fact that botimole andMOLEhave the same contents, there notthe same
variable. Thisis due to thedct that variable names are case-sefesitiEaP maintains a list ofavi-
ables that are currently defined and this list can be displayed usiligf thecommand. The&ontents

of a variable can be printed using thesc command.

8.2.3. Objects

Theobjectis the fundamental entity in LEaBbjects range from the simple objects NUMBERS
and STRINGS to the compl@bjects UNITs, RESIDUEs, POMs. Compl& objects hae poperties
that can be altered using tket command and some complebjects can contain other objectarF
example, RESIDUEs are compl®bjects that can containT®Ms and heae te properties: residue
name, connect atoms, and residue type.

8.2.3.1. NUMBERSs

NUMBERSs are simple objects and yh&e identical to double precision variables in HBRN
and double in C.

8.2.3.2. STRINGs

STRINGS are simple objects that are identical to character arrays in C and similar to character
strings in FORRAN. STRINGSare represented by sequences of characters which may be delimited
by double quote characters. Example strings are:

"Hello there"

LEaP Concepts Page 145

"String with a "™ (quote) character"
"Strings contain letters and numbers:1231232"

8.2.3.3. LISTs

LISTs are made up of sequences of other objects delimited by LIST open and close characters.
The LIST open character is an open curly beadk) and the LIST close character is a close curly
bracket (}). LISTs can contain other LISTs and be nested arbitrarily deep. Example LISTs are:

w

1234}
1.2 "string" }
123{12}{34}}

[t Wt Wt

LISTs are used by mgrcommands to prdde a more flexible way of passing data to the commands.
The zMatrix command has twaguments, one of which is a LIST of LISTs where each subLIST
contains between three and eight objects.

8.2.3.4. RRMSETSs (Parameter Sets)

PARMSETSs are objects that contain bond, angle, torsion, and nonbond parameters for AMBER
force field calculations. Tlyeare normally loaded frore.g. parm94.dat andfrcmod files.

8.2.3.5. AOMs

ATOMs are comple objects that do not containyaother objects. The FOM obiject is similar
to the chemical concept of atomBhus, it is a single entity that may be bonded to otf@Ms and it
may be used as a building block for creating moleculdSOMs have mary properties that can be
changed using theet command. Thesproperties are defined balo

name
This is a case-sensii STRING property and it is theTOM’s rame. Thenames for
all ATOMs in a RESIDUE should be uniqu&he name has no releance to molecu-
lar mechanics force field parameters; it is chosen arbitrarily as a means to identify
ATOMs. Ideally the name should correspond to the PDB standard, being 3 characters
long except for hydrogens, which carvéan extra digit as a 4th character.

type
This is a STRING propertyit defines the AMBER force field atom typé#.is impor
tant that the character case match the canonical type definition used in the appropriate
"parm.dat” or "frcmod" file.For smooth operation, all atom types need twehde-
ment and ¥bridization defined by th@ddAtomTypes command. The standard
AMBER force field atom types are added by the default "leaprc" file.

charge
Thecharge property is a NUMBER that represents tHEOM’s dectrostatic point
charge to be used in a molecular mechanics force field.

element
The atomic element pvades a simpler description of the atom thantthee , and is
used only for LEaR’ internal purposes (typically when force field information is not
available). The element names correspond to standard nomenclature; the character "?"
is used for special cases.

LEaP Concepts Page 146

position
This property is a LIST of NUMBERS. The LIST must contain three values: the (X,
Y, Z) Cartesian coordinates of thd @M.

8.2.3.6. RESIDUEs

RESIDUEs are compkeobjects that contain POMs. RESIDUEsare collections of BOMs,
and are either molecules (e.g. formaldehyde) or are linked together to form molecules (e.g. amino acid
monomers). RESIDUERave sveaal properties that can be changed usingstte command. (Note
that database RESIDUES are each contained within a UNifidhthe same name; the residueY3k
referred to as GL1 when setting properties. Whendawf these single-UNIT residues are joined, the
result is a single UNIT containing thedyiRESIDUES.)

One property of RESIDUES is connectiof@Ms. ConnectionATOMs are AOMs that are
used to ma& linkages between RESIDUE§&or example, in order to create a protein, the N-terminus
of one amino acid residue must be linked to the C-terminus of the next reSiisdinkage can be
made within LEaP by setting the NT@M to be a onnection AOM at the N-terminus and the C
ATOM to be a onnection AOM at the C-terminus. As another exampleot@&YX amino acid
residues may form a disulfide bridge by crosslinking a connection atom on each residue.

There are sexal properties of RESIDUESs that can be modified usingséite command. The
properties are described below:

connectO
This defines an POM that is used in making links to other RESIDUHB. UNITs
containing single RESIDUEs, the RESIDUEsdnnect0 ATOM is usually defined
as the UNITs’head ATOM. (This is hav the standard library UNITs are defined.)
For amino acids, the camntion is to mak the N-terminal nitrogen theonnectO
ATOM.

connectl This defines an FOM that is used in making links to other RESIDUHB. UNITs
containing single RESIDUESs, the RESIDUEsnnectl ATOM is wually defined
as the UNITstail ATOM. (This is done in the standard library UNIT$pr amino
acids, the corention is to mak the C-terminal oxygen theonnectl ATOM.

connect2 This is an AOM property which defines anT®M that can be used in making links
to other RESIDUESsIn amino acids, the cepntion is that this is the FOM to which
disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIEUEently it can
hase me of the following walues: "undefined" , "solvent" |, "protein"
"nucleic” , or "saccharide” . Some of theLEaP commands bebta in differ-
ent ways depending on the type of a residber example, the solvate commands
require that the solvent residues be of typelvent" . It is important that the
proper character case be used when defining this property.

name The RESIDUE name is a STRING propertyis important that the proper character
case be used when defining this property.

8.2.3.7. UNITs

UNITs are the most complabjects within LEaPand the most important. UNITs, when paired
with one or more PARMSETSs, contain all of the information required to perform a calculation using
AMBER. UNITshave the following properties which can be changed using#tecommand:

LEaP Concepts Page 147

head

tail These define theT®OMs within the UNIT that are connected when UNITs are joined
together using theequence command or when UNITs are joined together with the
PDB or PREP file reading commands. Taik ATOM of one UNIT is connected to
the head ATOM of the next UNIT in ap sequence. (Note: a "TER card" in a PDB
file causes a meUNIT to be started.)

box This property can either baull , a NUMBER, or a LIST The property defines the
bounding box of the UNITIf it is defined aswll then no bounding box is defined.
If the value is a single NUMBER then the bounding box will be defined to be a cube
with each side being NUMBER of angstroms across. If the value is a LIST then it
must be a LIST containing three numbers, the lengths of the three sides of the bound-
ing box.

cap This property can either beull or a LIST The property defines the solvent cap of
the UNIT. If it is defined ashull then no solvent cap is defined. If the value is a
LIST then it must contain four numbers, the first three define the Cartesian coordi-
nates (X, Y Z) of the origin of the solvent cap in angstroms, the fourth NUMBER
defines the radius of the solvent cap in angstroms.

Examples of setting the ab®roperties are:

set dipeptide head dipeptide.1.N
set dipeptide box { 5.0 10.0 15.0}
set dipeptide cap { 15.0 10.05.08.0}

The first example mas the amide nitrogen in the first RESIDUE within "dipeptide" hisad
ATOM. The second»ample places a rectangular bounding box around the origin with the &, Y
dimensions of (5.0, 10.0, 15.0) in angstroms. The thiednple defines a solvent cap centered at (
15.0, 10.0, 5.0) angstroms with a radius of 8.0Nbte: the "set cap" command does not actually sol-
vate, it just sets an attribute. See sodvateCap command for a more practical case.

UNITs are comple objects that can contain RESIDUEs anOMs. UNITscan be created using the
createUnit command and modified using tket commands. The contents of a UNIT can be
modified using thedd andremove commands.

8.2.3.8. Comple»objects and accessing subobjects

UNITs and RESIDUEs are complebjects. Among other things, this means thay tten con-
tain other objects. There is a loose hiergrahcomplex objects and what tlyeare allowed to contain.
The hierarch is as bllows:

. UNITs can contain RESIDUEs and @Ms.
. RESIDUESs can contain FOMSs.

The hierarcht is loose because it does not forbid UNITs from containin®Ms directly Howeva,
the cowention that has wlved within LEaP is to he UNITs directly contain RESIDUEs which
directly contain AOMs.

Objects that are contained within other objects can be accessed using dot "." notatirample e
would be a UNIT which describes a dipeptide ALA-PHE. The UNIT containsRESIDUES each of
which contain seeral ATOMs. If the UNIT is referenced (named) by thariabledipeptide |, then
the RESIDUE named ALA can be accessed in tways. The user may type one of the faflag

LEaP Concepts Page 148

commands to display the contents of the RESIDUE:

desc dipeptide.ALA
desc dipeptide.1

The first translates to "some RESIDUE namdé¢d\ within the UNIT namedlipeptide ". The sec-

ond form translates as "the RESIDUE with sequence nurhbeithin the UNIT nameddipep-

tide ". The second form is more useful becaugeryesubobject within an object is guaranteed to
have a unique sequence numbdéfrthe first form is used and there is more than one RESIDUE with the
name ALA, then an arbitrary residue with the namAeA is returned. @ access AOMs within
RESIDUEs, the notation to use is as follows:

desc dipeptide.1.CA
desc dipeptide.1.3

Assuming that the FOM with the nameCA has a sequence numiirthen both of the ave mm-
mands will print a description of the $alpha$—carbon of RESIRleptide. ALA or dipep-

tide.1 . The reader should keep in mind tlpeptide.1.CA is the AFOM, an object, con-
tained within the RESIDUE name&LA within the \ariabledipeptide . This means thadipep-
tide.1.CA can be used as angament to ay command that requires anfT@M as an agument.
However dipeptide.1.CA is not a variable and cannot be used on the left hand side of an assign-
ment statement.

