
Onyx Manual, Version 5.1.1

Jason Evans <jasone@canonware.com>

March 16, 2004

Preface

This manual primarily documents the Onyx programming language. However, Onyx is designed to
be run either as a stand alone program or as an embeddable interpreter, so the manual also docu-
ments different aspects of the implementation that are important when embedding Onyx into another
program.

Onyx came into existence when the author started working on a text editor (since mothballed) that
was meant to be extensible. One of the goals was to provide robust multi-threading. Unfortunately,
when work began on the text editor in 1999, the author was unable to find any embeddable scripting
languages that provided adequate support for threads. Thus Onyx was born. The author was familiar
and enamored with Adobe’s PostScriptTM language, which has basic threading support when used in
a Display PostScriptTM environment, so Onyx started off looking very similar. As Onyx matured, it
deviated to the point that it is now a truly different language, with different syntax, additional and
more powerful data types, better debugging capabilities, POSIX-related functionality, more powerful
threading, regular expressions, etc.

As this project grew far beyond what was originally expected, it became clear that in order to justify
the effort being put into Onyx’s design and implementation, Onyx would have to be usable for more
than just a text editor. Therefore, Onyx has been structured such that it can be configured in a myriad
of ways, with the hope that others will be able to easily make it fit their needs. This manual documents
Onyx in its full glory without mention that features may be disabled, so there are portions that do not
apply to Onyx interpreters that have been configured without Onyx’s full feature set.

For software distributions, news, and additional project information, see http://www.canonware.
com/onyx/ . The author is interested in hearing how people are using Onyx, so please do not hesitate
to email him comments or questions.

iii

http://www.canonware.com/onyx/
http://www.canonware.com/onyx/

Contents

1 Onyx Language Tutorial 1

1.1 Syntax . 1

1.2 Data types . 2

1.3 Execution . 3

1.4 Memory management . 3

1.5 Stacks . 3

1.5.1 Efficiency issues . 4

1.5.2 Using stacks as queues . 5

1.5.3 Using the operand stack as two stacks . 5

1.6 Dictionaries . 5

1.6.1 Efficiency issues . 6

1.7 Regular expressions . 6

1.7.1 Matching . 6

1.7.2 Splitting . 7

1.7.3 Substituting . 8

1.8 Code organization . 8

1.8.1 Procedures . 9

1.8.2 Modules . 9

1.9 Error handling . 9

1.10 Introspection . 10

1.11 Threads . 11

1.11.1 Implicit synchronization . 11

1.11.2 General threading concerns . 11

1.12 Optimization . 12

v

1.13 Debugging . 12

2 Onyx Language Reference 15

2.1 Objects . 15

2.2 Syntax . 19

2.3 Stacks . 22

2.4 Standard I/O . 23

2.5 Interpreter recursion . 23

2.6 Error handling . 24

2.7 Threads . 25

2.7.1 Implicit synchronization . 25

2.7.2 Explicit synchronization . 26

2.8 Memory management . 26

2.9 Regular expressions . 27

2.10 Object-oriented programming . 28

2.11 Dictionary reference . 28

2.11.1 currenterror . 28

2.11.2 envdict . 34

2.11.3 errordict . 34

2.11.4 gcdict . 36

2.11.5 globaldict . 39

2.11.6 onyxdict . 39

2.11.7 outputsdict . 41

2.11.8 sprintsdict . 51

2.11.9 systemdict . 63

2.11.10threaddict . 228

2.11.11threadsdict . 230

2.11.12userdict . 230

2.12 Class reference . 230

2.12.1 vclass . 230

2.12.2 mclass . 238

2.12.3 module . 240

vi

2.13 Module reference . 245

2.13.1 modclopt . 245

3 The onyx program 259

3.1 Usage . 259

3.2 Environment variables . 259

3.3 Initialization for interactive sessions . 260

3.4 Language differences . 260

4 The libonyx library 261

4.1 Compilation . 262

4.2 Global variables . 262

4.3 Multiple interpreters . 262

4.4 Threads . 262

4.5 Garbage collection . 263

4.6 Exceptions . 263

4.7 Integration issues . 263

4.7.1 Thread creation . 263

4.7.2 Restarted interrupted system calls . 263

4.7.3 Signals . 264

4.8 Guidelines for writing extensions . 264

4.9 API . 264

4.10 Classes . 269

4.10.1 ch . 269

4.10.2 cnd . 272

4.10.3 dch . 274

4.10.4 mb . 276

4.10.5 mem . 277

4.10.6 mq . 280

4.10.7 mtx . 283

4.10.8 nx . 284

4.10.9 nxa . 287

4.10.10nxm . 290

vii

4.10.11nxn . 292

4.10.12nxo . 292

4.10.13nxo array . 295

4.10.14nxo boolean . 297

4.10.15nxo class . 298

4.10.16nxo condition . 300

4.10.17nxo dict . 301

4.10.18nxo file . 303

4.10.19nxo fino . 310

4.10.20nxo handle . 310

4.10.21nxo instance . 312

4.10.22nxo integer . 314

4.10.23nxo mark . 315

4.10.24nxo mutex . 315

4.10.25nxo name . 316

4.10.26nxo no . 317

4.10.27nxo null . 317

4.10.28nxo operator . 317

4.10.29nxo pmark . 318

4.10.30nxo real . 318

4.10.31nxo regex . 319

4.10.32nxo regsub . 322

4.10.33nxo stack . 324

4.10.34nxo string . 328

4.10.35nxo thread . 330

4.10.36ql . 340

4.10.37qr . 344

4.10.38qs . 346

4.10.39thd . 348

4.10.40tsd . 351

4.10.41xep . 352

4.11 Dictionaries . 355

viii

4.11.1 gcdict . 355

4.11.2 systemdict . 355

LICENSES 363

Index 365

ix

x

List of Tables

2.1 Simple and composite types . 16

2.2 Interpretation/evaluation of objects by type and attribute 17

2.3 Substitution template special characters . 28

2.4 currenterror summary . 29

2.5 errordict summary . 34

2.6 gcdict summary . 36

2.7 onyxdict summary . 39

2.8 outputsdict summary . 41

2.9 sprintsdict summary . 52

2.10 systemdict summary . 63

2.11 threaddict summary . 229

2.12 vclass summary . 231

2.13 mclass summary . 238

2.14 module summary . 241

2.15 clopt summary . 245

xi

xii

Chapter 1

Onyx Language Tutorial

This manual includes a comprehensive Onyx Language Reference chapter, which explains the details
of what Onyx is. However, that chapter is rather dry, and more importantly, it does not discuss how
to best utilize Onyx. This chapter introduces concepts that are important when designing and imple-
menting Onyx programs, though it is not a complete language tutorial. You will need to read the first
several sections of Chapter 2 in order to absorb all of the information in this chapter. However, you
should be able to read this chapter first, then come back to it and glean additional understanding after
having read later chapters.

Onyx is a stack-based language, so although the ideas that are important to program design in other
more traditional languages still apply in many cases, there are different ways of approaching certain
problems that integrate better with the facilities provided by Onyx. The most obvious example of this
is that Onyx programs are more efficient if written to use named variables as little as possible, relying
instead on the power of the operand stack. Another example is error handling. It is possible to write
procedures that check for every error condition, but Onyx provides a form of exception handling that,
if used correctly, can significantly improve code readability and performance.

Accomplished PostScript programmers will find little new in this chapter; Onyx differs from PostScript
in the details, but the concepts are very similar. Accomplished Forth programmers will already be
comfortable with stack management, but the rest of the chapter discusses concepts that either have no
Forth equivalent, or that are significantly different from Forth, as is the case for dictionaries.

1.1 Syntax

Onyx syntax is extremely simple. Code is essentially composed of tokens that are delimited by whites-
pace or a list of self-delimiting tokens (see Section 2.2 for details). As such, there are very few ways
for a syntax error to occur, but typographical mistakes may instead produce other errors. For example,
say that a C programmer forgets he is writing Onyx code and types the following at the interactive
onyx prompt:

onyx:0> 1000L {‘Hello\n’ print} repeat

The intention is to print Hello 1000 times, but 1000L is invalid syntax for an integer, so Onyx creates
an executable name object instead, and then tries to execute the name, resulting in the following error:

Error $undefined

1

2 Onyx Manual Chapter 1

ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: 1000L
1: -file-
2: --start--

This is typical of the simple errors encountered when writing Onyx code. The Onyx scanner uses a
simple state machine to try to create objects of various types, and when it fails, the input is instead
used to create an executable name.

The scanner only deals with a few types (ignoring procedures for the moment): integers, reals, names,
and strings. There are many other object types, but none of them are created directly by the scanner.

{ and } are used to delimit procedure bodies, which in actuality are executable arrays. { puts the scan-
ner into deferred execution mode until the matching } is scanned. {} pairs can be nested, so execution
is deferred until matching } characters have been scanned for all { characters. Deferred execution
means that the scanner creates objects as it scans code, but does not execute any of them. While not a
strictly necessary language feature, this greatly simplifies the task of constructing executable arrays,
which can then be treated as procedures.

Following are equivalent examples of how a procedure associated with the name double can be de-
fined:

onyx:0> $double {2 mul} def
onyx:0> $double [2 $mul load] cvx def

As mentioned earlier, there are few ways of generating a syntax error, but it is possible. The most
common syntax errors are due to unmatched ’ and } characters. Generating other syntax errors is left
as an exercise for the reader.

1.2 Data types

Onyx includes a rich set of data types. In fact, Onyx code is represented as data, which means that
there is a whole range of possibilities when writing Onyx programs that are difficult or impossible with
compiled languages such as C. This aspect of Onyx is discussed in Section 1.10.

Onyx is dynamically typed, which means that errors due to object type incompatibilities are detected
during program execution. For example, the following code will always run without an error, even
though the arguments that would be passed to the add operator are invalid.

false {
‘a string’ [1] add

}{
‘This is always printed’ 1 sprint

} ifelse

Dynamic typing has advantages in the flexibility that it offers, but it also means that type errors can
go undetected in code for long periods of time before the invalid code is executed.

1.3. EXECUTION Jason Evans 3

Onyx has a fixed set of basic types which cannot be extended. However, object-oriented programming is
supported, so the fixed set of object types is not a limitation in practice. Object-oriented programming
is discussed more in Section 2.10.

1.3 Execution

Onyx code is never compiled, nor is it preprocessed by the interpreter. Onyx code is simply consumed.
This has some interesting implications, some of which are not typical of even other interpreted lan-
guages:

• If a source file is modified during interpreter execution, the changes may affect the currently
running program, usually in unpleasant ways.

• Syntax errors are not discovered until the malformed code is scanned. In order to be sure that
there are no syntax errors, a source file must be completely scanned.

In practice, these are only minor inconveniences, but it is important to keep them in mind when
developing.

1.4 Memory management

Since Onyx includes an automatic mark and sweep garbage collector, memory management typically
requires little thought. There is no risk of leaking memory in such a way that it cannot be freed. How-
ever, it is possible to consume large amounts of memory by creating objects, then keeping references to
them long after they have outlived their usefulness.

Onyx objects fall into two categories according to type: simple and composite. Simple objects take up no
virtual memory of their own; they are embedded into other composite objects. For example, an integer
on the operand stack takes up only the space that the stack requires to store it. The same is true of an
integer that is stored as an element of an array. Composite objects are composed of references that fit
into the same places that an integer is stored, plus additional structures stored elsewhere in virtual
memory. There can be multiple references to the same composite object, and as there is a chain of
references that makes it possible to reach a composite object, the garbage collector will leave it alone.

It is usually pretty obvious how to remove references to objects. Objects on the operand stack can be
popped off. Definitions in the dictionary stack can be undefined. However, there may be situations such
an array that contains references to various objects, and the array cannot be discarded as a whole, but
individual elements are no longer needed. The null type is useful for clobbering such references, and
can even be effectively used to clobber portions of procedures, since when a null object is executed it
does absolutely nothing. This unique aspect of null objects may not seem significant, but consider that
all other objects, when executed, are either pushed onto the execution stack and executed, or pushed
onto the operand stack. Doing nothing at all can be useful.

1.5 Stacks

Stacks in Onyx are pretty typical, and a rich set of stack manipulation operators is provided.. Objects
are implicitly or explicitly pushed onto stacks by operators, and the stack contents can be rearranged

4 Onyx Manual Chapter 1

and removed. Although stacks are a first class object in Onyx, most Onyx programs are mainly con-
cerned with the operand stack, often referred to as ostack. ostack is used as a place to store objects,
pass arguments into operators and procedures, and return results.

Onyx is a postfix language, which means that code is written such that operands precede operators.
For example, the following code Calculates 5× (3 + 4) and prints the result:

onyx:0> 5 3 4 add mul
onyx:1> 1 sprint
35
onyx:0>

There are no parentheses to clarify operator precedence, because precedence is implicit in the code.

Stacks are either written bottom to top on one line, or top to bottom on separate lines, as in the
following examples. The example stack contains the numbers 0, 1, and 2, where 0 is the top object and
2 is the bottom object:

onyx:0> 2 1 0
onyx:3> ostack 1 sprint
(2 1 0)
onyx:3> pstack
0
1
2
onyx:3>

Learning to efficiently (and accurately) manage stacks is a mind-warping process that no amount of
reading is likely to impress upon the reader. There are general concepts presented here, but ultimately,
the reader will have to write a good bit of code to get a handle on stacks. Tthe author of Onyx found
himself stumbling over stacks well after Onyx was complete, despite limited exposure to stack-based
languages beforehand. The problem seems to be that programmers learn to think in a different way
that doesn’t exercise the parts of the brain necessary for stack manipulation. Some people might argue
that stack manipulation is the job of the compiler. In any case, stack manipulation is an acquired skill
that requires practice.

1.5.1 Efficiency issues

Stacks are implemented such that accessing an object is a constant-time operation, regardless of its
depth in a stack. However, only the top and bottom of a stack may be modified in constant time.

Typically, the cost of stack manipulations is proportional to the number of objects being touched. So,
rolling the top ten objects is five times as costly as exchanging the top two objects. Likewise, rotating
the stack by ten positions is typically five times as expensive as rotating the stack by two positions.
Costs for rolling and rotation are approximately proportional to each other, though pathological cases
for rotation incur a slightly higher overhead (a constant factor more expensive, when amortized).

Stacks have more memory and performance overhead than arrays, so unless growing or shrinking is
imporant, arrays are a better choice for indexed access. Dictionaries are always a better choice for
keyed access.

1.6. DICTIONARIES Jason Evans 5

1.5.2 Using stacks as queues

Since pushing and popping is efficient for both ends of stacks, this means that stacks are suitable for
use as queues. Either orientation for input/output is fine.

1.5.3 Using the operand stack as two stacks

The ability to efficiently manipulate both ends of the operand stack means that the operand stack
can effectively be thought of as two stacks. This can be very useful in situations where more than
a handful of objects are being manipulated, and an additional location to temporarily stash objects
would be useful. If a program is repeatedly doing large stack rolls or rotations, using the bottom of the
stack can often help to simplify the code and reduce stack manipulation overhead.

1.6 Dictionaries

Dictionaries are known by various other names, including hashes and associative arrays. Dictionaries
in Onyx associate keys with values. Keys and values can be of any type, but for each dictionary, all
keys are unique. For example, the following dictionary cannot exist:

<
42 ‘Some value’
42 ‘Another value’

>

To demonstrate this, the following example creates a dictionary with the first key/value pair listed
above, then inserts the second key/value pair.

onyx:0> <42 ‘Some value’>
onyx:1> dup 1 sprint
<42 ‘Some value’>
onyx:1> dup 42 ‘Another value’ put
onyx:1> dup 1 sprint
<42 ‘Another value’>
onyx:1>

When the second key/value pair is inserted, it replaces the first pair.

Actually, there is one way to create a dictionary, then modify it such that multiple entries have the same
key. However, doing so is a very bad idea, and is only discussed here as an example of something not
to do. Dictionary keys are merely references (in the case of composite objects), so if a string is modified
after being used as a dictionary key, the dictionary will no longer be able to access the key/value pair
associated with that string. The following code creates a dictionary with two key/value pairs, then
changes one of the keys.

onyx:0> $foostr ‘foo’ def
onyx:0> $barstr ‘bar’ def
onyx:0> $d <foostr 0 barstr 1> def

6 Onyx Manual Chapter 1

onyx:0> foostr barstr copy pop
onyx:0> d 1 sprint
<‘foo’ 1 ‘foo’ 1>
onyx:0> d ‘foo’ undef
onyx:0> d 1 sprint
<‘foo’ 0>
onyx:0>

Bad things are clearly happening here, and in fact there are other similar problems that surface, even
if a key remains unique after being changed. This is because during insertion, the key string is hashed,
and inserted into a hash table accordingly. A different string is likely to hash to a different slot in the
hash table, which means that the key/value pair becomes inaccessible.

In summary, do not change strings while they are being used as dictionary keys. Onyx does not prevent
the use of strings for dictionary keys, since it would be limiting, but this feature can be abused.

1.6.1 Efficiency issues

Although dictionaries can handle keys of any type, they are optimized to use names as keys. The
performance penalty for other key types is slight, but can be exacerbated by the cost of comparison for
other types. Name comparison is a constant time operation, but string comparison is not. Therefore,
use names rather than strings whenever possible.

1.7 Regular expressions

Onyx provides regular expression support that is very similar to what the Perl programming language
provides. There are two special data types, regex and regsub, that are specific to regular expressions,
but there is no special language syntax devoted to regular expressions, unlike Perl. Instead, patterns
and substitution templates are specified via normal strings, and flags are specified via dictionaries.

Regular expression syntax is similar to that of Perl. See Section 2.9 for more information.

1.7.1 Matching

The following snippet iteratively searches for capitalized words:

‘This is an Onyx string.’

{dup ‘[A-Z]\w+’ <$g true> match}{
0 submatch 1 sprint

} while

The above code generates the following output:

‘This’
‘Onyx’

1.7. REGULAR EXPRESSIONS Jason Evans 7

The $g flag to the match operator says to start searching where the previous match ended, which is
what makes the while loop possible. The submatch operator gets the substring of the input string
that the regular expression most recently matched.

With a slight modification to the previous example, it is possible to get at the capital letters, rather than
the entire capitalized words. This is achieved by using a set of capturing parentheses, and changing
the argument to submatch:

‘This is an Onyx string.’

{dup ‘([A-Z])\w+’ <$g true> match}{
1 submatch 1 sprint

} while

This generates the following output:

‘T’
‘O’

This is a trivial example of how capturing subpatterns can be used, but the possibilities are wide and
varied.

1.7.2 Splitting

Sometimes it is desirable to split a string into pieces, such as when dealing with a comma-delimited
file:

‘Jason Evans, jasone@canonware.com, http://www.canonware.com/˜jasone/’

‘,\s*’ split
1 sprint

This generates the following output:

[‘Jason Evans’ ‘jasone@canonware.com’ ‘http://www.canonware.com/˜jasone/’]

If for some reason preserving the delimiters is important, capturing parentheses can be added to the
splitting pattern:

‘Jason Evans, jasone@canonware.com, http://www.canonware.com/˜jasone/’

‘(,)\s*’ split
1 sprint

This generates the following output:

[‘Jason Evans’ ‘,’ ‘jasone@canonware.com’ ‘,’ ‘http://www.canonware.com/˜jasone/’]

8 Onyx Manual Chapter 1

1.7.3 Substituting

The match and split operators provide enough power that with some effort, it is possible to find
regular expression matches, modify the matched text, and create a modified string as output. However,
this is a common operation when using regular expressions for text processing, so the subst operator
is also provided as a more convenient interface for the most common types of substitution.

Suppose that a list of email addresses needs to be converted from one format to another.. The following
snippet does such a conversion:

‘Jason Evans (jasone@canonware.com)
Jason O. Evans (jasone@canonware.com)
’

‘(\w[A-Za-z.]*\w) \(\s*([ˆ\s]+)\s*\)’ ‘"\1" <\2>’ <$g true> subst pop
stdout exch write pop

This generates the following output:

"Jason Evans" <jasone@canonware.com>
"Jason O. Evans" <jasone@canonware.com>

1.8 Code organization

As mentioned earlier, Onyx does not have named variables in the same way as most other languages
do. However, it does have the dictionary stack (dstack), which is dynamically used for name lookups
whenever an executable name is interpreted. This section talks about how to effectively manage the
namespace provided by dstack.

When the Onyx interpreter is first initialized, there are four dictionaries on dstack:

• userdict

• globaldict

• systemdict

• threaddict

dstack can be manipulated any way the application sees fit, though it is generally dangerous to remove
or significantly modify systemdict or threaddict, since there are definitions in those dictionaries that
are critical to the correct functioning of the interpreter.

Each thread has its own userdict, which provides a thread-local namespace. globaldict is shared among
all threads, so it provides a global namespace. systemdict contains all of the default global definitions,
and threaddict contains the default thread-local definitions.

For some applications, it may be desirable to add definitions to systemdict, but care should be taken
not to overwrite existing definitions unless you really know what you are doing. In most cases, using
globaldict is a better way to go.

1.9. ERROR HANDLING Jason Evans 9

1.8.1 Procedures

Named procedures can be created by associating a name with a procedure in one of the dictionaries
on dstack. There is nothing magical about this, but some care should be taken in choosing procedure
names, and in deciding how to manage the namespace. Onyx uses only numberss and lowercase letters
in the names of its definitions on dstack, so it is easy to avoid namespace collisions by using some other
character in program definitions. There is nothing wrong with using all numbers and lowercase letters
for names in your programs, though some extra care is warranted when doing so.

An important consideration in program design is determining what belongs in the global namespace.
For an example of how Onyx partitions its namespace, look at gcdict. There are several operators
defined in gcdict that are only of interest when manipulating the garbage collector, so those definitions
are stashed out of the way. Your program can do the same for definitions that are not of regular
interest.

1.8.2 Modules

Onyx provides the infrastructure for loadable modules, which can be implemented as Onyx code and/or
dynamically loaded machine code (shared libraries). At the lowest level, modload can be used to load
a shared object. At a higher level, mrequire can be used to find a shared object in one of the directories
specified by the module path, then modload it. At the highest level, the mclass and module classes
provide methods for loading, introspecting, and unloading modules. The lower level APIs are typically
only utilized when writing modules, and the highest level APIs are utilized when using modules.

When writing a module that is meant as a library of additional functionality, some choices have to be
made about how to organize the module. Some of the obvious choices for how to organize the loaded
definitions are:

• Insert definitions into globaldict.

• Create a new dictionary full of definitions, and insert the dictionary into globaldict as, say, foodict.

• Insert definitions into systemdict (questionable practice).

Depending on the nature of the module, any of the above solutions may be the right choice. There are
tradeoffs between convenience and cleanliness that should be carefully weighed.

1.9 Error handling

Onyx includes a powerful generic error handling mechanism that can be extended and customized at
several levels. The throw procedure is used to throw an error, and virtually every aspect of the error
handling machinery can be customized, extended, or replaced, since it is all written in Onyx.

Errors have names, with which error handlers can be associated in errordict. errordict’s handleerror
procedure can be modified or replaced. In fact, with some care, an entirely custom errordict can be
defined, then undefined once it is no longer needed.

Following is the standard idiom for setting up and tearing down custom error handling:

Set up custom error handling...

10 Onyx Manual Chapter 1

{
Do error-prone stuff...

} stopped {
An error occurred. Do additional cleanup...

} if
Restore error handling machinery...

The possibilities are extensive. However, a few words of caution are in order. If you mess something up
in the error handling machinery, bad things will happen, and you will have a terrible time debugging
the problem. Be careful.

1.10 Introspection

The following code defines a named procedure that calculates factorials:

#n factorial #result
$factorial {

dup 1 gt {
#n-1 factorial
dup 1 sub factorial

}{
Terminate recursion.
1

} ifelse

mul
} def

What this code actually does is create an executable array, which can be examined and modified. The
following transcript shows the effects of modifying the code:

onyx:0> 3 factorial 1 sprint
6
onyx:0> $factorial load 2 sprint
{dup 1 gt {dup 1 sub factorial} {1} ifelse mul}
onyx:0> $factorial load 4 {1 pstack} put
onyx:0> 3 factorial
1
1
2
3
onyx:1> 1 sprint
6
onyx:0>

First 3! is calculated. Then the “else” clause of the ifelse construct is modified to print the stack and 3!
is recalculated. As can be seen, the stack is printed during the calculation.