In order to further illustrate the concepts of UNITs, RESIDUESs, arndMs, we can gamine
the log file from a LEaP sessioRat of this log file is printed bela

> | 0oadOff all_amino94.lib
> desc GLY
UNIT name: GLY
Head atom: .R<GLY 1>.A<N 1>
Tail atom: .R<GLY 1>.A<C 6>
Contents:
R<GLY 1>
> desc GLY.1
RESIDUE name: GLY
RESIDUE sequence number: 1
RESIDUE PDB sequence number: 0
Type: protein
Connection atoms:
Connect atom 0: A<N 1>
Connect atom 1: A<C 6>
Contents:
A<N 1>
A<HN 2>
A<CA 3>
A<HA2 4>
A<HA3 5>
A<C 6>

LEaP Concepts Page 149

A<O 7>

> desc GLY.1.3

ATOM

Normal Perturbed

Name: CA CA

Type: CT CT

Charge: -0.025 0.000

Element: C (not affected by pert)

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000
Bonded to .R<GLY 1>.A<N 1> by a single bond.
Bonded to .R<GLY 1>.A<HA2 4> by a single bond.
Bonded to .R<GLY 1>.A<HAS3 5> by a single bond.
Bonded to .R<GLY 1>.A<C 6> by a single bond.

In this example, command lines are pfd by ">" and the LEaP program output has no such charac-
ter prefice. Thdirst command,

> | oadOff all_amino94.lib

loads an OFF library containing amino acids. The second command,

> desc GLY

allows us to gamine the contents of the amino acid UNGLY. The UNIT contains one RESIDUE
which is named GY. and this RESIDUE is the first residue in the UNR<GLY 1>). Infact, it is
also the only RESIDUE in the UNITThehead andtail ATOMs of the UNIT are defined as the N-
and C-termini, respeeily. Thebox andcap UNIT properties are defined as "null". If these latter
two properties had values other than "null", the information woule ieen included in the output of
thedesc command.

The next command line in the session,

> desc GLY.1

enables us to examine the first residue in th&y GINIT. This RESIDUE is named GLand its
residue type is that of protein . The connect0 ATOM (N) is the same as the UNIThead
ATOM and theconnectl ATOM (C) is the same as the UNIT&il ATOM. Thereare sgen
ATOM objects contained within the RESIDUE &ln the UNIT GLY.

Finally, let us look at one of theT®Ms in the GlY RESIDUE.

> desc GLY.1.3

The ATOM has a name (CA) that is unique among the atoms of the resithieeAMBER force field

atom type for CA is CT The type of element, atomic point charge, and Cartesian coordinates for this
ATOM havebeen defined along with its bonding atiitiéss. Otheforce field parameters, such as the
van der Waals well depth, are obtained from PARMSETS.

LEaP Concepts Page 150

8.3. Basidnstructions for using LEaP with NAB

This section gies an overview of how LEaP is most commonly used. Detailed descriptions of
all the commands arewgh in the following section

8.3.1. Buildinga Molecule For Molecular Mechanics
In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be completed.
(1) Any needed UNIT or PARMSET objects must be loaded;
(2) Themolecule must be constructed within LEaP;
(3) Theuser must output topology and coordinate files from LEaP to use in AMBER.
The most typical command sequence is the following:

source leaprc.ff94 load a force field
x = | oadPdb trypsin.pdb load in a structure
add in cross-links, solvatetc.
set default OldPrmtopFormat on NAB uses an older version format
saveAmberParm x prmtop prmcrd save files for sander or gibbs

There are a number of variants of this:

(1) AlthoughloadPdbis by far the most commonay to enter a structure, one might lsadOff,
or loadAmberPrepor use thezmatcommand to bild a molecule from a z-matrix. See the
Commands section belofor desciptions of these optionBor case where you do notvea
starting structure (in the form of a pdb file) LEaP can be used to build the molecule; you will
find, havever, that this is not alays as easy as it might b&lany experienced Amber users
turn to other (commerical and non-commerical) programs to create their initial structures.

(2) Bevery attentive o any arors produced in thibadPdbstep; these generally mean that LEaP
has mis-read the fileA general rule of thumb is to keep editing your input pdb file until LEaP
stops complaining. It is often ceenient to use thaddPdbAtomMapr addPdbResMapom-
mands to mak g/stematic changes from the names in your pdb files to those in the Amber
topology files; see thieaprcfiles for examples of this.

(3) ThesaveAmberParmmommand cited alwe is gopropriate for calculations that do not compute
free energies; for the latter you will need to ssgeAmberParmPertFor polarizable force
fields, you will need to adBd to the abse mmmands (see the Commands section vibglo

8.3.2. AminoAcid Residues

The accompanying table shows the amino acid UNITs and their aliases are defined in the LEaP
libraries.

For each of the amino acids found in the LEaP libraries, there has been created an n-terminal and
a cterminal analog. The n-terminal amino acid UNIT/RESIDUE names and aliases aeegrbfy
the letter N (e.g. NALA) and the c-terminal amino acids by the letter C @d.A}. If the user
models a peptide or protein within LEdRey may choose one of three ways to represent the terminal
amino acids. The user may use 1) standard amino acids, 2) protecting grGHssIN/E), or 3) the
chaged c- and n-terminal amino acid UNITS/RESIDUEs. If the standard amino acids are used for the
terminal residues, then these residues willehincomplete alences. Thesthree options are illus-
trated below:

LEaP Using LEap with AMBER Page 151

Group or residue Residue Name, Alias
Acetyl beginning group ACE
Amine ending group NHE
N-methylamine ending group NME
Alanine ALA
Arginine ARG
Asparagine ASN
Aspatrtic acid ASP
Aspartic acid--protonated ASH
Cysteine CYS
Cystine, S--S crosslink CYX
Glutamic acid GLU
Glutamic acid--protonated GLH
Glutamine GLN
Glycine Gl
Histidine, delta H HID
Histidine, epsilon H HIE
Histidine, protonated HIP
Isoleucine ILE
Leucine LEU
Lysine YS
Methionine MET
Pherylalanine PHE
Proline PRO
Serine SER
Threonine THR
Tryptophan TRP
Tyrosine TYR
Valine VAL

{ ALA VAL SER PHE }
{ ACE ALA VAL SER PHE NME }
{ NALA VAL SER CPHE }

The default for loading from PDB files is to use n- and c-terminal residues; this is established by the
addPdbResMap command in the dafiltleaprc files. To force incomplete valences with the stan-
dard residues, one woulduab define a sequence (X = { ALA VAL SER PHE } ") and use
loadPdbUsingSeq , or uiseclearPdbResMap to completely remee the mapping feature.

Histidine can wist either as the protonated species or as a neutral species with a hydrogen at the
delta or epsilon positionFor this reason, the histidine UNIT/RESIDUE name is either, HIB, or
HIE (but not HIS). The deilult "leaprc” file assigns the name HIS to HID. Thus, if a PDB file is read
that contains the residue HIS, the residue will be assigned to the HID UNIT object. This feature can
be changed within ongown "leaprc” file.

The AMBER force fields also ddrentiate between the residue cysteine (CYS) and the similar
residue which participates in disulfide bridges, cystine (CYX). The user wal thaxplicitly define,
using thebond command, the disulfide bond for a pair of cystines, as this information is not read from

LEaP Using LEap with AMBER Page 152

the PDB file. In addition, the user will need to load the PDB file usindod@PdbUsingSeq
command, substituting CYX for CYS in the sequence wieedsulfide bond will be created.

8.3.3. NucleicAcid Residues
The following are defined for the 1994 force field.

Group or residue Residue Name, Alias
Adenine A,RA

Thymine DT

Uracil RU

Cytosine DC,RC

Guanine DG,RG

The "D" or "R" prefix can be used to distinguish between deoxyribose and ribose units; with the
defaultleaprc file, ambiguous residues are assumed to be ddeagidue names l&k"DA" can be
followed by a "5" or "3" ("DA5", "DA3") for residues at the ends of chains; this is also theldef
established baddPdbResMap, even if the "5" or "3" are not added in the PDB file. The "5" and "3"
residues are "capped" by gdnogen; the plain and "3" residues include a "leading" phosphate group.
Neutral residues capped by hydrogens are end in "N," such as "DAN."

8.3.4. Miscellaneoufkesidues

Miscellaneous Residue unit/residue name
TIP3P water molecule TP3
TIP4P water model TP4
TIP5P water model TP5
SPC/E water model SPC
Cesium cation Cs+
Potassium cation K+
Rubidium cation Rb+
Lithium cation Li+
Sodium cation Na+ or IP
Chlorine Cl-or IM
Large cation IB

"IB" represents a solvated moratent cation (saysodium) for use in vacuum simulations. The cation
UNITs are found in the files "ions91.lib" and "ions94.lib", while the water UNITs are in the file "sol-
vents.lib”. Theleaprc files assign the variablesAN and HOH to the TP3 UNIT found in the OFF
library file. Thus, if a PDB file is read and that file contains either the residue name HOAT pthé/

TP3 UNIT will be substituted. See Chapter 3 for a discussionwfttiase other water models.

A periodic box of 216 TIP3P waters ANBOX216) is provided in the file "soénts.lib". The
box measures 18.774 angstroms on a side. This box of waters has been equilibrated by a Monte Carlo
simulation. Itis the UNIT that should be used to solvate systems with TIP3P water molecules within
LEaP It has been provided by VI.. Jorgensen. Boas are alsowailable for chloroform, methanol,
and N-methylacetamide; these are described in Chapter 2.

LEaP Commands Page 153

8.4. Commands

The following is a description of the commands that can be accessed using the command line
interface intleap or through the command line editoriteap Wheneer an agument in a command
line definition is enclosed in brackets ([arg]), then that argument is optional. When examples are
showvn, the command line is paefed by "> ", and the program output is shown without this character
preface.

Some commands that are almostanaused hae been remwed from this description to se
space. Wu can use the "helpaéility to obtain information about these commands; most onlyemak
sense if you understand what the program is doing behind the scenes.

8.4.1. add
add a b

UNIT/RESIDUE/ATOM a,b

Add the objecb to the object. This command is used to placd@Ms within RESIDUEsS,
and RESIDUEs within UNITs.This command will work only ib is not contained by an
other object.

The following example illustrates both tteeld command and the way the tip3pater
molecule is created for the LEaP distribution tape.

hl = createAtom H1L HW 0.417
h2 = createAtom H2 HW 0.417
0 = c reateAtom O OW -0.834

set hl element H
set h2 element H
seto elementO

r = c reateResidue TIP3
addr hl

add r h2

addro

bond hl o
bond h2 o
bond h1 h2

TIP3 = createUnit TIP3

add TIP3 r
set TIP3.1 restype solvent
set TIP3.1 imagingAtom TIP3.1.0

zMatrix TIP3 {
{ H100.9572}
{ H2OH10.9572104.52}

VVVVVVVVVVVVVVVVVVYVVYVVYVYVYVYV

LEaP Commands Page 154

>}
>

> saveOff TIP3 water.lib
Saving TIP3.

Building topology.

Building atom parameters.

8.4.2. addAtomTypes
addAtomTypes { { type element hybrid } { ... } ... }

STRING type
STRING element
STRING hybrid

Define element and hybridization for force field atom types. This command for the standard
force fields can be seen in the aldfleaprc files. TheSTRINGs are most safely rendered
using quotation marks. If atom types are not defined, confusing messagesydiolizdtion

can result when loading PDB files.

8.4.3. addlons
addlons unit ion1 numlonl [ion2 numlon2]

UNIT unit
UNIT ionl
NUMBER numionl
UNIT ion2

NUMBER numlon2

Adds counterions in a shell aroundit using a Coulombic potential on a grid.ndéimlonlis

0, then theunit is neutralized. In this casapmlonlmust be opposite in charge woit and
numlon2cannot be specifiedf solvent is present, it is ignored in the charge and steric calcu-
lations, and if an ion has a steric conflict with a entvmolecule, the ion is naed to the cen-

ter of said molecule, and the latter is deleted. &foid this behsior, either solvate _after_
addions, or use addlons2.) lons must be monoatomic. This procedure is not guaranteed to
globally minimize the electrostatic eggr When neutralizing gularbackbone nucleic acids,

the first cations will generally be placed between phosphates, leaving the &nahsmo be
placed somewhere around the middle of the molecule.The default grid resolution is 1 A,
extending from an inner radius dfmaxlonVdwRadius + maxSoluteAtomVdwRadius) to an
outer radius 4 A beyond. A distance-dependent dielectric is used for speed.

8.4.4. addlons2
addlons?2 unit ion1 numlonl [ion2 humlion2]

UNIT unit
UNIT ionl
NUMBER numionl

LEaP

8.4.5.

8.4.6.

8.4.7.

Commands Page 155

UNIT ion2
NUMBER numlon2

Same as addlons, except solvent and solute are treated the same.

addRth
addPath path

STRING path

Add the directory irpathto the list of directories that are searched for files specified by other
commmands. Thiollowing example illustrates this command.

> addPath /disk/howard
/disk/howard added to file search path.

After the aboe cmmand is entered, the program will search for a file in this directory if a file
is specified in a command. Thus, if a user has a library named "/digkéiongs.lib" and

the user wants to load that librargne only needs to enter load rings.lib and not load
/disk/hawvard/rings.lib.

addPdbAtomMap
addPdbAtomMap list

LIST list

The atom Name Map is used to try to map atom names read from PDB files to atoms within
residue UNITs when the atom name in the PDB file does not match an atom in the residue.
This enables PDB files to be read in withoxtieasve aliting of atom namesTypically, this
command is placed in the LEaP start-up file, "leaprc”, so that assignments are made at the
beginning of the sessionThe LIST is a LIST of LISTs. Each sublist contaitwgo entries to

add to the Name Map. Each entry has the form:

{ s tring string }

where the firsstring is the name within the PDB file, and the secstiohg is the name in the
residue UNIT.

addPdbResMap
addPdbResMap list

LIST list

The Name Map is used to map RESIDUE names read from PDB filagable names within
LEaP Typically, this command is placed in the LEaP start-up file, "leaprc", so that assign-
ments are made at the beginning of the sessidwe. LIST is a LIST of LISTs. Each sublist
contains tw or three entries to add to the Name Map. Each entry has the form:

LEaP Commands Page 156

{ d ouble string string }

wheredoublecan be 0 or 1, the first string is the name within the PDB file, and the second
string is the variable name to which the first string will be mappedllustrate, the follaing

is part of the Name Map thatists when LEaP is started from the "leaprc” file included in the
distribution tape:

ADE --> DADE

0 ALA --> NALA
0 ARG --> NARG

1 ALA --> CALA
1 ARG --> CARG

1 VAL --> CVAL

Thus, the residuBLA will be mapped toNALAIf it is the N-terminal residue ardALAIf it is
found at the C-terminus. The almoName Map was produced using the faliog (edited)
command line:

> addPdbResMap {
> { 0 ALANALA} {1 ALACALA}
> { 0 ARG NARG }{1ARG CARG }

>{0VALNVAL} {1 VALCVAL}
>

> { ADE DADE}

>}

8.4.8. alias
alias [stringl [string2]]

STRING stringl
STRING string2

This command will add or remae an entry to the Alias @ble or list entries in the Aliasable.

If both strings are present, then stringl becomes the alias to string2, the original cortimand.
only one string is used as an argument, then this string is/edrfrom the Alias &ble. Ifno
arguments are gen with the command, the current aliases stored in the Alias Table will be
listed.

The proposed alias is first checked for conflict with the LEaP commands and it is rejected if a
conflict is found. A proposed alias will replace an existing alias with a warning being issued.
The alias can stand for more than a single word, but also as an entire string so the user can
quickly repeat entire lines of input.

LEaP Commands Page 157

8.4.9. bond
bond atom1 atom2 [order]

ATOM atoml
ATOM atom?2
STRING order

Create a bond between atoml and atom2. Both of thE@M#& must be contained by the
same UNIT By default, the bond will be a single bon®y specifying "-", "=", "#", or ":" as

the optional agument,order, the user can specify a single, double, triple, or aromatic bond,
respectiely. Example:

bond trx.32.SG trx.35.SG

8.4.10. bondByDistance
bondByDistance container [maxBond]

CONT container
NUMBER maxBond

Create single bonds between all@Vs in container that are within maxBond angstroms of
each other If maxBond is not specified then a delt distance will be used. This command is
especially useful in building molecules. Example:

bondByDistance alkylChain

8.4.11. check
check unit [parms]

UNIT unit
PARMSETparms

This command can be used to check the UNIT for internal inconsistencies that could cause
problems when performing calculations. This iseayvuseful command that should be used
before a UNIT is sa&d with saveAmber&m or its variants. Currently itheds for the fol-

lowing possible problems:

| ongbonds

* s hort bonds

* non-integral total charge of the UNIT.

» missing force field atom types

« ¢ lose contacts (< 1.5 A) between nonbonded ATOMs.

The user may collect gmmissing molecular mechanics parameters in a PARMSET for subse-
guent editing. In the following example, the alanine UNIT found in the amino acid library has

LEaP Commands Page 158

been examined by thehedk command:

> check ALA

Checking 'ALA'....

Checking parameters for unit 'ALA'.
Checking for bond parameters.
Checking for angle parameters.
Unit is OK.

8.4.12. combine
variable = combine list

object variable
LIST list

Combine the contents of the UNITs within list into a single UNFe nev UNIT is placed in
variable. Thiscommand is similar to theequencecommand except it does not link the
ATOMs of the UNITs togetherin the following example, the input and output should be
compared with the examplevgh for thesequenceommand.