1.11. THREADS Jason Evans 11

1.11 Threads

The original impetus for Onyx’s creation was the need for scalable threading. Onyx’s threading is
therefore truly powerful, though it comes at a cost. Threading makes asynchronous garbage collection
a necessity, which in turn makes many aspects of Onyx’s implementation a bit more heavyweight than
would be necessary for a single-threaded interpreter.

1.11.1 Implicit synchronization

Onyx provides mechanisms for implicit object synchronization. To see why implicit object synchroniza-
tion is necessary, consider what happens when two threads concurrently modify globaldict (a perfectly
legitimate thing to do, by the way). The internals of a dictionary are rather complex, and if two mod-
ifications were interleaved, havoc would ensue. Therefore, globaldict is implicitly locked. That is a
good thing, except that it slows down every access to globaldict. In contrast, userdict is a per-thread
dictionary, so it is not implicitly locked.

Implicit locking for new objects is controlled via setlocking, and can be queried via currentlocking.
Implicit locking is turned off by default when Onyx is started up, so if an application needs to create
an object that is shared among threads, it should temporarily turn on implicit locking. For example,
the following code creates a stack in globaldict that can be used as a simple message queue:

currentlocking # Save for later restoration.
true setlocking

Push globaldict onto dstack before calling def.
globaldict begin
$queue stack def
end # globaldict

Restore implicit locking mode.
setlocking

For additional details on the mechanics of implicit synchronization, see Section 2.7.1.

1.11.2 General threading concerns

Onyx’s basic threading mechanisms are typical of those found in modern threading implementations.
One of the aspects of Onyx’s threading implementation to be aware of is that since the operating sys-
tem’s threading implementation is used, there are many types of programming errors that can cause
undefined behavior. With some effort, it is possible to crash the Onyx interpreter without the use of
threads. However, it requires skill and discipline to not crash the Onyx interpreter when using threads.
This was a conscious design decision for Onyx; doing otherwise would have limited the scalability of
threading.

12 Onyx Manual Chapter 1

1.12 Optimization

There are many fine points to optimizing Onyx code, but they can primarily be distilled down to the
following simple rules:

• Avoid allocating composite objects, in order to reduce pressure on the garbage collector. This
means being very careful about string manipulation in the fast path. The cat operator is conve-
nient, but not friendly to the garbage collector.

• Write code with as few objects as possible, to reduce the number of times through the interpreter
loop. This means getting very familiar with the stack manipulation operators.

• Use the operand stack rather than named variables.

• Use the bind operator for procedure definitions whenever possible, in order to reduce dstack
lookups.

• Avoid the exit, stop, escape, and quit operators when possible, since they are implemented via
longjmp().

1.13 Debugging

Onyx does not have an integrated interactive debugger per se, because the introspective power of Onyx
is adequate for almost all debugging purposes. In cases where it is impractical to interactively debug
an application via the main thread, it is possible to launch a thread that listens for connections on a
socket (or a fifo pair) and provides an interactive session.

Following is a contrived example of debugging some bad code, interleaved with explanations. The
intention is to calculate 1 + 5.

onyx:0> 1 5L add
Error $undefined
ostack: (1)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: 5L
1: -file-
2: --start--
onyx:2> pstack
5L
1

5L is not a number, nor is it defined in dstack. Try replacing 5L with $five .

onyx:2> pop $five resume
Error $typecheck
ostack: (1 $five)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()

1.13. DEBUGGING Jason Evans 13

estack/istack trace (0..2):
0: --add--
1: -file-
2: --start--
onyx:3> pstack
--add--
$five
1

$five is a literal name, so no errors occur directly due to scanning it. However, the add operator
expects two numbers, and $five is not a number. Replace it with 5 and evaluate the operator.

onyx:3> nip 5 exch eval
onyx:1> pstack
6

The result is as desired. However, we forgot to resume after the last error.

onyx:1> estack 1 sprint
(--start-- -file- --add-- --ifelse-- --eval-- -array- -file- --estack--)
onyx:1> resume

Now the estack contents should be back to normal.

onyx:1> estack 1 sprint
(--start-- -file- --estack--)
onyx:1>

The above example only demonstrates the flavor of typical interactive debugging, but there is no magic
involved in debugging, so your debugging ability should improve automatically as you gain an im-
proved understanding of Onyx.

Chapter 2

Onyx Language Reference

Onyx is a stack-based, threaded, interpreted language. Its closest relative is Adobe PostScriptTM ,
followed by Forth. Experienced PostScript programmers should find most aspects of Onyx familiar,
but there are significant differences that will prevent a knowledgeable PostScript programmer from
programming in Onyx without first skimming this chapter. This chapter does not assume specific
knowledge of other programming languages, so stands as a definitive reference for Onyx.

Onyx is different from most languages in that it is not compiled, but rather consumed. For example,
there are mechanisms for creating the equivalent of named procedures that can be called at a later
time, but behind the scenes, the code is actually being interpreted as it is scanned in such a way
that an executable object is created. As such, Onyx is not suited for compilation, native or byte code.
However, the language syntax is very simple and the scanner/parser is extremely fast. There is also an
operator called bind that optimizes interpreted code execution to approximately the same performance
level as would be expected of a byte code interpreter.

Onyx is implemented as a C library that can be embedded in other programs. Mechanisms are provided
for extending the set of operators available. This manual only documents the base language; see
application-specific documentation for any language extensions.

Following is a list of basic language features that are discussed in more detail later in this chapter:

• Stack-based. There are no named variables as in procedural languages. Operations are done
using various stacks, so Onyx operations are coded in postfix order.

• Threaded. Onyx’s threading uses the native POSIX threads implementation of the operating
system (or GNU pth, if so configured).

• Interpreted. Onyx code is never compiled, but is instead interpreted as it is encountered.

• Garbage-collected. There is no need to manually track memory allocation, since the interpreter
has an integrated automatic mark and sweep garbage collector.

2.1 Objects

An Onyx object has three aspects: type, attribute, and value.

Objects fall into two categories according to type: simple and composite. A simple object takes up
no memory of its own; it uses space within another object (typically a stack, array, or dictionary). A

15

16 Onyx Manual Chapter 2

composite object requires space of its own in addition to the space taken up in another object to refer
to the composite object. See Table 2.1 for object type classifications.

Simple Composite
boolean array
fino class
integer condition
mark dict
name file
null handle
operator instance
pmark mutex
real regex

regsub
stack
string
thread

Table 2.1: Simple and composite types

There can be multiple references that refer to the same memory backing composite objects. In most
cases, composite objects that refer to the same memory are indistinguishable, but for arrays and
strings, composite objects may only be able to access a subset of the total memory backing them.
This behavior is described in detail later.

All objects have a literal, executable, evaluable, callable, invokable, or fetchable attribute associated
with them. Composite objects each have their own attribute, even for composite objects that share the
same backing memory. Objects are “interpreted” when they are encountered directly by the interpreter.
Objects can also be “evaluated”. Objects are handled as one of the following cases when interpreted or
evaluated:

code: An object may be treated as code and be executed. When executed, an object is pushed onto the
execution stack and executed.

data: An object may be treated as data. A data object is push onto the operand stack. All literal
objects are treated as data.

mkey: A callable object is executed and treated as a method key. When a callable object is executed,
the following steps are taken:

1. The topmost object on the operand stack is pushed onto the context stack, then popped off of
the operand stack.

2. The callable object is used as a key to search for a method in the class hierarchy of the
topmost object on the context stack.

3. The method found in the previous step is evaluated.
4. All objects on the context stack down to and including the object pushed in step 1 are popped

off of the context stack.

cmkey: A invokable object is executed and treated as a method key in the context of the topmost
object on the context stack. When a invokable object is executed, the following steps are taken:

1. The invokable object is used as a key to search for a method in the class hierarchy of the
topmost object on the context stack.

2.1. OBJECTS Jason Evans 17

2. The method found in the previous step is evaluated.

cdkey: A fetchable object is executed and treated as a data key in the context of the topmost object
on the context stack. When a fetchable object is executed, the following steps are taken:

1. The fetchable object is used as a key to search for data in the data dictionary of the topmost
object on the context stack.

2. The data found in the previous step is pushed onto the operand stack.

Table 2.2 enumerates what action is taken during interpretation/evaluation for all object type/attribute
combinations. Note that executable arrays are the only objects that behave differently when inter-
preted versus evaluated.

Attributes are not considered in equality test operations.

Type Attribute
literal executable evaluable callable invokable fetchable

array data data/code code mkey cmkey cdkey
boolean data data data mkey cmkey cdkey
class data data data mkey cmkey cdkey
condition data data data mkey cmkey cdkey
dict data data data mkey cmkey cdkey
file data code code mkey cmkey cdkey
fino data data data mkey cmkey cdkey
handle data code code mkey cmkey cdkey
instance data data data mkey cmkey cdkey
integer data data data mkey cmkey cdkey
mark data data data mkey cmkey cdkey
mutex data data data mkey cmkey cdkey
name data code code mkey cmkey cdkey
null data code code mkey cmkey cdkey
operator data code code mkey cmkey cdkey
pmark data data data mkey cmkey cdkey
real data data data mkey cmkey cdkey
regex data data data mkey cmkey cdkey
regsub data data data mkey cmkey cdkey
stack data data data mkey cmkey cdkey
string data code code mkey cmkey cdkey
thread data data data mkey cmkey cdkey

Table 2.2: Interpretation/evaluation of objects by type and attribute

array: An array is an ordered sequence of objects of any type. The sequence of objects contained in
an array is indexed starting at 0. References to existing arrays may be constructed such that a
contiguous subsequence is visible. The following code creates such an array:

[0 1 2 3 4]
1 3 getinterval

After the code executes, the array left on the operand stack looks like:

18 Onyx Manual Chapter 2

[1 2 3]

Executable arrays are in effect procedures. When an array is executed, its elements are sequen-
tially interpreted.

boolean: A boolean can have two values: true or false.

class: A class is a class, in the object-oriented sense of the word. Class objects provide explicit
object-oriented programming support. Classes allow single inheritance, and provide dynamic
lookup/dispatch capabilities.

condition: A condition is used for thread synchronization. The standard operations on a condition
are to wait and to signal.

dict: A dict (short for dictionary) is a collection of key/value pairs, where all keys in a dict are unique.
Other names for dictionaries include “associative array” and “hash”. A key can be of any type,
though in most cases, keys are of type name. A value can also be of any type.

file: A file is a handle to an ordered sequence of bytes with a current position. Read and write per-
missions are set when a file object is created.

When an executable file is executed, it is used as a source of Onyx code. Data are sequentially
read from the file and interpreted until the end of the file is reached.

fino: A fino (first in, never out) is used as a stack marker when constructing stacks.

handle: The handle type is not used by the core Onyx language. It can be used by applications
that extend the interpreter as a container object. Handles can be executed, but the results are
application dependent.

Each handle has a tag associated with it that can be used by C extension code as a form of type
checking. By default, the tag is a null object. In most cases, an application that extends the
interpreter using handle objects will set handle tags to be name objects.

instance: An instance is an instance of a class, in the object-oriented sense of the word. Instances
primarily depend on classes for their functionality, but they also have per-instance data storage.

integer: An integer is a signed integer in the range −263 to 263 − 1.

mark: A mark is used as a stack marker for various stack operations.

mutex: A mutex is a mutual exclusion lock. Mutexes cannot be acquired recursively, and the appli-
cation must take care to unlock mutexes before allowing them to be garbage collected (whether
during normal program execution or at program termination).

name: A name is a key that uniquely identifies a sequence of characters. Two name objects that
correspond to the same sequence of characters can be compared for equality with the same ap-
proximate cost as comparing two integers for equality. Names are typically used as keys in
dictionaries.

When an executable name is executed, the topmost value in the dictionary stack associated with
the name is evaluated.

null: A null has no significance other than its existence. When an executable null is executed, it does
nothing. Executable nulls can be useful as place holders that can later be replaced with useful
code, or for replacing obsolete code so that the code is no longer executed.

operator: An operator is an operation that is built in to the interpreter. Operators can be executed.