> t ripeptide = combine { ALA GLY PRO }
Sequence: ALA

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA Il bug: this should be tripeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

8.4.13. copy
newvariable = copy variable

object newvariable
object variable

Creates an exact duplicate of the objemtiable. Sincenew\ariable is not pointing to the
same object asaviable, changing the contents of one object will not alter the other object.
Example:

> t ripeptide = sequence { ALA GLY PRO }
> t ripeptideSol = copy tripeptide
> solvateBox tripeptideSol WATBOX216 8 2

LEaP Commands Page 159

In the abwe example, tripeptide is a separate object from tripeptideSol and is netteshlv
Had the user instead entered

> t ripeptide = sequence { ALA GLY PRO }
> t ripeptideSol = tripeptide
> solvateBox tripeptideSol WATBOX216 8 2

then both tripeptide and tripeptideSol would be solvated singewbald both point to the
same object.

8.4.14. ceateAtom
variable = createAtom name type charge

ATOM variable
STRING name
STRING type
NUMBER charge

Return a n& and empty AOM with name, type, and clge as its atom name, atom type, and

electrostatic point chge. (Seethe add command for an example of tlieeateAtomcom-
mand.)

8.4.15. ceateParmset

variable = createParmset name

PARMSETvariable
STRING name

Return a n& and empty PARMSET with the name "name".

> newparms = createParmset pertParms

8.4.16. ceateResidue

variable = createResidue name

RESIDUEvariable
STRING name

Return a n& and empty RESIDUE with the nhame "name". (See daldd command for an
example of theereateResidueommand.)

8.4.17. ceateUnit

variable = createUnit name

UNIT variable
STRING name

LEaP Commands Page 160

Return a n& and empty UNIT with the name "name(See theaddcommand for anxample
of thecreateUnitcommand.)

8.4.18. deleteBond
deleteBond atom1 atom2

ATOM atoml
ATOM atom?2

Delete the bond between th&e@Ms atom1 and atom2. If no bond exists, an error will be dis-
played.

8.4.19. desc
desc variable

object variable

Print a description of the object. In the following example, the alanine UNIT found in the
amino acid library has been examined bydhsccommand:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>
Tail atom: .R<ALA 1>.A<C 9>
Contents:

R<ALA 1>

Now, thedesccommand is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1
RESIDUE name: ALA
RESIDUE sequence number: 1
Type: protein
Connection atoms:
Connect atom 0: A<N 1>
Connect atom 1: A<C 9>
Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

LEaP Commands Page 161

Next, we illustrate the desc command by examining the®M N of the first residue (1) of the
alanine UNIT:

> desc ALA.1.N

ATOM

Name: N
Type: N
Charge: -0.463
Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-
notdisp- tchd- posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002
Atom velocity: 0.000000, 0.000000, 0.000000
Bonded to .R<ALA 1>.A<HN 2> by a single bond.
Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N AOM is aso the first atom of the ALA residue, the following command wilegi
the same output as the previous example:

> desc ALA.1.1

8.4.20. edit
edit unit

UNIT unit

In xleap this command creates a Unit Editor that contains the UNIT unit. The userwan vie
and edit the contents of the UNIT using the mouse. The command causghtbepobject

to be edited.If the object that the user wants to edit is "null", then the edit command assumes
that the user ants to edit a e UNIT with a single RESIDUE within it PARMSETs can

also be edited. In tleap this command prints an error message.

8.4.21. goupSelectedAtoms
groupSelectedAtoms unit name

UNIT unit
STRING name

Create a group within unit with the name, "name”, using all of f@Ms within the UNIT
that are selected. If the group has already been definedwém®write the old group.Thedesc
command can be used to list groups. Example:

groupSelectedAtoms TRP sideChain
An expression lie "TRP@sideChain" returns a LIS3o aty commands that require LISE’

can tale advantage of this notation. After assignment, one can access groups using the "@"
notation. Examples:

LEaP Commands Page 162

select TRP@sideChain

center TRP@sideChain

The latter gample will calculate the center of the atoms in the "sideChain" group. (see the
selectcommand for a more detailed example.)

8.4.22. help
help [string]

STRING string

This command prints a description of the command in string. If the STRING isventtigén
a list of help topics is provided.

8.4.23. impose
impose unit seqlist internals
UNIT unit
LIST seqlist

LIST internals

The impose command allows the user to impose internal coordinates on theTuallist of
RESIDUESs to impose the internal coordinates upon is in seqlist. The internal coordinates to
impose are in the LIST internals.

The command works by looking into each RESIDUE within the UNIT that is listed in the
seqlist agument and attempts to apply each of the internal coordinates within internals. The
seqglist agument is a LIST of NUMBERS that represent sequence numbers or ranges of
sequence numberfkanges of sequence numbers are representedobgiament LISTs that

contain the first and last sequence number in the range. The user can specify sequence number
ranges that are larger than what is found in the UN#IF example, the range { 1 999 } repre-

sents all RESIDUESs in a 200 RESIDUE UNIT.

The internals @ument is a LIST of LISTs. Each sublist contains a sequencé@MMmames
which are of type STRING followed by the value of the internal coordinate. An example of the
impose command would be:

impose peptide {12 3 }{
{ N CACN-400}
{C NCA C -600}

}

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT peptide
to assume an alpha helical conformation. The command

impose peptide {12{510} 12 }{
{ CA CB 50}}

LEaP

Commands Page 163

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within the
UNIT peptide a bond length of 5.0 angstroms between the alpha and beta carbons. RESIDUEs
without an AOM named CB (lile dycine) will be unaffected.

Three types of conformational change are supported: bond length changes, bond angle
changes, and torsion angle changes. If the conformational chameea torsion angle,

then all dihedrals around the central pair of atoms are rotated. The entire list of internals are
applied to each RESIDUE.

8.4.24. list

List all of the variables currently definedo illustrate, the follawing (edited) output shes
the variables defined when LEaP is started from the leaprc file included in theutigstrib
tape:

> | ist

A

ACE ALA
ARG ASN
VAL w
WAT Y

8.4.25. loadAmberfRrams

variable = loadAmberParams filename

PARMSETvariable
STRING filename

Load an AMBER format parameter set file and place iaimable. Allinteractions defined in

the parameter set will be contained within variable. This command causes the loaded parame-
ter set to be included in LEaP list of parameter sets that are searched when parameters are
required. Genergbroper and improper torsion parameters are modified during the command
execution with the LEaP general type "?" replacing the AMBER general type "X".

> parm91 = loadAmberParams parm91X.dat
> saveOff parm91 parm9Ll.lib
Saving parm9l.

8.4.26. loadAmberPep

loadAmberPrep filename [prefix]

STRING filename
STRING prefix

This command loads an AMBER PREP input filer Each residue that is loaded, svrdNIT
is constructed that contains a single RESIDUE amariaie is created with the same name as

LEaP Commands Page 164

the name of the residue within the PREP file. If the optional argument prefix is provided it will
be prefixed to each variable name; this feature is used to p#f®M residues, which he
the same names as ABM residues with the string "U" to distinguish them. Let us imagine

that the following AMBER PREP input file exists:

0 0 2
Crown Fragment A
cra.res

CRA INT O

CORRECT NOMIT DU BEG

0.0

1 DUMM DUM O O O 0. 0. 0.
2 bumM DuM 0 O O 1.000 O. 0.
3 buMmM DuUuM 0 O O 1.000 90. 0.
4 C1 CTM 0O0O 1.540 112. 169.
5 HIA HCE O 0O O 1.098 109.47 -110.0
6 HIB HCE O O O 1 .098 109.47 110.0
7 Q2 OSM™M O0O0O 1.430 112. -72.

8 C3 CTM 0O0O 1.430 112. 169.
9 HBA HCE O O O 1.098 109.47 -49.0
10 H3B HCE O O O 1 .098 109.47 49.0
CHARGE

0.2442 -0.0207 -0.0207 -0.4057 0.2442

-0.0207 -0.0207

DONE

STOP

This fragment can be loaded into LEaP using the following command:

> | oadAmberPrep cra.in
Loaded UNIT: CRA

8.4.27. loadOff
loadOff filename

STRING filename

This command loads the OFF library within the file named filename. All UNITs AR§P
SETs within the library will be loaded. The objects are loaded into LEaP undearthble
names the objects had whenytheere saed. Variables already in existence thavdndne same
names as the objects being loaded will benaritten. Ary PARMSETSs loaded using this
command are included in LEa®library of PARMSETS that is searched whesigoarameters
are required (The old AMBER format is used f&f(RMSETSs rather than the OFF format in
the default configuration). Example command line:

LEaP Commands Page 165

> | oadOff parm91.lib
Loading library: parm91.lib
Loading: PARAMETERS

8.4.28. loadMol?2
variable = loadMol2 filename

STRING filename
object variable

Load a Sybyl MOL2 format file in a UNITThis command isery much lile loadOff except
that it only creates a single UNIT.

8.4.29. loadPdb
variable = loadPdb filename

STRING filename
object variable

Load a Protein Databank format file with the file name filename. The sequence numbers of the
RESIDUES will be determined from the order of residues within the PDB Ti@VArecords.

This function will search theaviables currently defined within LEaP for variable names that
map to residue names within th& @M records of the PDB filelf a matching variable name

is found then the contents of thariable are added to the UNIT that will contain the structure
being loaded from the PDB file. Adding the contents of the matching UNIT into the UNIT
being constructed means that the contents of the matching UNIT are copied into the UNIT
being built and that a bond is created between the conn€@M Af the matching UNIT and

the connectl AOM of the UNIT being hilt. The UNITs are combined in the sameaw
UNITs are combined using the sequence command. As atoms are read fromiCke A
records their coordinates are written into the correspondingly nai@iéwithin the UNIT

being built. If the entire residue is read and it is found tH&@M coordinates are missing,

then external coordinates are built from the internal coordinates that were defined in the
matching UNIT This allows LEaP to build coordinates foydnogens and lone-pairs which

are not specified in PDB files.

> crambin = loadPdb 1crn

Loading PDB file

Matching PDB residue names to LEaP variables.
Mapped residue THR, term: 0, seqg. number: 0 to: NTHR.
Residue THR, term: M, seq. humber: 1 was not
found in name map.

Residue CYS, term: M, seq. humber: 2 was not
found in name map.

Residue CYS, term: M, seq. humber: 3 was not
found in name map.

Residue PRO, term: M, seq. number: 4 was not
found in name map.

LEaP Commands Page 166

Residue TYR, term: M, seq. number: 43 was not

found in name map.

Residue ALA, term: M, seq. number: 44 was not

found in name map.

Mapped residue ASN, term: 1, seq. number: 45 to: CASN.
Joining NTHR - THR

Joining THR - CYS

Joining CYS - CYS

Joining CYS - PRO

Joining ASP - TYR
Joining TYR - ALA
Joining ALA - CASN

The abee dited listing shows the use of this command to load a PDB file for the protein
crambin. Seeral disulphide bonds are present in the protein and these bonds are indicated in
the PDB file. The loadPdb commandwmawer, cannot read this information from the PDB

file. Itis necessary for the user to explicitly define disulphide bonds usitgtiotkcommand.

8.4.30. loadPdbUsingSeq
loadPdbUsingSeq filename unitlist

STRING filename
LIST unitlist

This command reads a Protein Data Bank format file from the file named filename. This com-
mand is identical tdoadPdbexcept it does not use the residue names within the PDB file.
Instead the sequence is defined by the user in unf@tmore details selmadPdb.

> peptSeq = { UALA UASN UILE UVAL UGLY }
> pept = loadPdbUsingSeq pept.pdb peptSeq

In the aboe example, avariable is first defined as a LIST of united atom RESIDUE$SDB
file is then loaded, in this sequence orfimm the file "pept.pdb".

8.4.31. logFile
logFile filename

STRING filename

This command opens the file with the file name filename as a log file. User input and all out-
put is written to the log file. Output is written to the log file as if tadbwsity leel were set to
2. Anexample of this command is:

> | odfile /disk/howard/leapTrpSolvate.log

LEaP

8.4.32. measwrGeom
measureGeom atoml atom2 [atom3 [atom4]]

ATOM
ATOM
ATOM
ATOM

atoml
atom2
atom3
atom4

Commands Page 167

Measure the distance, angle, or torsion between two, three, orfQM% respectiely.

In the following example, we first describe the RESIDUE ALA of the ALA UNIT in order to
find the identity of the BOMs. Next, the measureGeom command is used to determine a dis-
tance, simple angle, and a dihedral angle. As shown in the exampld GiMsAnay be iden-
tified using atom names or numbers.

> desc ALA.ALA
RESIDUE name: ALA

RESIDUE sequence number: 1
Type: protein

Connection atoms:
Connect atom 0: A<N 1>
Connect atom 1: A<C 9>
Contents:

A<N 1>

A<HN 2>
A<CA 3>
A<HA 4>
A<CB 5>

A<HB1 6>
A<HB2 7>
A<HB3 8>

A<C 9>
A<O 10>

> measureGeom ALA.ALA.1 ALA.ALA.3

Distance: 1.45 angstroms

> measureGeom ALA.ALA.1 ALA.ALA.3 ALA.ALA5

Angle: 111.10 degrees

> measureGeom ALA.ALA.N ALA.ALA.CA ALA.ALA.C ALA.ALA.O

Torsion angle: 0.00 degrees

8.4.33. quit

Quit the LEaP program.

8.4.34. emove
remove ab

LEaP Commands Page 168

CONT a
CONT b

Remaue the object b from the object & b is not contained by a then an error message will be
displayed. This command is used to rem@&TOMs from RESIDUEs, and RESIDUEs from
UNITs. If the object represented by b is not referenced by sanmble name then it will be
destroyed.

> dipeptide = combine { ALA GLY }

Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA Il bug: this should be dipeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<GLY 2>.A<C 6>

Contents:

R<ALA 1>

R<GLY 2>

> r emove dipeptide dipeptide.2

> desc dipeptide

UNIT name: ALA Il bug: this should be dipeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents:

R<ALA 1>

8.4.35. saeAmberParm
saveAmberParm unit topologyfilename coordinatefilename

UNIT unit
STRING topologyfilename
STRING coordinatefilename

Save he AMBER/NAB topology and coordinate files for the UNIT into the files named topol-
ogyfilename and coordinatefilename respelti This command will cause LEaP to search its
list of PARMSETS for parameters defining all of the interactions between A& within

the UNIT. This command produces topology files and coordinate files that are identical in for
mat to those produced by AMBERARM and can be read into AMBER and NAB for calcula-
tions. Theoutput of this operation can be used for minimizations, dynamics, and thermody-
namic perturbation calculations.

In the following e&kample, the topology and coordinates from the all_amino94.lib UNIT ALA
are generated:

> saveamberparm ALA ala.top ala.crd
Building topology.

Building atom parameters.

Building bond parameters.

LEaP

Commands Page 169

Building angle parameters.

Building proper torsion parameters.
Building improper torsion parameters.
Building H-Bond parameters.

8.4.36. saeOff

saveOff object filename

object object
STRING filename

The sa&eOff command allows the user toveaUNITs and PARMSETS to a file naméite-

name The file is written using the Object File Format (off) and can accommodate an unlim-
ited number of uniquely named objects. The names by which the objects are stored are the
variable names specified in the argument of this command. If thiildiemealready &ists

then the n& objects will be added to the fildf there are objects within the file with the same
names as objects beingved then the old objects will beverwritten. The agument object

can be a single UN|Ta sngle ARMSET, or a UST of mixed UNITs and RRMSETs. (See
theaddcommand for an example of teaveOficommand.)

8.4.37. saePdb

savePdb unit filename

UNIT unit
STRING filename

Write UNIT to the filefilenameas a PDB format file. In the followingcample, the PDB file
from the "all_amino94.lib" UNIT ALA is generated:

> savepdb ALA ala.pdb

8.4.38. sequence

variable = sequence list

UNIT variable
LIST list

The sequence command is used to createvdMIT by combining the contents of a LIST of
UNITs. The first argument is a LIST of UNITs. Am&JNIT is constructed by taking each

UNIT in the sequence in turn and ¢y its contents into the UNIT being constructed. As

each nes UNIT is copied, a bond is created between the talDM of the UNIT being con-
structed and the head@M of the UNIT being copied, if both connecT@Ms are defined. If

only one is defined, a warning is generated and no bond is crdatedither connection

ATOM is defined then no bond is created. As each RESIDUE is copied into the UNIT being
constructed it is assigned a sequence number which represents the order the RESIDUESs are

LEaP Commands Page 170

added. Sequence numbers are assigned to the RESIDUES so as to maintain the same order as
was in the UNIT before it vas copied into the UNIT being constructed. This commarnids
reasonable starting coordinates for allOMs within the UNIT; it does this by assigning inter

nal coordinates to the linkages between the RESIDUEs and building the external coordinates
from the internal coordinates from the linkages and the internal coordinates that were defined
for the individual UNITs in the sequence.

> t ripeptide = sequence { ALA GLY PRO }
Sequence: ALA

Sequence: GLY

Joining ALA - GLY

Sequence: PRO

Joining GLY - PRO

> desc tripeptide

UNIT name: ALA Il bug: this should be tripeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

8.4.39. set
set default variable value

STRING variable
STRING value

or
set container parameter object

CONT container
STRING parameter
object object

This command sets the values of some global parameters (when thgdinséat is "dedult")
or sets @rious parameters associated with contairidre following parameters can be set
within LEaP:

For "default" parameters

OldPrmtopFormat
If set to "on", the s;eAmberRarm command will write a prmtop file in the for
mat used in Amber6 and before; if set to "off" (the default), it will use the ne
format.

Dielectric If set to "distance” (the dmilt), electrostatic calculations in LEaP will use a
distance-dependent dielectric; if set to "constant", and constant dielectric will be
used.