2.2. SYNTAX Jason Evans 19

pmark: A pmark is used as a stack marker when creating procedures in deferred execution mode
(i.e. procedures that use the “{}” syntax). The application will only encounter pmarks in error
conditions, and there is never a reason for an application to explicitly create a pmark.

real: A real is a double precision (64 bit) floating point number.

regex: A regex encapsulates a regular expression and associated flags, which can be used to find
substring matches within an input string.

regsub: A regsub encapsulates a regular expression, substitution template, and associated flags,
which can be used to do substring substitutions and create an output string from an input string.

stack: A stack provides LIFO (last in, first out) access to objects that it contains, as well as some
more advanced access methods. An application can create, then manipulate stacks in much the
same way that the operand stack can be manipulated.

string: A string is an ordered sequence of 8 bit characters. The bytes contained in an string are
indexed starting at 0. References to existing strings may be constructed such that a contiguous
subsequence is visible. The following code creates such a string:

‘abcde’
1 3 getinterval

After the code executes, the string left on the operand stack looks like:

‘bcd’

When an executable string is executed, its contents are used as a source of Onyx code.

thread: A thread object serves as a handle for operations such as detaching and joining.

2.2 Syntax

Onyx’s syntax is very simple in comparison to most languages. The scanner and parser are imple-
mented as a human-understandable finite state machine (nested C switch statements with a couple of
auxiliary variables), which should give the reader an idea of the simplicity of the language syntax.

CRNL (carriage return, newline) pairs are in all important cases converted to newlines during scan-
ning.

The characters “#”, “!”, “,”, “;”, “:”, “$”, “∼”, “[”, “]”, “{”, “}”, “(”, “)”, “ ‘ ”, “ ’ ”, “<”, and “>” are special. In
most cases, any of the special characters and whitespace (space, tab, newline, formfeed, null) terminate
any preceding token. All other characters including non-printing characters are considered regular
characters.

A comment starts with a “#” character outside of a string context and extends to the next newline or
formfeed.

Procedures are actually executable arrays, but Onyx provides special syntax for declaring procedures.
Procedures are delimited by “{” and “}”, and can be nested. Normally, the interpreter executes code
as it is scanned, but inside of procedure declarations, execution is deferred. Instead of executing a
procedure body as it is encountered, the tokens of the procedure body are pushed onto the operand
stack until the closing “}” is encountered, at which time an executable array is constructed from the
tokens in the procedure body and pushed onto the operand stack.

A partial grammar specification, using BNF notation (where convenient) is as follows:

20 Onyx Manual Chapter 2

<program> ::= <statement>

<statement> ::= <procedure> <statement> | <object> <statement> | ε

<procedure> ::= {<statement>}

<object> ::= <integer> | <real> | <name> | <string>

<integer> ::= <dec integer> | <radix integer>

<real> ::= <dec real> | <exp real>

<name> : Any token that cannot be interpreted as a number or a string is interpreted as an exe-
cutable name. There are seven syntaxes for names: executable, evaluable, callable, invokable,
fetchable, literal, and immediately evaluated. Executable and evaluable names are looked up in
the dictionary stack and executed (unless execution is deferred). Evaluable names behave the
same as executable names, except when being processed by the bind operator. Callable, invok-
able, fetchable, and literal names are handled the same as for all other types; the special syntax
for names with these attributes are merely a programming convenience. Immediately evalu-
ated names are replaced by their values as defined in the dictionary stack, even if execution is
deferred. Examples include:

foo # executable
4noth3r # executable
!bar # evaluable
:method # callable
;method # invokable
,data # fetchable
$biz # literal
˜baz # immediately evaluated

If the result of an immediately evaluated name is an executable array, the evaluable attribute
is set for the array so that when the array is interpreted, it is executed. This allows immediate
evaluation to be indiscriminately used without concern for whether the result is an executable
array or, say, an executable operator.

<string> ::= A string delimited by “ ‘ ” and “ ’ ”. Ticks may be embedded in the string without escaping
them, as long as the unescaped ticks are balanced. The following sequences have special meaning
when escaped by a “\” character:

‘ ‘ character.

’ ’ character.

\ \ character.

0 Nul.

n Newline.

r Carriage return.

t Tab.

b Backspace.

f Formfeed.

a Alarm.

e Escape.

x[0-9a-fA-F][0-9a-fA-F] Hex encoding for a byte.

2.2. SYNTAX Jason Evans 21

c[a-zA-Z] Control character.
\n (newline) Ignore.
\r\n (carriage return, newline) Ignore.

“\” has no special meaning unless followed by a character in the above list. This is especially
convenient when specifying regular expressions.
Examples include:

‘’
‘A string.’
‘An embedded \n newline.’
‘Another embedded
newline.’
‘An ignored \
newline.’
‘Balanced ‘ and ’ are allowed.’
‘Manually escaped \‘ tick.’
‘Manually escaped \‘ tick and ‘balanced unescaped ticks’.’
‘An actual \\ backslash.’
‘Another actual \ backslash.’

<dec integer> : Signed decimal integer in the range −263 to 263 − 1. The sign is optional. Examples
include:

0
42
-365
+17

<radix integer> : Signed integer with explicit base between 2 and 36, inclusive, in the range −263

to 263 − 1. Integer digits are composed of decimal numbers and lower or upper case letters. The
sign is optional. Examples include:

2@101
16@ff
16@Ff
16@FF
-10@42
10@42
+10@42
9@18
35@7r3x
35@7R3x

<dec real> : Double precision floating point number in decimal notation. At least one decimal digit
and a decimal point are required. Examples include:

0.
.0
3.
.141
3.141
42.75
+3.50
-5.0

22 Onyx Manual Chapter 2

<exp real> : Floating point number in exponential notation. The format is the same as for <dec real>,
except that an exponent is appended. The exponent is composed of an “e” or “E”, an optional sign,
and a base 10 integer that is limited by the precision of the floating point format (approximately
−308 to 307). Examples include:

6.022e23
60.22e22
6.022e+23
1.661e-24
1.661E-24

Arrays do not have explicit syntactic support, but the [and] operators support their construction.
Examples of array construction include:

[]
[0 ‘A string’ ‘Another string.’ true]
[5
42
false]

Dictionaries do not have explicit syntactic support, but the < and > operators support their construc-
tion. Examples of dictionary construction include:

<>
<$answer 42 $question ‘Who knows’ $translate {babelfish} >

Stacks do not have explicit syntactic support, but the (and) operators support their construction.
Examples of stack contstruction include:

()
(1 2 mark ‘a’)

2.3 Stacks

Stacks in Onyx are the core data structure that programs act on. Stacks store objects in a last in, first
out (LIFO) order. Onyx includes a number of operators that manipulate stacks.

Each Onyx thread has five program-visible stacks associated with it:

Operand stack (ostack): Most direct object manipulations are done using the operand stack. Op-
erators use the operand stack for inputs and outputs, and code generally uses the operand stack
for a place to store objects as they are being manipulated.

Dictionary stack (dstack): The dictionary stack is used for looking up names. Each thread starts
with with four dictionaries on its dictionary stack, which are, from top to bottom:

• userdict
• globaldict
• systemdict

2.4. STANDARD I/O Jason Evans 23

• threaddict

The dictionary stack is normally manipulated via the begin and end operators. The initial
dictionaries on the dictionary stack should not generally be removed, since doing so can cause
interpreter crashes.

Context stack (cstack): The context stack supports Onyx’s object-oriented programming facilities.
The topmost object on the context stack (either a class or an instance) is used by the Onyx inter-
preter to look up methods and data. That object is known as “this” in object-oriented program-
ming parlance, and can be quickly accessed via the this operator.

Execution stack (estack): The interpreter uses the execution stack to store objects that are being
executed. The application generally does not need to explicitly manipulate the execution stack,
but its contents are accessible, mainly for debugging purposes.

Index stack (istack): The interpreter uses the index stack to store execution offsets for arrays that
are being executed. There is a one to one correspondence of the elements of the execution stack
to the elements of the index stack, even though the elements of the index stack that do not
correspond to arrays have no meaning. The index stack does not affect execution, and exists
purely to allow useful execution stack traces when errors occur.

The application can also create additional stacks and manipulate them in much the same way as the
operand stack can be manipulated.

2.4 Standard I/O

Onyx provides operators to access the standard I/O file objects: stdin, stdout, and stderr. Under
normal circumstances, these operators are adequate for all standard I/O operations. However, it may
be desirable to replace these files on a per-thread basis. This can be accomplished using setstdin,
setstdout, and setstderr. Furthermore, the file objects that are inherited by new threads can be
accessed and modified via gstdin, gstdout, gstderr, setgstdin, setgstdout, and setgstderr.

2.5 Interpreter recursion

During typical Onyx interpreter initialization, the start operator is executed, which in turn executes
a file object corresponding to stdin. However, depending on how the interpreter is invoked, the initial
execution stack state may differ.

The interpreter can be recursively invoked. For example, if the following code is executed, the eval
operator recursively invokes the interpreter to interpret the string.

‘2 2 add’ cvx eval

The depth of the execution stack directly corresponds to the recursion depth of the interpreter. Execu-
tion stack depth is limited in order to catch unbounded recursion.

By default, Onyx converts tail calls in order to prevent unbounded execution stack growth due to tail
recursion. For example, the following code does not cause the execution stack to grow:

$foo {foo} def
foo

24 Onyx Manual Chapter 2

The following code will result in an execution stack overflow:

$foo {foo ‘filler’} def
foo

Whether tail call conversion is enabled can be queried and set via tailopt, gtailopt, settailopt, and
setgtailopt.

Name lookups are effectively treated as tail calls, so if tail call optimization is disabled, names will be
left in place on the execution stack, and their associated values will be recursively executed.

2.6 Error handling

The error handling mechanisms in Onyx are simple but flexible. When an error occurs, throw is
called. An error can have any name, but only the following error names are generated internally by
Onyx:

argcheck: Incorrect argument value.

cstackunderflow: Not enough objects on cstack.

estackoverflow: Maximum interpreter recursion was exceeded.

invalidaccess: Permission error.

invalidcontinue: The continue operator was called outside of any loop. This error is generated as
a result of catching a continue, so the execution state for where the error really happened is gone.

invalidexit: The exit operator was called outside of any loop. This error is generated as a result of
catching an exit, so the execution state for where the error really happened is gone.

invalidfileaccess: Insufficient file permissions.

ioerror: I/O error (read(), write(), etc.).

limitcheck: Value outside of legal range.

neterror: Network error (refused connection, timeout, unreachable net, etc.).

rangecheck: Out of bounds string or array access, or out of bounds value.

regexerror: Regular expression syntax error.

stackunderflow: Not enough objects on stack.

syntaxerror: Scanner syntax error.

typecheck: Incorrect argument type.

undefined: Name not defined in any of the dictionaries on dstack, or in the case of class method
dispatch, name not defined in the class hierarchy.

undefinedfilename: Bad filename.

undefinedresult: Attempt to divide by 0.

2.7. THREADS Jason Evans 25

unmatchedfino: No fino on ostack.

unmatchedmark: No mark on ostack.

unregistered: Non-enumerated error.

The Onyx scanner handles syntax errors specially, in that it pushes an executable string onto the
operand stack that represents the code that caused the syntax error and records the line and column
numbers in currenterror before invoking throw.

The Onyx scanner also handles immediate name evaluation errors specially, in that it pushes the name
that could not be evaluated onto ostack before invoking throw.

In addition to the throw operator, there are several other operators that exist specifically for the
purpose of error handling. The start operator silently catches any uncaught stop, exit, continue,
escape, or quit calls. The start operator is the first operator called by the Onyx interpreter during
startup, and it can also be used by applications to limit execution stack unwinding. The stopped
operator is useful for catching stop calls, since it reports whether a stop call was caught, allowing
conditional error recovery.

2.7 Threads

Onyx supports multiple threads of execution by using the operating system’s native threading facili-
ties. Along with threads comes the need for methods of synchronization between threads.

2.7.1 Implicit synchronization

Implicit synchronization is a mandatory language feature, since objects such as globaldict are im-
plicitly accessed by the interpreter, which makes it impossible to require the user to explicitly handle
all synchronization. Onyx provides optional implicit synchronization capabilities for composite objects
on an object by object basis. Each thread has a setting which can be accessed via currentlocking
(initially set to false) and set via setlocking. If implicit locking is active, then new objects will be
created such that simple accesses are synchronized.