LEaP Commands Page 171

PdbWriteCharges
If set to "on", atomic chaes will be placed in the "B-factor" field of pdb files
saved with the saePdb command,; if set to "off" (the default), no such ghar
will be written.
For ATOMs:

name Aunique STRING descriptor used to identiff@Ms.

type Thisis a STRING property that defines the AMBER force field atom type.

chage Thechage property is a NUMBER that represents thEOM’s dectrostatic
point charge to be used in a molecular mechanics force field.

position Thisproperty is a LIST of NUMBERS containing threalwes: the (X, YZ)
Cartesian coordinates of th&@ @M.

pertName The&STRING is a unique identifier for anT®M in its final state during a Free
Energy Perturbation calculation.

pertType TheSTRING is the AMBER force field atom type of a perturb&m.

pertChage This NUMBER represents the final electrostatic point charge onT@vAdur-
ing a Free Energy Perturbation.
For RESIDUES:

connectO Thigddefines an AOM that is used in making links to other RESIDUHS.
UNITs containing single RESIDUES, the RESIDUESS conne@OM is usu-
ally defined as the UNI¥’head AAOM.

connectl Thigs an AOM property which defines anT®M that is used in making links
to other RESIDUEs. In UNITs containing single RESIDUES, the RESIDUESS
connectl AOM is usually defined as the UNIF il ATOM.

connect2 Thigs an AAOM property which defines anT®M that can be used in making
links to other RESIDUEs. In amino acids, the wariion is that this is the
ATOM to which disulphide bridges are made.

restype Thigroperty is a STRING that represents the type of the RESIDLiErently,
it can hae me of the following values: "undefined", "solvent", "protein",
"nucleic”, or "saccharide".

name ThiSSTRING property is the RESIDUE name.
For UNITs:

head Defineshe ATOM within the UNIT that is connected when UNITs are joined
together: the tail AOM of one UNIT is connected to the head@M of the
subsequent UNIT in grmsequence.

tail Definesthe ATOM within the UNIT that is connected when UNITs are joined
together: the tail ZOM of one UNIT is connected to the head@M of the
subsequent UNIT in grsequence.

box Theproperty defines the bounding box of the UNITit is defined as null then

no bounding box is definedlf the value is a single NUMBER then the

LEaP

Commands Page 172

bounding box will be defined to be a cube with each side being NUMBER of
angstroms across. If thale is a LIST then it must be a LIST containing three
numbers, the lengths of the three sides of the bounding box.

cap Theproperty defines the solvent cap of the UNIfit is defined as null then no

solvent cap is defined. If thealue is a LIST then it must contain four numbers,
the first three define the Cartesian coordinates (XX) 6f the origin of the sol-
vent cap in angstroms, the fourth NUMBER defines the radius of thergolv
cap in angstroms.

8.4.40. solateCap

solvateCap solute solvent position radius [closeness]

UNIT solute
UNIT solvent
object position
NUMBER radius
NUMBER closeness

The solvateCap command creates aeaulcap around the solute UNIThe solute UNIT is
modified by the addition of solvent RESIDUEs. The salvbox will be repeated in all three
spatial directions to create a large solvent sphere with a radius of radius angstroms.

The position argument defines where the center of therstobap is to be placed. If position is
a RESIDUE, ATOM, or a LIST of UNITs, RESIDUES, orPOMs, then the geometric center
of the AFOMs within the object will be used as the center of theestdleap sphere. If position
is a LIST containing three NUMBERS, then the position argument will be treatedeasoa v
that defines the position of the solvent cap sphere center.

The optional closeness parameter can be used to contotlbse, in angstroms, saat
ATOMs can come to soluteT®Ms. The default value of the closeness argument is 1.0.
Smaller values allw solvent ATOMs to come closer to soluteT®Ms. The criterion for rejec-
tion of overlapping solent RESIDUEsS is if the distance betweety aolvent ATOM to the
closest solute FOM is less than the sum of thef@Ms VANDERWAAL's distances multi-
plied by the closeness argument.

This command modifies the solute UNIT irvaml ways. First, the UNIT is modified by the
addition of solent RESIDUESs copied from the solvent UNBecondly the cap parameter of
the UNIT solute is modified to reflect thact that a solvent cap has been created around the
solute.

>> mol = loadpdb my.pdb
>> solvateCap mol WATBOX216 mol.2.CA 8.0 2.0
Added 3 residues.

8.4.41. solateShell

solvateShell solute solvent thickness [closeness |

LEaP Commands Page 173

UNIT solute
UNIT solvent
NUMBER thickness
NUMBER closeness

The solvateShelcommand adds a solvent shell to the solute UNIHE resulting solute/sol-

vent UNIT will be irregular in shape since it will reflect the contours of the solute. The solute
UNIT is modified by the addition of solvent RESIDUESs. The solvent box will be repeated in
three directions to create a large solvent box that can contain the entire solute and a shell
thickness angstroms thick. The saiw RESIDUES are then added to the solute UNIT i the

lie within the shell defined by thickness and do netrlap with the solute AOMs. The
optional closeness parameter can be used to controktlese solvent AOMs can come to

solute AOMs. The default value of the closeness argument is 1.0. Please seé/#teBox
command for more details on the closeness parameter.

>> mol = loadpdb my.pdb
>> solvateShell mol WATBOX216 8.0

Solute vdw bounding box: 7.512 12.339 12.066
Total bounding box for atom centers: 23.512 28.339 28.066
Solvent unit box: 18.774 18.774 18.774

Added 147 residues.

8.4.42. souce
source filename

STRING filename

This command xecutes commands within a text fildo dsplay the commands as theare
read, see theerbositycommand.

8.4.43. transbrm
transform atoms, matrix

CONT atoms
LIST matrix

Transform all of the AOMs within atoms by the (8 3) or (4% 4) matrix represented by
the nine or sixteen NUMBERS in the LIST of LISistrix. The general matrix looks like:

r11rl2rl13-tx
r21r22r23-ty
r31r32r33-tz
O 0 o0 1

The matrix elements represent the intended symmetry oper&immexample, a reflection in
the (X, y) plane would be produced by the matrix:

LEaP Commands Page 174

1 0 0
0 1 0
O 0 -1

This reflection could be combined with a six angstrom translation along the x-axis by using
the following matrix.

1 0 0 6
0 1 0O O
0O 0 -10
0O O 0 1

In the following example, wrB is transformed by awension operation:

transform wrpB {
{-1 0 0 }

{ 0-10}
{ 0 0 -1}
}

8.4.44. translate
translate atoms direction

CONT atoms
LIST direction

Translate all of the FOMs within atoms by theactor defined by the three NUMBERS in the
LIST direction

Example:

translate wrpB { 0 0 -24.53333}

8.4.45. \erbosity
verbosity level

NUMBER level

This command sets thevig of output that LEaP provides the usAarvalue of 0 is the defilt,
providing the minimum of messages. Alue of 1 will produce more output, and a value of 2
will produce all of the output of W&l 1 and display the text of the script linegeeuted with
thesourcecommand. Théollowing line is an example of this command:

> verbosity 2
Verbosity level: 2

LEaP Commands Page 175

8.4.46. zMatrix
zMatrix object zmatrix

CONT object
LIST matrix

The zMatrix command is quite complicated. It is used to define the external coordinates of
ATOMs within object using internal coordinateShe second parameter of thBlatrix com-
mand is a LIST of LISTs; each sub-list hagesal arguments:

{ al a2 b ond12}

This entry defines the coordinate of al by placing it bond12 angstroms along the x-axis from
ATOM a2. If ATOM a2 does not hee mordinates defined thedT®M a2 is daced at the ori-

gin.

{ al a2 a3 b ondl2 anglel23}

This entry defines the coordinate of al by placing it bond12 angstreagsramm ATOM a2
making an angle of angle123gitees between al, a2 and a3. The angle is measured in a right
hand sense and in the x-y plar&.OMs a2 and a3 must & wordinates defined.

{ al a2 a3 a4 b ondl2 angle123 torsion1234 }

This entry defines the coordinate of al by placing it bond12 angstmagsram ATOM a2,
creating an angle of angle123 degrees between al, a2, and a3, and making a torsion angle of
torsion1234 between al, a2, a3, and a4.

{ al a2 a3 a4 b ondl2 angle123 anglel24 orientation }

This entry defines the coordinate of al by placing it bond12 angstmagsram ATOM a2,
making angles angle123 betweefiOMs al, a2, and a3, and anglel24 betweEOMs al,
a2, and a4. The gmument orientation defines whether thEOM al is dove a below a dane
defined by the AOMs a2, a3, and a4. If orientation is paaitthen al will be placed in such a
way so that the inner product of (a3-a2) cross (a4-a2) with (al-a2) isveostitherwise al
will be placed on the other side of the plane. Thiswallthe coordinates of a moleculedik
fluoro-chloro-bromo-methane to be defined without having to resort to dummy atoms.

The first arguments within ttEMatrix entries (al, a2, a3, a4) are eith&OMs or STRINGS
containing names of FOMs within object. The subsequengaments are all NUMBERS.
Any ATOM can be placed at the al positiorere those that hae cordinates definedThis
feature can be used to provide an endless supply of dummy atomg,afehlrequired.A pre-
defined dummy atom with the name "*" (a single asterisk, no quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrargsorder
long as thg maintain the requirement that all atoms a2, a3, and a4 mesteltarnal coordi-
nates defined, except for entries that define the coordinate of@N Aising only a bond
length. (Se¢headdcommand for an example of taMatrix command.)

10/17/06 References 176

9. Refelences

1.

10.

11.

12.

13.

14,

15.

16.

17.

F Major, M. Turcotte, D. Gautheret, G. Lapalme, E. Fillon, and R. Ggdar “TheCombi-
nation of Symbolic and Numerical Computation for Three-Dimensional Modeling &f'RN
Science253, (5025)1255-1260 (1991).

D. Gautheret, PMajor, and R. Cedagren, “Modelingthe three-dimensional structure of RN
using discrete nucleotide conformational §€tsMol. Biol. 229, 1049-1064 (1993).

M. Turcotte, G. Lapalme, and Major, “Exploring the conformations of nucleic acidg,
Funct. Program5, 443-460 (1995).

D.A. Erie, K.J. Breslaueend W.K. Olson,“A M onte Carlo Method for Generating Structures
of Short Single-Stranded DNSequene$ Biopolymers 33, (1)75-105 (1993).

C.-S.Tung and E.S. CarteH, “Nucleic acid modeling tool (KRMOT): an interactie gaphic
tool for modeling nucleic acid structure€ABIOS 10, 427-433 (1994).

E.S.Carter Il and C.-S. Ting, “NAMOT2--a redesigned nucleic acid modeling tool: con-
struction of non-canonical DNstructures, CABIOS 12, 25-30 (1996).

V. B. Zhurkin, Yu. PLysov, and V. I. lvanov, “Different Families of Double Stranded Confor
mations of DM as Reveaaled by Computer Calculatioh&iopolymers 17, 277-312 (1978).

R. Lavery, K. Zakrzevska, and H. Sinar “JUMNA (junction minimisation of nucleic
acids); Comp. Phys. Commur91, 135-158 (1995).

J.Gabarro-Arpa, J.A.H. Cognet, and M. Le Bra©bject Command Language: a formalism
to hbuild molecule models and to analyze structural parameters in macromolecules, with appli-
cations to nucleic acids]. Mol. Graph. 10, 166-173 (1992).

M. Le Bret, J. Gabarro-Arpa, J. C. Gilbert, and C. Lemarechal, “MORCAD an object-ori-
ented molecular modeling packéage,Chim. Phys.88, 2489-2496 (1991).

G.M. Crippen and 'F. Havd, Distance Geometry and Molecular Conformatidtesearch
Studies PressTaunton, England, 1988.

D.C.Spellmeyer A.K. Wong, M.J. Baver, and J.M. Blang, “Conformational analysis using
distance geometry methot3, Mol. Graph. Model.15, 18-36 (1997).

M.E.Hodsdon, J.\WWPonder and D.P Cistola, “TheNMR solution structure of intestinaity
acid-binding protein compked with palmitate: Application of a n@l distance geometry
algorithm? J. Mol. Biol. 264, 585-602 (1996).

T. Macke, S.-M. Chen, and W.J. Chazirmn Structue and Function, Volume 1: Nucleic Acids
R.H. Sarma and M.H. Sarma, Ed. (Adenine Press, Alb&892). pp.213-227.

B.C.M.Potts, J. Smith, M. Akke, T.J. Macke, K. Okazaki, H. Hidaka, D.A. Case, ahd W
Chazin, “Thestructure of calcyclin reals a noel homodimeric fold S100 G&-binding pro-
teins, Nature Struct. Biol.2, 790-796 (1995).

J.JLove, X. Li, D.A. Case, K. Giese, R. Grossched|, and P.E. Wrigbh A recognition and
bending by the architectural transcription factor LEF-1: NMR structure of the HMG domain
complexed with DNA,” Nature 376, 791-795 (1995).

R.J.Gurbiel, P.E. Doan, G.TGassnerT.J. Macke, D.A. Case,. Dhnishi, J.A. Fee, D.mBal-
lou, and B.M. Hdfman, ‘Active ste structure of Riesktype proteins: Electron nuclear dou-
ble resonance studies of isotopically labeled phthalate dioxygenase Psendomonas

10/17/06 References 177

cepaciaand Riesk protein fromRhodobacter capsulatwsd molecular modeling studies of a
Riesle center’” Biochemistry 35, 7834-7845 (1996).

18. TJ. Macle, NAB, a Languge br Molecular Manipulationie !"Ph.D. thesis, The Scripps
Research Institute™ Ph.D. thesis, The Scripps Research Institute 1996.

19. R. E. Dickerson, “Definitionsand Nomenclature of Nucleic Acid Structurar&émeters,J.
Biomol. Struct. Dyn.6, (4)627-634 (1989).

20. V. B. Zhurkin, G Raghunathan, N. B. UlynadR. D. Camerini-Otero, and R. L. Jermig, ‘A
Paallel DNA Triplex as a Model for the Intermediate in Homologous Recombindtidowir-
nal of Molecular Biology239, 181-200 (1994).

21. R. Tan and S. Harey, “Molecular Mechanics Model of Supercoiled BN J. Mol.
Biol. 205, 573-591 (1989).

22. M.S.Babcock, E.P.D. Pednault, and W.K. OlséNucleic Acid Structure Analysis,J. Mol.
Biol. 237, 125-156 (1994).

23. TF Havd, 1.D. Kuntz, and G.M. Crippen;The theory and practice of distance geométry
Bull. Math. Biol. 45, 665-720 (1983).

24, TF Havd, “An evaluation of computational strategies for use in the determination of protein
structure from distance constraints obtained by nuclear magnetic resbi®ange Bioptys.
Mol. Biol. 56, 43-78 (1991).

25. J.Kuszevski, M. Nilges, and A.TBringer “Sampling and étiencgy of metric matrix dis-
tance geometry: A vl partial metrization algorithri,J. Biomolec. NMR 2, 33-56 (1992).

26. B.L.deGroot, D.M.Fvan Aalten,R.M. Scheek, A. Amadei, G. Vriend, and H.J.C. Berend-
sen, “Prediction of protein conformational freedom from distance constrainBo-
teins 29, 240-251 (1997).

27. D.K. Agrafiotis, “StochasticProximity Embedding, J. Computat. Chem24, 1215-1221
(2003).

28. W Saenger in Principles of Nucleic Acid Structgr (Springer-\érlag, N&v York, 1984).
pp. 120.

29. H.J.CBerendsen, J.P.M. Postma,R\Wan Gunsterem. DiNola, and J.R. Haak;Molecular
dynamics with coupling to an external bath,Chem. Phys.81, 3684-3690 (1984).

30. R.J.Loncharich, B.R. Brooks, and R.Wastor “Langein dynamics of peptides: The fric-
tional dependence of isomerization rates of N-actylAdikmethylamide], Biopoly-
mers 32, 523-535 (1992).

31. C. Brooks, A. Briingerand M. Karplus,“Active ste dynamics in protein molecules: A
stochastic boundary molecular-dynamics approd&iopolymers 24, 843-865 (1985).

32. V. Tsui and D.A. Case, “Theory and applications of the generalized Born solvation model in
macromolecular simulatiorigiopolymers (Nucl. Acid. Sci.66, 275-291 (2001).

33. A.Onufriev, D. Bashford, and D.A. Case, “Modification of the Generalized Born Model Suit-
able for Macromoleculés). Phys. Chem. B104, 3712-3720 (2000).

34. A. Onufriev, D. Bashford, and D.A. Case, “Exploring protein matitates and laye-scale
conformational changes withRroteins 55, 383-394 (2004).

35. J.Weiser, PS. Shenkin, and W.C. Still'A pproximate Atomic Sudces from Linear Combina-
tions of Pairwise Overlaps (LCPOJ, Computat. Chem20, 217-230 (1999).

10/17/06 References 178

36. D.T Nguyen and D.A. Case'On finding stationary states on large-molecule potentialggner
surfaces,J. Phys. Chem.89, 4020-4026 (1985).

37. B.Lewin, inGenes IV (Cell Press, Cambridge, Mas4.990). pp409-425.

38. W H. Press, S. A. @ukolsky, W. T. Vettering, and B. HFlannery in Numerical Recipes in,C
(Cambridge, N& York, 1992). pp. 113-117.

10/17/06

10. Index

acos() 65

add 153

addAtomTypes 154
addlons 154

addlons2 154

addPath 155
addPdbAtomMap 155
addPdbResMap 155
addresidue() 17, 18, 68
addstrand() 17, 18, 68, 75
alias 156

alignframe() 16, 25, 77
allatom_to_dna3() 71
allocate statement 52
AMBER 36

andbounds() 87, 88, 110
angle() 73

anglep() 73

arrays 51

asin() 65

assert() 74

atan() 65

atan2() 65

atof() 65

atoi() 65

atom expressions 21, 53
atom names 21
attributes 49

base triads 37

basepair templates 93

bdna() 14, 26, 108

biopolymer creation functions 69
bond 157

bondByDistance 157

bounds 49, 88, 96

break 60

Inde

179

ceil() 65

check 157

combine 158
compound statement 61
conjgrad() 99
connectres() 17, 18, 68
continue 60

coordinate axes 15
copy 158
copymolecule() 68
cos() 65

cosh() 65
countmolatoms() 73
createAtom 159
createParmset 159
createResidue 159
createUnit 159
creating molecules 17
cut 100

date() 75

db_viol() 92
deallocate statement 52
debug() 74

delete 57

deleteBond 160
desc 160

dg_helix() 108
dg_options() 88

diel 102

dielc 102

dim 100

dist() 73

distance geometry 86, 110
distp() 73

dna3() 71
dna3_to_allatom() 71
dt 102

dumpatom() 74
dumpatom 75
dumpbounds() 74

10/17/06

dumpboundsviolations() 74
dumpmatrix() 74, 75
dumpmolecule() 74, 75
dumpresidue() 74, 75