Implicit synchronization can be a source of deadlock, so care must be taken when accessing implicitly
locked objects. For example, if two threads copy two implicitly locked strings to the other string,
deadlock can result.

Initialization.
$A ‘aaaaaa’
$B ‘bbbbbb’

...

In thread A:
A B copy

...

In thread B:
B A copy

26 Onyx Manual Chapter 2

The following are descriptions of the implicit locking semantics for each type of composite object:

array: Array copying is protected. Array element modifications are protected, but element reads are
not protected.

class: No implicit locking is done for classes.

condition: No implicit locking is done for conditions.

dict: All dict operations are protected.

file: All file operations are protected. There are no potential deadlocks due to implicit file locking.

handle: No implicit locking is done for handles.

instance: No implicit locking is done for instances.

mutex: No implicit locking is done for mutexes.

regex: No implicit locking is done for regexes.

regsub: No implicit locking is done for regsubs.

stack: All stack operations are protected. There are no potential deadlocks due to implicit stack
locking. However, there are races in stack copying, such that the results of copying a stack that
is concurrently being modified are unpredictable. In addition, removing an object that is being
concurrently accessed from a stack is unsafe.

string: String copying is protected. Character access is protected by many operators, but string
copying is the only potential cause of deadlock for string access.

thread: Implicit locking is not done for thread operations, since other synchronization is adequate to
protect thread objects.

2.7.2 Explicit synchronization

Onyx includes a foundation of mutexes and condition variables, with which all other synchronization
primitives can be constructed.

2.8 Memory management

Onyx programs do not need to track memory allocations, since memory reclamation is done implicitly
via automatic garbage collection. Onyx uses an atomic mark and sweep garbage collector.

The atomic nature of garbage collection may sound worrisome with regard to performance, but in fact
there are tangible benefits and no significant negative impacts for most applications. Total through-
put is improved, since minimal locking is necessary. Concurrent garbage collection would impose a
significant locking overhead.

On the down side, atomic garbage collection cannot make strong real-time guarantees. However, the
garbage collector is very efficient, and for typical applications, garbage collection delays are measured
in microseconds up to tens of milliseconds on current hardware as of the year 2000. For interactive
applications, anything under about 100 milliseconds is undetectable by the user, so under normal
circumstances the user will not notice that garbage collection is happening.

There are three parameters that can be used to control garbage collection:

2.9. REGULAR EXPRESSIONS Jason Evans 27

1. The garbage collector can be turned off for situations where many objects are being created over
a short period of time.

2. The garbage collector runs whenever a certain number of bytes of memory have been allocated
since the last collection. This threshold can be changed or disabled.

3. If no composite objects have been created for an extended period of time (seconds), the garbage
collector will run if any composite objects have been allocated since the last collection. This idle
timeout period can be changed or disabled.

There is one situation in which it is possible for garbage to never be collected, despite the garbage
collector being properly configured. Suppose that a program creates some objects, the garbage collector
runs, then the program enters a code path that clobbers object references, such that the objects could
be collected, but no new objects are allocated. In such a situation, neither the allocation inactivity
timer (period), nor the object allocation threshold will trigger a collection, and garbage will remain
uncollected. In practice this situation is unlikely, and is not a significant problem since the program
size is not growing.

Garbage collection is controlled via the gcdict dictionary, which is described in Section 2.11.4.

2.9 Regular expressions

Regular expression support is provided by the PCRE library package, which is open source software,
written by Philip Hazel, and copyright by the University of Cambridge, England. PCRE stands for
“Perl-compatible regular expressions”. This manual only documents how Onyx interfaces with PCRE.
For more information about how PCRE’s regular expressions work, see the following:

• The pcre(3) manual page.

• The official PCRE download site: ftp://ftp.csx.cam.ac.uk/pub/software/programming/
pcre/ .

• The unofficial PCRE website: http://www.pcre.org/ .

For general information about Perl regular expressions, the following are recommended:

• Perl 5.6.1 regular expression documentation: http://www.perldoc.com/perl5.6.1/pod/
perlre.html .

• Mastering Regular Expressions, 2nd Ed., by Jeffrey E. F. Friedl. ISBN 0-596-00289-0.

• Perl 5 Pocket Reference, 3rd Ed., by Johan Vromans. ISBN 0-596-00032-4.

• Programming Perl, 3rd Ed., by Larry Wall, Tom Christiansen, and Jon Orwant. ISBN 0-596-
00027-8.

There are two special Onyx object types that support regular expressions: regex and regsub. Objects
of these types are created via the regex and regsub operators, respectively. The match operator
applies a regular expression to an input string, the submatch operator returns a matched substring
of the input string, and the offset operator returns the offset of a substring match relative to the
beginning of the input string. The split operator creates an array of substrings that are separated by

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
http://www.pcre.org/
http://www.perldoc.com/perl5.6.1/pod/perlre.html
http://www.perldoc.com/perl5.6.1/pod/perlre.html

28 Onyx Manual Chapter 2

strings that match a regular expression. The subst operator finds regular expression matches within
an input string and applies a substitution template to the matches, thereby creating an output string.
See Section 2.11.9 for detailed documentation on the above-mentioned operators.

Regular expressions are written as strings in Onyx, so all of the standard special sequences within
strings are interpreted directly by the Onyx scanner. Note that the \ character is only special within
strings if it is followed by a special sequence. This allows regular expressions to seamlessly extend the
set of special sequences within strings while maintaining a reasonably consistent syntax.

The following sequences have special meaning within strings that specify substitution templates:

Table 2.3: Substitution template special characters

Sequence Description
\1.. \9 Refer to captured expressions 1 through 9.

2.10 Object-oriented programming

Onyx provides basic mechanisms for programming in an object-oriented style. The class and instance
types, additional attributes (callable, invokable, and fetchable), a set of operators, and vclass, provide
all the necessary functionality. The object-oriented programming support can be summarized by the
following feature list:

• Single inheritance.

• Reasonably fast fully dynamic method dispach.

• No hindrances, such as private/protected/public data/method distinctions.

• Full introspection capabilities.

Very little policy is built into the operators that implement the foundation for object-oriented program-
ming support. See Section 2.12.1 for details on the policies that are set by vclass, which is provided as
a default base class.

2.11 Dictionary reference

All operators built in to Onyx have corresponding names that are composed entirely of lower case
letters and numbers (with the exception of syntax-supporting operators like [). In order to avoid any
possibility of namespace collisions with names defined by current and future versions of Onyx, use at
least one character that is not a lower case letter or a number in names (for example, capital letters,
underscore, etc.). In practice, namespace collisions usually aren’t a problem, even if they happen,
since the only effect is that the program-defined definition shadows the built in definition during name
lookups.

2.11.1 currenterror

Each thread has its own currenterror dictionary, which is used by the error handling machinery to
store error state.

2.11. DICTIONARY REFERENCE Jason Evans 29

Table 2.4: currenterror summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
newerror

boolean

Set to true during error handling.

–
errorname

name

Name of most recent error.

–
origin

string/null

Get origin of syntax error.

–
line

number

Get line number of syntax error.

–
column

number

Get column number of syntax error.

–
ostack

stack

ostack snapshot.

–
dstack

stack

dstack snaphot.

–
cstack

stack

cstack snaphot.

–
estack

stack

estack snapshot.

–
istack

stack

istack snapshot.

– column integer:
Input(s): None.
Output(s):

integer: Column number, valid only if the error was a syntaxerror. Column numbering
starts at 0.

Error(s): None.
Description: Get the column number that a syntaxerror occurred on.
Example(s):

onyx:0> ‘1 2 3}’ cvx eval
At line 1, column 5: Error $syntaxerror
ostack: (1 2 3 ‘}’)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..3):

30 Onyx Manual Chapter 2

0: ‘1 2 3}’
1: --eval--
2: -file-
3: --start--
onyx:5> currenterror $column get 1 sprint
5
onyx:5>

– cstack stack:
Input(s): None.

Output(s):
stack: A cstack snapshot.

Error(s): None.

Description: Get a stack that is a cstack snapshot as of the most recent error.

Example(s):
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin cstack end 1 sprint
()
onyx:1>

– dstack stack:
Input(s): None.

Output(s):
stack: A dstack snapshot.

Error(s): None.

Description: Get a stack that is a dstack snapshot as of the most recent error.

Example(s):
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin dstack end 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:1>

– errorname name:
Input(s): None.

2.11. DICTIONARY REFERENCE Jason Evans 31

Output(s):
name: Name of the most recent error.

Error(s): None.
Description: Get the name of the most recent error.
Example(s):

onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin errorname end 1 sprint
$undefined
onyx:1>

– estack stack:
Input(s): None.
Output(s):

stack: An estack snapshot.
Error(s): None.
Description: Get a stack that is an estack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin estack end 1 sprint
(--start-- -file- x)
onyx:1>

– istack stack:
Input(s): None.
Output(s):

stack: An istack snapshot.
Error(s): None.
Description: Get a stack that is an istack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)

32 Onyx Manual Chapter 2

cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin istack end 1 sprint
(0 0 0)
onyx:1>

– newerror boolean:
Input(s): None.
Output(s):

boolean: False if there has been no error since the last time newerror was reset; true
otherwise.

Error(s): None.
Description: Get a boolean that represents whether there has been an error since the last

time newerror was set to false (as during interpreter initialization). It is the application’s
responsibility to reset newerror after each error if it expects the value to be useful across
multiple errors.

Example(s):
onyx:0> currenterror begin
onyx:0> newerror 1 sprint
false
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> newerror 1 sprint
true
onyx:1> $newerror false def
onyx:1> newerror 1 sprint
false
onyx:1> resume
onyx:1> y
Error $undefined
ostack: (x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: y
1: -file-
2: --start--
onyx:2> newerror 1 sprint
true
onyx:2>

– line integer:

2.11. DICTIONARY REFERENCE Jason Evans 33

Input(s): None.
Output(s):

integer: Line number, valid only if the error was a syntaxerror. Line numbering starts at
1.

Error(s): None.
Description: Get the line number that a syntaxerror occurred on.
Example(s):

onyx:0> ‘1 2 3}’ cvx eval
At line 1, column 5: Error $syntaxerror
ostack: (1 2 3 ‘}’)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..3):
0: ‘1 2 3}’
1: --eval--
2: -file-
3: --start--
onyx:5> currenterror $line get 1 sprint
1
onyx:5>

– origin string/null:
Input(s): None.
Output(s):

string/null: Origin string if the error was a syntaxerror, null otherwise.
Error(s): None.
Description: Get the origin of a syntaxerror.
Example(s):

onyx:0> 1 2 3}
At *stdin*:1:5: Error $syntaxerror
ostack: (1 2 3 ‘}’)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:5> currenterror $origin get 1 sprint
‘*stdin*’
onyx:5>

– ostack stack:
Input(s): None.
Output(s):

stack: An ostack snapshot.
Error(s): None.
Description: Get a stack that is an ostack snapshot as of the most recent error.
Example(s):

onyx:0> x
Error $undefined

34 Onyx Manual Chapter 2

ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--
onyx:1> currenterror begin ostack end 1 sprint
()
onyx:1>

2.11.2 envdict

The envdict dictionary contains keys of type name and values of type string that correspond to the
environment passed into the program. All threads share the same envdict, which is implicitly locked.
Modifications to envdict should be made via the setenv and unsetenv operators. If envdict is modified
directly, the changes will not be visible to programs such as ps.

2.11.3 errordict

Each thread has its own errordict, which is used by default by the error handling machinery.

Table 2.5: errordict summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
handleerror

–

Print a state dump.

–
stop

–

Last operation during error handling.

– handleerror –:
Input(s): None.

Output(s): None.

Error(s): Under normal conditions, no errors occur. However, it is possible for the application to
corrupt the error handling machinery to the point that an error will occur. If that happens,
the result is possible infinite recursion, and program crashes are a real possibility.

Description: Print a dump of the most recent error recorded in the currenterror dictionary.