duplex creation functions 108
dynamic arrays 52

E

edit 161

embed() 88, 110
energetics 36

epsext 102

exit() 66

exp() 65

expression statement 57
expressions 52

F

fabs() 65

fclose() 66

fd_helix() 26, 70

file 66

floor() 65

fmod() 65

fopen() 66

for 59

for-in loop 22

format expressions 54

fprintf() 66, 67

frames 25

freemolecule() 68
freeresidue() 68

fscanf() 66, 67

ftime() 75

function declarations 62
function definition 20

function definitions 61

function parameters 20
functions 61

functions, AMBER interface 99
functions, atomic coordinate 78
functions, debugging 74
functions, frame 77

functions, I/O 66

functions, math 64

functions, molecule creation 68

Inde

functions, other molecular 73
functions, string 63

functions, system 66

functions, transformation matrix 77
functions, trigonometric 64

G

ganma_In 102

gauss() 65

gb 102

gbsa 102

genmass 102
geodesics() 88, 90
getchvol() 87, 90
getchvolp() 87, 90
getcif() 71

getline() 66, 67

getpdb() 15, 16, 71
getpdb_prm() 69, 99
getres() 19, 26
getresidue() 17, 18, 19, 71
getxv 99

getxyz 99
groupSelectedAtoms 161
gsub() 63

H

hashed arrays 60
helix analysis 73
helixanal() 73
help 162

identifiers 46
if 57

if-else 57
impose 162
index() 63

k4d 100
kappa 102

180

10/17/06

length() 63

link_na() 69, 114
linkprot() 69

list 163

literals 46
loadAmberParams 163
loadAmberPrep 163
loadMol2 165

loadOf 164

loadPdb 165
loadPdbUsingSeq 166
log() 65

log10() 65

logFile 166

looping 22

loops 60

lowest energy triad 40

M

match() 63

MAT _cube() 78

MAT _cyclic() 79

MAT _dihedral() 78
matextract 84

MAT _fprint() 80

MAT _fscan() 80
matgen 81

MAT _getsyminfo() 80
MAT_HELIX() 79
MAT _ico() 78
matmerge 83
matmul 84

MAT _octa() 78

MAT _orient() 79
matrices and transformations 24
MAT _rotate() 79

MAT _sprint() 80

MAT _sscan() 80

MAT _tetra() 78

MAT _translate() 79
md() 99
measureGeom 167
mergestr() 17, 18, 68
mme() 99

mme2() 106

Inde 181

mme_init() 99
mme_rattle() 99
mm_options 99
mm_set_checkpoint 99
molecular dynamics. 99
molecular mechanics 99
molecule 49

molsurf() 73

N

newbounds() 87
newmolecule() 17, 18, 68
newton() 106
newtransform() 24, 77
nmode() 106

nsnb 100

ntpr 100

ntpr_md 102

ntwx 102

O

object file format (OFF) files 69
operators 47

orbounds() 87, 88, 110

output format options 56

P
plane() 73

point 49

points and vectors 24, 62
pow() 65

printf() 15, 66, 67
putbnd() 71

putcif() 71

putdist() 71

putpdb() 14, 15, 16, 71
putxv 99

putxyz 99

quit 167

10/17/06 Inde 182

R special characters 48
split() 63

rand2() 65 sprintf() 39, 66, 67
rattle 102 sqrt() 65
readparm() 99 sscanf() 66, 67
regular expression 23, 53 stacking templates 93
regular expressions 53 statements 57
remove 167 string escapes 47
reserved words 46 strings 47
residue 49 structure quality 36
residue libraries 19, 69 sub() 63
residues 19 substr() 28, 63
return 61 sugarpuckeranal() 73
return statement 21 superimpose() 15, 25, 73
rigid-body transformations 77 superimposing te molecules 14
rmsd() 15, 73 symmetry definition files 81
rot4() 24, 77 symmetry server 81
rotdp() 24, 77 system() 66

S T
safe_fopen() 66 t 102
savreAmberParm 168 tan() 65
sareOff 169 tanh() 65
savePdb 169 tautp 102
scanf() 38, 66, 67 temp0 102
scee 100 tempi 102
scnb 100 timeofday() 75
second() 75 torsion() 73
sequence 169 torsionp() 73
set 170 trans4() 24
setbounds() 87, 88, 110 trans4p() 24
setboundsfromdb() 87, 88, 111, 114 transform 84, 173
setchiplane() 87, 89 transformmol() 24, 78
setchvol() 87, 89, 110 transformres() 17, 18, 19, 24, 78
setframe() 15, 25, 77 translate 174
setframep() 25, 77 triangle smoothing 110
setmol_from_xyz() 78 tsmooth() 88, 90, 110
setmol_from_xyzw() 78 type atom 17
setpoint() 78 type molecule 17
setxyz_from_mol() 78 type residue 17
setxyzw_from_mol() 78
showbounds() 87, 88 U
sin() 65
sinh() 65 unlink() 66
solvateCap 172 useboundsfrom() 87, 88, 110

solvateShell 172
source 173

10/17/06 Inde 183

variables 48

vector operations 62
verbosity 174

vlimit 102

w

Watson/Crick duplges 26
wc_basepair() 26, 29, 108
wc_complement() 26, 27, 28, 108
wc_helix() 26, 28, 32, 108

wcons 100

while 58

zeros 102
zMatrix 175

10/17/06 Inde 184

	Installation and Getting Started.
	Installation.
	Compiling nab Programs.
	Parallel Execution
	Tested platforms
	Contacting the developers

	General introduction and overview.
	Background
	Conformation build-up procedures
	Base-first strategies

	Methods for structure creation
	First Examples.
	B-form DNA duplex.
	Superimpose two molecules.
	Place residues in a standard orientation.

	Molecules, Residues and Atoms.
	Creating Molecules.
	Residues and Residue Libraries.
	Atom Names and Atom Expressions.
	Looping over atoms in molecules.
	Points, Transformations and Frames.
	Points and Vectors.
	Matrices and Transformations.
	Frames.

	Creating Watson Crick duplexes.
	bdna() and fd_helix().
	wc_complement().
	wc_helix() Overview.
	wc_basepair().
	wc_helix() Implementation.

	Structure Quality and Energetics.
	Creating a Parallel DNA Triplex.
	Creating Base Triads.
	Finding the lowest energy triad.
	Assembling the Triads into Dimers.

	NAB Language Reference.
	Introduction.
	Language Elements.
	Identifiers.
	Reserved Words.
	Literals.
	Operators.
	Special Characters.

	Higher-level constructs.
	Variables.
	Attributes.
	Arrays.
	Expressions.
	Regular expressions.
	Atom Expressions.
	Format Expressions.

	Statements.
	Expression Statement.
	Delete Statement.
	If Statement.
	While Statement.
	For Statement.
	Break Statement.
	Continue Statement.
	Return Statement.
	Compound Statement.

	Functions.
	Function Definitions.
	Function Declarations.

	Points and Vectors.
	String Functions.
	Math Functions.
	System Functions.
	I/O Functions.
	Ordinary I/O Functions.

	Molecule Creation Functions.
	Creating Biopoloymers
	Fiber Diffraction Duplexes in NAB
	Reduced Representation DNA Modeling Functions.
	Molecule I/O Functions.
	Other Molecular Functions.
	Debugging Functions.
	Time and date routines

	Rigid-Body Transformations
	Transformation Matrix Functions.
	Frame Functions.
	Functions for working with Atomic Coordinates.
	Symmetry Functions.
	Matrix Creation Functions.
	Matrix I/O Functions.

	Symmetry server programs
	matgen
	Symmetry Definition Files.
	matmerge
	matmul
	matextract
	transform

	Distance Geometry.
	Metric Matrix Distance Geometry.
	Creating and manipulating bounds, embedding structures
	Distance geometry templates.
	Bounds databases.

	Molecular mechanics and molecular dynamics.
	Basic molecular mechanics routines
	Typical calling sequences.
	Second derivatives and normal modes

	Sample NAB applications.
	Duplex Creation Functions.
	nab and Distance Geometry.
	Refine DNA Backbone Geometry.
	RNA Pseudoknots.
	NMR refinement for a protein

	Building Larger Structures.
	Closed Circular DNA.
	Nucleosome Model
	Wrapping DNA Around a Path.
	Interpolating the Curve.
	Driver Code.
	Wrap DNA.

	Building peptides

	LEaP
	Introduction
	Concepts
	Commands
	Variables
	Objects

	Basic instructions for using LEaP with NAB
	Building a Molecule For Molecular Mechanics
	Amino Acid Residues
	Nucleic Acid Residues
	Miscellaneous Residues

	Commands
	add
	addAtomTypes
	addIons
	addIons2
	addPath
	addPdbAtomMap
	addPdbResMap
	alias
	bond
	bondByDistance
	check
	combine
	copy
	createAtom
	createParmset
	createResidue
	createUnit
	deleteBond
	desc
	edit
	groupSelectedAtoms
	help
	impose
	list
	loadAmberParams
	loadAmberPrep
	loadOff
	loadMol2
	loadPdb
	loadPdbUsingSeq
	logFile
	measureGeom
	quit
	remove
	saveAmberParm
	saveOff
	savePdb
	sequence
	set
	solvateCap
	solvateShell
	source
	transform
	translate
	verbosity
	zMatrix

	References
	Index