Example(s):
onyx:0> {true {true 1 sprint x y} if} eval
true
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)

2.11. DICTIONARY REFERENCE Jason Evans 35

cstack: ()
estack/istack trace (0..5):
0: x
1: {

true
1
sprint

3:--> x
y

}
2: --if--
3: --eval--
4: -file-
5: --start--
onyx:1> errordict begin handleerror end
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..5):
0: x
1: {

true
1
sprint

3:--> x
y

}
2: --if--
3: --eval--
4: -file-
5: --start--
onyx:1>

– stop –:
Input(s): None.
Output(s): None.
Error(s): None.
Description: This is called as the very last operation when an error occurs. Initially, its value

is the same as that for the stop operator in systemdict.
Example(s):

onyx:0> errordict begin
onyx:0> $stop {‘Custom stop\n’ print flush quit} def
onyx:0> x
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: x
1: -file-
2: --start--

36 Onyx Manual Chapter 2

Custom stop

2.11.4 gcdict

The gcdict dictionary provides garbage collection control and status capabilities.

Table 2.6: gcdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

Control operators
–

collect
–

Force a garbage collection.

boolean
setactive

–

Set whether the garbage collector is active.

seconds
setperiod

–

Set the inactivity period before the garbage collector will run.

count
setthreshold

–

Set the number of bytes of memory allocation that will trigger a
garbage collection.

State and statistics operators
–

active
boolean

Get whether the garbage collector is active.

–
period

seconds

Get the inactivity period before the garbage collector will run.

–
threshold

count

Get the number of bytes of memory allocation that will trigger a
garbage collection.

–
stats

array

Get garbage collection statistics.

– active boolean:
Input(s): None.
Output(s):

boolean: If true, the garbage collector is active; otherwise it is not active.
Error(s): None.
Description: Get whether the garbage collector is active.
Example(s):

onyx:0> gcdict begin active end 1 sprint
false

– collect –:

2.11. DICTIONARY REFERENCE Jason Evans 37

Input(s): None.

Output(s): None.

Error(s): None.

Description: Force a garbage collection.

Example(s):
onyx:0> gcdict begin collect end
onyx:0>

– period seconds:
Input(s): None.

Output(s):
seconds: The minimum number of seconds since the last object allocation that the garbage

collector will wait before doing a garbage collection. 0 is treated specially to mean for-
ever.

Error(s): None.

Description: Get the minimum number of seconds of object allocation inactivity that the garbage
collector will wait before doing a garbage collection. This setting is disjoint from the thresh-
old setting, and does not prevent garbage collection due to the threshold having been reached.

Example(s):
onyx:0> gcdict begin period end 1 sprint
60
onyx:0>

boolean setactive –:
Input(s):

boolean: If true (initial setting), activate the garbage collector; otherwise deactivate the
garbage collector.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set whether the garbage collector is active. This setting takes effect asynchronously,
so it is possible for the garbage collector to run even after it has been deactivated. This set-
ting overrides the allocation inactivity period and allocation threshold settings, so that if
this setting is set to false, the other settings have no effect.

Example(s):
onyx:0> gcdict begin false setactive end
onyx:0>

seconds setperiod –:
Input(s):

seconds: The minimum number of seconds since the last object allocation that the garbage
collector will wait before doing a garbage collection. 0 is treated specially to mean for-
ever.

Output(s): None.

Error(s):
stackunderflow.

38 Onyx Manual Chapter 2

typecheck.
limitcheck.

Description: Set the minimum number of seconds of object allocation inactivity that the garbage
collector will wait before doing a garbage collection. This setting is disjoint from the thresh-
old setting, and does not prevent garbage collection due to the threshold having been reached.

Example(s):
onyx:0> gcdict begin 60 setperiod end
onyx:0>

count setthreshold –:
Input(s):

count: Number of bytes of memory allocation since the last garbage collection that will
trigger a garbage collection. 0 is treated specially to mean infinity.

Output(s): None.
Error(s):

stackunderflow.
typecheck.
limitcheck.

Description: Set the number of bytes of memory allocation since the last garbage collection
that will trigger a garbage collection. This setting is disjoint from the inactivity period
setting, and does not prevent garbage collection due to the allocation inactivity period having
been exceeded.

Example(s):
onyx:0> gcdict begin 40000 setthreshold end
onyx:0>

– stats array:
Input(s): None.
Output(s):

array: An array with the format [collections count [ccount cmark] [mcount mmark] [scount
smark]], where the fields have the following meanings:
collections: Total number of collections the garbage collector has performed.
count: Current number of bytes of memory allocated.
ccount: Number of bytes of memory allocated as of the end of the most recent garbage

collection.
cmark: Number of microseconds taken by the most recent garbage collection mark

phase.
mcount: Largest number of bytes of memory ever allocated at any point in time.
mmark: Maximum number of microseconds taken by any garbage collection mark

phase.
scount: Total number of bytes of memory ever allocated.
smark: Total number of microseconds taken by all garbage collection mark phases.

Error(s): None.
Description: Get statistics about the garbage collector.
Example(s):

onyx:0> gcdict begin
onyx:0> stats 2 sprint
[28 280921 [118328 852] [904779 1007] [5707551 24205]]
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 39

– threshold count:
Input(s): None.
Output(s):

count: Number of bytes of memory allocation since the last garbage collection that will
trigger a garbage collection. 0 is treated specially to mean infinity.

Error(s): None.
Description: Get the number of bytes of memory allocation since the last garbage collection

that will trigger a garbage collection. This setting is disjoint from the inactivity period
setting, and does not prevent garbage collection due to the allocation inactivity period having
been exceeded.

Example(s):
onyx:0> gcdict begin threshold end 1 sprint
65536
onyx:0>

2.11.5 globaldict

All threads share the same globaldict, which is meant as a repository for globally shared objects.
globaldict is empty when the Onyx interpreter is initialized, and is implicitly locked.

2.11.6 onyxdict

Various portions of Onyx use the onyxdict dictionary for storage of miscellaneous objects that normally
should not be part of the namespace visible to dstack searches.

Table 2.7: onyxdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
mpath post

array

Get path searched by mrequire.

–
mpath pre

array

Get path searched by mrequire.

–
rpath post

array

Get path searched by require.

–
rpath pre

array

Get path searched by require.

– mpath post array:
Input(s): None.
Output(s):

40 Onyx Manual Chapter 2

array: An array of strings.

Error(s): None.

Description: Get an array of strings used by mrequire as prefixes for file searches. The ele-
ments of the array are tried in the order listed.

Example(s):
onyx:0> onyxdict $mpath_post get 1 sprint
[‘/usr/local/share/onyx-3.0.0/nxm’]
onyx:0>

– mpath pre array:

Input(s): None.

Output(s):
array: An array of strings.

Error(s): None.

Description: Get an array of strings used by mrequire as prefixes for file searches. The ele-
ments of the array are tried in the order listed.

Example(s):
onyx:0> onyxdict $mpath_pre get 1 sprint
[‘’ ‘.’]
onyx:0>

– rpath post array:

Input(s): None.

Output(s):
array: An array of strings.

Error(s): None.

Description: Get an array of strings used by require as prefixes for file searches. The elements
of the array are tried in the order listed.

Example(s):
onyx:0> onyxdict $rpath_post get 1 sprint
[‘/usr/local/share/onyx-3.0.0/nx’]
onyx:0>

– rpath pre array:

Input(s): None.

Output(s):
array: An array of strings.

Error(s): None.

Description: Get an array of strings used by require as prefixes for file searches. The elements
of the array are tried in the order listed.

Example(s):
onyx:0> onyxdict $rpath_pre get 1 sprint
[‘’ ‘.’]
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 41

2.11.7 outputsdict

The outputsdict dictionary is primarily used to support outputs, but its contents may be of use to an
application that wishes to extend or modify formatted printing.

There is an entry in outputsdict for each Onyx type. Each entry renders objects that correspond to its
name using optional flags stored in a dictionary. The following flags are supported for all types:

$n : Maximum length, in bytes. Default: disabled.

$w: Minimum length, in bytes. Default: disabled.

$j : Justification. Legal values:

$l : Left.
$c : Center.
$r : Right (default).

$p : Padding character. Default: ‘ ’ .

$r : Syntactic rendering recursion depth. Default: 1.

The following additional flags are supported for integers:

$b : Base, from 2 to 36. Default: 10.

$s : Sign. Legal values:

$- : Only print sign if output is negative (default).
$+: Always print sign.

The following additional flags are supported for reals:

$d : Digits of precision past decimal point. Default: 6.

$e : Exponential notation, if true. Default: false.

Table 2.8: outputsdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

array flags
arraytype

string

Create formatted string from array.

boolean flags
booleantype

string

Create formatted string from boolean.

class flags
classtype

string

Create formatted string from class.

Continued on next page...

42 Onyx Manual Chapter 2

Table 2.8: continued

Input(s)
Op/Proc/Var

Output(s)

Description

condition flags
conditiontype

string

Create formatted string from condition.

dict flags
dicttype

string

Create formatted string from dict.

file flags
filetype

string

Create formatted string from file.

fino flags
finotype

string

Create formatted string from fino.

handle flags
handletype

string

Create formatted string from handle.

instance flags
instancetype

string

Create formatted string from instance.

integer flags
integertype

string

Create formatted string from integer.

mark flags
marktype

string

Create formatted string from mark.

mutex flags
mutextype

string

Create formatted string from mutex.

name flags
nametype

string

Create formatted string from name.

null flags
nulltype

string

Create formatted string from null.

operator flags
operatortype

string

Create formatted string from operator.

pmark flags
pmarktype

string

Create formatted string from pmark.

real flags
realtype

string

Create formatted string from real.

regex flags
regextype

string

Create formatted string from regex.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 43

Table 2.8: continued

Input(s)
Op/Proc/Var

Output(s)

Description

regsub flags
regsubtype

string

Create formatted string from regsub.

stack flags
stacktype

string

Create formatted string from stack.

string flags
stringtype

string

Create formatted string from string.

thread flags
threadtype

string

Create formatted string from thread.

array flags arraytype string:
Input(s):

array: An array object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of array.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of array.
Example(s):

onyx:0> outputsdict begin
onyx:0> [1 [2 3] 4]
onyx:1> dup <$w 9 $p ‘_’ $r 0> arraytype print ‘\n’ print flush
__-array-
onyx:1> dup <$w 9 $p ‘_’ $r 1> arraytype print ‘\n’ print flush
[1 -array- 4]
onyx:1>

boolean flags booleantype string:
Input(s):

boolean: A boolean object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of boolean.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of boolean.

44 Onyx Manual Chapter 2

Example(s):
onyx:0> outputsdict begin
onyx:0> false
onyx:1> dup <$n 3> booleantype print ‘\n’ print flush
fal
onyx:1> dup <$n 7> booleantype print ‘\n’ print flush
false
onyx:1>

class flags classtype string:
Input(s):

class: A class object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of class.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of class.

Example(s):
onyx:0> outputsdict begin
onyx:0> vclass
onyx:1> <$w 30 $p ‘.’ $j $c> classtype print ‘\n’ print flush
...........-class-............
onyx:0>

condition flags conditiontype string:
Input(s):

condition: A condition object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of condition.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of condition.

Example(s):
onyx:0> outputsdict begin
onyx:0> condition
onyx:1> <$w 15 $p ‘_’ $j $c> booleantype print ‘\n’ print flush
__-condition-__
onyx:0>

dict flags dicttype string:
Input(s):

dict: A dict object.
flags: Formatting flags.

Output(s):

2.11. DICTIONARY REFERENCE Jason Evans 45

string: Formatted string representation of dict.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of dict.

Example(s):
onyx:0> outputsdict begin
onyx:0> <$foo ‘foo’> <$w 30 $p ‘.’ $j $r> dicttype print ‘\n’ print flush
..................<$foo ‘foo’>
onyx:0>

file flags filetype string:
Input(s):

file: A file object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of file.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of file.

Example(s):
onyx:0> outputsdict begin
onyx:0> stdin
onyx:1> <$w 30 $p ‘.’ $j $c> filetype print ‘\n’ print flush
............-file-............
onyx:0>

fino flags finotype string:
Input(s):

fino: A fino object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of fino.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of fino.

Example(s):
onyx:0> outputsdict begin
onyx:0> (
onyx:1> <$w 30 $p ‘.’ $j $c> finotype print ‘\n’ print flush
............-fino-............
onyx:0>

handle flags handletype string:
Input(s):

46 Onyx Manual Chapter 2

handle: A handle object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of handle.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of handle.

Example(s): The following example is a bit contrived, since there is no way to create a handle
object with a stock onyx interpreter. Therefore, imagine that an operator named taggedhan-
dle exists that creates a handle with a tag that is the name “tagged”.

onyx:0> outputsdict begin
onyx:0> taggedhandle
onyx:1> <$w 30 $p ‘.’ $j $l handletype print ‘\n’ print flush
=tagged=......................
onyx:0>

instance flags instancetype string:
Input(s):

instance: An instance object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of instance.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of instance.

Example(s):
onyx:0> outputsdict begin
onyx:0> vinstance
onyx:1> <$w 30 $p ‘.’ $j $c> instancetype print ‘\n’ print flush
..........-instance-..........
onyx:0>

integer flags integertype string:
Input(s):

integer: An integer object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of integer.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of integer.

2.11. DICTIONARY REFERENCE Jason Evans 47

Example(s):
onyx:0> outputsdict begin
onyx:0> 42 <$w 6 $p ‘_’ $j $c $s $-> integertype print ‘\n’ print flush
__42__
onyx:0> 42 <$w 6 $p ‘_’ $j $c $s $+> integertype print ‘\n’ print flush
_+42__
onyx:0> ‘0x’ print 42 <$w 6 $p ‘0’ $b 16> integertype print ‘\n’ print flush
0x00002a
onyx:0>

mark flags marktype string:
Input(s):

mark: A mark object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of mark.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of mark.

Example(s):
onyx:0> outputsdict begin
onyx:0> mark
onyx:1> <$w 30 $p ‘.’ $j $c> marktype print ‘\n’ print flush
............-mark-............
onyx:0>

mutex flags mutextype string:
Input(s):

mutex: A mutex object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of mutex.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of mutex.

Example(s):
onyx:0> outputsdict begin
onyx:0> mutex
onyx:1> <$w 30 $p ‘.’ $j $c> mutextype print ‘\n’ print flush
...........-mutex-............
onyx:0>

name flags nametype string:
Input(s):

name: A name object.
flags: Formatting flags.

48 Onyx Manual Chapter 2

Output(s):
string: Formatted string representation of name.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of name.
Example(s):

onyx:0> outputsdict begin
onyx:0> $foo
onyx:1> <$w 30 $p ‘.’ $j $c> nametype print ‘\n’ print flush
.............$foo.............
onyx:0>

null flags nulltype string:
Input(s):

null: A null object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of null.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of null.
Example(s):

onyx:0> outputsdict begin
onyx:0> null
onyx:1> <$w 30 $p ‘.’ $j $c> nulltype print ‘\n’ print flush
.............null.............
onyx:0>

operator flags operatortype string:
Input(s):

operator: An operator object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of operator.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of operator.
Example(s): The following example shows an operator printed out with two leading and trail-

ing dashes. If the interpreter cannot determine the name associated with an operator, as
will be the case for custom operators, the operator will be printed as -operator- .

onyx:0> outputsdict begin
onyx:0> ˜realtime
onyx:1> <$w 30 $p ‘.’ $j $c> operatortype print ‘\n’ print flush
.........--realtime--.........
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 49

pmark flags pmarktype string:
Input(s):

pmark: A pmark object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of pmark.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of pmark.
Example(s):

onyx:0> outputsdict begin
onyx:0> { ˜x
Error $undefined
ostack: (-pmark- $x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:3> pop pop resume
onyx:1> <$w 30 $p ‘.’ $j $c> pmarktype print ‘\n’ print flush
...........-pmark-............
onyx:0>

real flags realtype string:
Input(s):

real: A real object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of real.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of real.
Example(s):

onyx:0> outputsdict begin
onyx:0> 6.022e23 <$d 4> realtype print ‘\n’ print flush
602200000000000027262976.0000
onyx:0> 6.022e23 <$d 4 $e true> realtype print ‘\n’ print flush
6.0220e+23
onyx:0> 6.022e23 <$d 0 $e true> realtype print ‘\n’ print flush
6e+23
onyx:0> 6.022e23 <$d 4 $w 40 $p ‘0’> realtype print ‘\n’ print flush
00000000000602200000000000027262976.0000
onyx:0>

regex flags regextype string:
Input(s):

50 Onyx Manual Chapter 2

regex: A regex object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of regex.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of regex.
Example(s):

onyx:0> outputsdict begin
onyx:0> ‘’ regex
onyx:1> <$w 30 $p ‘.’ $j $c> regextype print ‘\n’ print flush
...........-regex-............
onyx:0>

regsub flags regsubtype string:
Input(s):

regsub: A regsub object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of regsub.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of regsub.
Example(s):

onyx:0> outputsdict begin
onyx:0> ‘’ ‘’ regsub
onyx:1> <$w 30 $p ‘.’ $j $c> regsubtype print ‘\n’ print flush
...........-regsub-...........
onyx:0>

stack flags stacktype string:
Input(s):

stack: A stack object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of stack.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of stack.
Example(s):

onyx:0> outputsdict begin
onyx:0> (1 (2 3) 4)
onyx:1> dup <$w 9 $p ‘_’ $r 0> stacktype print ‘\n’ print flush
__-stack-

2.11. DICTIONARY REFERENCE Jason Evans 51

onyx:1> <$w 9 $p ‘_’ $r 1> stacktype print ‘\n’ print flush
(1 -stack- 4)
onyx:0>

string flags stringtype string:
Input(s):

string: A string object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of string.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of string.

Example(s):
onyx:0> outputsdict begin
onyx:0> ‘A string’
onyx:1> <$w 30 $p ‘.’ $j $c> stringtype print ‘\n’ print flush
...........A string...........
onyx:0>

thread flags threadtype string:
Input(s):

thread: A thread object.
flags: Formatting flags.

Output(s):
string: Formatted string representation of thread.

Error(s):
stackunderflow.
typecheck.

Description: Create a formatted string representation of thread.

Example(s):
onyx:0> outputsdict begin
onyx:0> () {} thread
onyx:1> <$w 30 $p ‘.’ $j $c> threadtype print ‘\n’ print flush
...........-thread-...........
onyx:0>

2.11.8 sprintsdict

The sprintsdict dictionary is primarily used to support sprints, but its contents may be of use to an
application that wishes to extend or modify syntactical printing.

There is an entry in sprintsdict for each Onyx type. If there is a syntactically valid representation for
an object and the recursion depth is greater than 0, the corresponding operator creates a string that
syntactically represents the object. Otherwise, a string with a non-syntictical representation of the
object is created, except for booleans, integers, names, nulls, reals, and strings, for which the results

52 Onyx Manual Chapter 2

are always syntactical. If the recursion depth is greater than 0, the operators will recursively convert
any contained objects.

The implementation of sprints is useful in illustrating a useful method of doing type-dependent oper-
ations:

$sprints {
1 idup type $sprintsdict load exch get eval

} def

Table 2.9: sprintsdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

array depth
arraytype

string

Create syntactical string from array.

boolean depth
booleantype

string

Create syntactical string from boolean.

class depth
classtype

string

Create syntactical string from class.

condition depth
conditiontype

string

Create syntactical string from condition.

dict depth
dicttype

string

Create syntactical string from dict.

file depth
filetype

string

Create syntactical string from file.

fino depth
finotype

string

Create syntactical string from fino.

handle depth
handletype

string

Create syntactical string from handle.

instance depth
instancetype

string

Create syntactical string from instance.

integer depth
integertype

string

Create syntactical string from integer.

mark depth
marktype

string

Create syntactical string from mark.

mutex depth
mutextype

string

Create syntactical string from mutex.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 53

Table 2.9: continued

Input(s)
Op/Proc/Var

Output(s)

Description

name depth
nametype

string

Create syntactical string from name.

null depth
nulltype

string

Create syntactical string from null.

operator depth
operatortype

string

Create syntactical string from operator.

pmark depth
pmarktype

string

Create syntactical string from pmark.

real depth
realtype

string

Create syntactical string from real.

regex depth
regextype

string

Create syntactical string from regex.

regsub depth
regsubtype

string

Create syntactical string from regsub.

stack depth
stacktype

string

Create syntactical string from stack.

string depth
stringtype

string

Create syntactical string from string.

thread depth
threadtype

string

Create syntactical string from thread.

array depth arraytype string:
Input(s):

array: An array object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of array.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of array.
Example(s):

onyx:0> sprintsdict begin

54 Onyx Manual Chapter 2

onyx:0> [1 [2 3] 4]
onyx:1> dup 0 arraytype print ‘\n’ print flush
-array-
onyx:1> dup 1 arraytype print ‘\n’ print flush
[1 -array- 4]
onyx:1> dup 2 arraytype print ‘\n’ print flush
[1 [2 3] 4]
onyx:1>

boolean depth booleantype string:
Input(s):

boolean: A boolean object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of boolean.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of boolean.
Example(s):

onyx:0> sprintsdict begin
onyx:0> true
onyx:1> dup 0 booleantype print ‘\n’ print flush
true
onyx:1>

class depth classtype string:
Input(s):

class: A class object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of class.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of class.
Example(s):

onyx:0> sprintsdict begin
onyx:0> vclass
onyx:1> dup 0 classtype print ‘\n’ print flush
-class-
onyx:1> dup 1 classtype print ‘\n’ print flush
-class-
onyx:1>

condition depth conditiontype string:
Input(s):

condition: A condition object.
depth: Recursion depth.

2.11. DICTIONARY REFERENCE Jason Evans 55

Output(s):
string: Syntactical string representation of condition.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of condition.

Example(s):
onyx:0> sprintsdict begin
onyx:0> condition
onyx:1> dup 0 conditiontype print ‘\n’ print flush
-condition-
onyx:1> dup 1 conditiontype print ‘\n’ print flush
-condition-
onyx:1>

dict depth dicttype string:
Input(s):

dict: A dict object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of dict.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of dict.

Example(s):
onyx:0> sprintsdict begin
onyx:0> <$a ‘a’ $subdict <$b ‘b’>>
onyx:1> dup 0 dicttype print ‘\n’ print flush
-dict-
onyx:1> dup 1 dicttype print ‘\n’ print flush
<$subdict -dict- $a ‘a’>
onyx:1> dup 2 dicttype print ‘\n’ print flush
<$subdict <$b ‘b’> $a ‘a’>
onyx:1>

file depth filetype string:
Input(s):

file: A file object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of file.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of file.

56 Onyx Manual Chapter 2

Example(s):
onyx:0> sprintsdict begin
onyx:0> stdout
onyx:1> dup 0 filetype print ‘\n’ print flush
-file-
onyx:1> dup 1 filetype print ‘\n’ print flush
-file-
onyx:1>

fino depth finotype string:
Input(s):

fino: A fino object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of fino.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of fino.

Example(s):
onyx:0> sprintsdict begin
onyx:0> (
onyx:1> dup 0 finotype print ‘\n’ print flush
-fino-
onyx:1> dup 1 finotype print ‘\n’ print flush
-fino-
onyx:1>

handle depth handletype string:
Input(s):

handle: A handle object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of handle.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of handle.

Example(s): The following example is a bit contrived, since there is no way to create a handle
object with a stock onyx interpreter. Therefore, imagine that an operator named taggedhan-
dle exists that creates a handle with a tag that is the name “tagged”, and that an operator
named untaggedhandle exists that creates an untagged handle.

onyx:0> sprintsdict begin
onyx:0> taggedhandle
onyx:1> dup 0 handletype print ‘\n’ print flush
=tagged=
onyx:1> 1 handletype print ‘\n’ print flush

2.11. DICTIONARY REFERENCE Jason Evans 57

=tagged=
onyx:0> untaggedhandle
onyx:1> dup 0 handletype print ‘\n’ print flush
-handle-
onyx:1> 1 handletype print ‘\n’ print flush
-handle-
onyx:0>

instance depth instancetype string:
Input(s):

instance: An instance object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of instance.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of instance.

Example(s):
onyx:0> sprintsdict begin
onyx:0> vinstance
onyx:1> dup 0 instancetype print ‘\n’ print flush
-instance-
onyx:1> dup 1 instancetype print ‘\n’ print flush
-instance-
onyx:1>

integer depth integertype string:
Input(s):

integer: An integer object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of integer.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of integer.

Example(s):
onyx:0> sprintsdict begin
onyx:0> 42
onyx:1> dup 0 integertype print ‘\n’ print flush
42
onyx:1> dup 1 integertype print ‘\n’ print flush
42
onyx:1>

mark depth marktype string:
Input(s):

58 Onyx Manual Chapter 2

mark: A mark object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of mark.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of mark.

Example(s):
onyx:0> sprintsdict begin
onyx:0> mark
onyx:1> dup 0 marktype print ‘\n’ print flush
-mark-
onyx:1> dup 1 marktype print ‘\n’ print flush
-mark-
onyx:1>

mutex depth mutextype string:
Input(s):

mutex: A mutex object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of mutex.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of mutex.

Example(s):
onyx:0> sprintsdict begin
onyx:0> mutex
onyx:1> dup 0 mutextype print ‘\n’ print flush
-mutex-
onyx:1> dup 1 mutextype print ‘\n’ print flush
-mutex-
onyx:1>

name depth nametype string:
Input(s):

name: A name object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of name.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of name.

2.11. DICTIONARY REFERENCE Jason Evans 59

Example(s):
onyx:0> sprintsdict begin
onyx:0> $foo
onyx:1> dup 0 nametype print ‘\n’ print flush
$foo
onyx:1> dup 1 nametype print ‘\n’ print flush
$foo
onyx:1>

null depth nulltype string:
Input(s):

null: A null object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of null.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of null.
Example(s):

onyx:0> sprintsdict begin
onyx:0> null
onyx:1> dup 0 nulltype print ‘\n’ print flush
-null-
onyx:1> dup 1 nulltype print ‘\n’ print flush
-null-
onyx:1>

operator depth operatortype string:
Input(s):

operator: An operator object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of operator.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of operator.
Example(s): The following example shows an operator printed out with two leading and trail-

ing dashes. If the interpreter cannot determine the name associated with an operator, as
will be the case for custom operators, the operator will be printed as -operator- .

onyx:0> sprintsdict begin
onyx:0> ˜realtime
onyx:1> dup 0 operatortype print ‘\n’ print flush
--realtime--
onyx:1> 1 operatortype print ‘\n’ print flush
--realtime--
onyx:0>

60 Onyx Manual Chapter 2

pmark depth pmarktype string:
Input(s):

pmark: A pmark object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of pmark.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of pmark.

Example(s):
onyx:0> sprintsdict begin
onyx:0> { ˜x
Error $undefined
ostack: (-pmark- $x)
dstack: (-dict- -dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:3> pop pop resume
onyx:1> dup 0 pmarktype print ‘\n’ print flush
-pmark-
onyx:1> dup 1 pmarktype print ‘\n’ print flush
-pmark-
onyx:1>

regex depth regextype string:
Input(s):

regex: A regex object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of regex.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of regex.

Example(s):
onyx:0> sprintsdict begin
onyx:0> ‘’ regex
onyx:1> dup 0 regextype print ‘\n’ print flush
-regex-
onyx:1> dup 1 regextype print ‘\n’ print flush
-regex-
onyx:1>

regsub depth regsubtype string:
Input(s):

2.11. DICTIONARY REFERENCE Jason Evans 61

regsub: A regsub object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of regsub.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of regsub.

Example(s):
onyx:0> sprintsdict begin
onyx:0> ‘’ ‘’ regsub
onyx:1> dup 0 regsubtype print ‘\n’ print flush
-regsub-
onyx:1> dup 1 regsubtype print ‘\n’ print flush
-regsub-
onyx:1>

real depth realtype string:
Input(s):

real: A real object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of real.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of real.

Example(s):
onyx:0> sprintsdict begin
onyx:0> 42.0
onyx:1> dup 0 realtype print ‘\n’ print flush
4.200000e+01
onyx:1> dup 1 realtype print ‘\n’ print flush
4.200000e+01
onyx:1>

stack depth stacktype string:
Input(s):

stack: A stack object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of stack.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of stack.

62 Onyx Manual Chapter 2

Example(s):
onyx:0> sprintsdict begin
onyx:0> (1 (2 3) 4)
onyx:1> dup 0 stacktype print ‘\n’ print flush
-stack-
onyx:1> dup 1 stacktype print ‘\n’ print flush
(1 -stack- 4)
onyx:1> dup 2 stacktype print ‘\n’ print flush
(1 (2 3) 4)
onyx:1>

string depth stringtype string:
Input(s):

string: A string object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of string.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of string.

Example(s):
onyx:0> sprintsdict begin
onyx:0> ‘abcd’
onyx:1> dup 0 stringtype print ‘\n’ print flush
‘abcd’
onyx:1> dup 1 stringtype print ‘\n’ print flush
‘abcd’
onyx:1>

thread depth threadtype string:
Input(s):

thread: A thread object.
depth: Recursion depth.

Output(s):
string: Syntactical string representation of thread.

Error(s):
stackunderflow.
typecheck.

Description: Create a syntactical string representation of thread.

Example(s):
onyx:0> sprintsdict begin
onyx:0> thread
onyx:1> dup 0 threadtype print ‘\n’ print flush
-thread-
onyx:1> dup 1 threadtype print ‘\n’ print flush
-thread-
onyx:1>

2.11. DICTIONARY REFERENCE Jason Evans 63

2.11.9 systemdict

The systemdict dictionary contains most of the operators that are of general use. Although there are
no mechanisms that prevent modification of systemdict, programs should not normally need to modify
systemdict, since globaldict provides a place for storing globally shared objects. All threads share the
same systemdict, which is implicitly locked.

Table 2.10 summarizes the contents of systemdict, and is broken into the following categories:

• Operand stack operators

• Execution, control, and execution stack operators

• Stack operators

• Number (integer, real) and math operators

• String operators

• Name operators

• Array operators

• Dictionary and dictionary stack operators

• Class, instance, and handle operators

• File and filesystem operators

• Socket and networking operators

• Logical and bitwise operators

• Type, conversion, and attribute operators

• Threading and synchronization operators

• Regular expression operators

• Miscellaneous operators

Table 2.10: systemdict summary

Input(s)
Op/Proc/Var

Output(s)

Description

Operand stack operators
–

mark
mark

Create a mark.

,,,obj
aup

obj ,,,

Rotate stack up one position.

obj ,,,
adn

,,,obj

Rotate stack down one position.

Continued on next page...

64 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
count

count

Get the number of objects on ostack.

mark . . .
counttomark

mark . . . count

Get the depth of the topmost mark on ostack.

obj
dup

obj dup

Duplicate an object.

obj ,,,
bdup

obj ,,,dup

Duplicate bottom object.

objects count
ndup

objects objects

Duplicate objects.

obj . . . index
idup

obj . . . dup

Duplicate object on ostack at index.

. . . obj ,,,index
ibdup

. . . obj ,,,dup

Duplicate object on ostack at index from bottom.

a b
tuck

b a b

Tuck duplicate of top object under second object.

a b
under

a a b

Duplicate second object.

a b
over

a b a

Duplicate second object.

a b
exch

b a

Exchange top two objects.

a b c
up

c a b

Roll top three objects up one.

a . . . b count
nup

b a . . .

Roll count objects up one.

a b c
dn

b c a

Roll top three objects down one.

a . . . b count
ndn

. . . b a

Roll count objects down one.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 65

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

. . . amount
rot

. . .

Rotate stack up by amount.

region count amount
roll

rolled

Roll count objects up by amount.

obj
pop

–

Remove object.

obj ,,,
bpop

,,,

Remove bottom object.

objects count
npop

–

Remove count objects.

objects . . . count
nbpop

. . .

Remove count objects from bottom.

obj . . . index
ipop

. . .

Remove object at index.

. . . obj ,,,index
ibpop

. . . ,,,

Remove object at index from bottom.

a b
nip

b

Remove second object.

objects
clear

–

Pop all objects off ostack.

mark . . .
cleartomark

–

Remove objects from ostack through topmost mark.

–
ostack

stack

Get a current ostack snapshot.

thread
threadostack

stack

Get a reference to thread’s ostack.

Execution, control, and execution stack operators
obj

eval
–

Evaluate object.

boolean obj
if

–

Conditionally evaluate object.

Continued on next page...

66 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

boolean obj
unless

–

Conditionally evaluate object.

boolean a b
ifelse

–

Conditionally evaluate one of two objects.

init inc limit proc
for

–

Iterate with a control variable.

count proc
repeat

–

Iterate a set number of times.

cond proc
while

–

Loop while cond is true.

proc cond
until

–

Loop until cond is false.

proc
loop

–

Loop indefinitely.

array proc
foreach

–

Iterate on array elements.

dict proc
foreach

–

Iterate on dictionary key/value pairs.

stack proc
foreach

–

Iterate on stack elements.

string proc
foreach

–

Iterate on string elements.

–
continue

–

Skip to next iteration of innermost looping context.

–
exit

–

Terminate innermost looping context.

file/string
token

false

Unsuccessfully scan for a token.

file/string
token

rem obj true

Successfully scan for a token

obj
start

–

Evaluate object.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 67

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
quit

–

Unwind to innermost start context.

obj
stopped

boolean

Evaluate object.

–
stop

–

Unwind to innermost stopped or start context.

obj
trapped

false

Snapshot stacks and evaluate object.

obj
trapped

arg true

Snapshot stacks, evaluate object, catch escape, restore snap-
shot.

arg
escape

–

Unwind to innermost trapped or start context.

name
throw

obj

Throw an error.

–
maxestack

count

Get maximum allowable estack depth.

–
gmaxestack

count

Get default maximum allowable estack depth.

count
setmaxestack

–

Set maximum allowable estack depth.

count
setgmaxestack

–

Set default maximum allowable estack depth.

–
tailopt

boolean

Get whether tail optimization is in effect.

–
gtailopt

boolean

Get default tail optimization setting.

boolean
settailopt

–

Set whether to use tail optimization.

boolean
setgtailopt

–

Set default tail optimization setting.

–
estack

stack

Get a current estack snapshot.

Continued on next page...

68 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
estack

stack

Get a current estack snapshot.

thread
threadestack

stack

Get a reference to thread’s estack.

–
countestack

count

Get current estack depth.

–
istack

stack

Get a current istack snapshot.

thread
threadistack

stack

Get a reference to thread’s istack.

status
die

–

Exit program.

path symbol
modload

–

Load a module.

file symbol
mrequire

–

Search for and load a module.

file
require

–

Search for and evaluate a source file.

prog
path

path/null

Search PATH for prog.

args
exec

–

Overlay a new program and execute it.

args
forkexec

pid

Fork and exec a new process.

args redirects
forkexec

pid

Fork and exec a new process.

pid
waitpid

status

Wait for a program to terminate.

args
system

status

Execute a program.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 69

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

pid sig
kill

–

Send a signal to a process.

$SIG GETMASK oset
sigmask

oset

Get signal mask.

how set
sigmask

–

Modify signal mask.

how set oset
sigmask

oset

Modify signal mask.

set
sigpending

set

Get pending signals.

set
sigsuspend

–

Suspend until interrupted by a signal.

set
sigwait

sig

Wait for a signal.

–
pid

pid

Get process ID.

–
ppid

pid

Get parent’s process ID.

–
uid

uid

Get the process’s user ID.

uid
setuid

boolean

Set the process’s user ID.

–
euid

uid

Get the process’s effective user ID.

uid
seteuid

boolean

Set the process’s effective user ID.

–
gid

gid

Get the process’s group ID.

gid
setgid

boolean

Set the process’s group ID.

Continued on next page...

70 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
egid

gid

Get the process’s effective group ID.

gid
setegid

boolean

Set the process’s effective group ID.

pid
getpgid

pgid

Get process group ID.

pid pgid
setpgid

–

Set process group ID.

pid
getsid

sid

Get session ID.

–
setsid

sid

Create new session.

–
realtime

nsecs

Get the number of nanoseconds since the epoch.

nsecs
localtime

dict

Get a dict with local time definitions.

nanoseconds
nsleep

–

Nanosleep.

Stack operators
–

(
fino

Begin a stack declaration.

fino objects
)

stack

Create a stack.

–
stack

stack

Create a stack.

stack obj
spush

–

Push object onto stack.

stack obj
sbpush

–

Push object onto bottom of stack.

stack
scount

count

Get the number of objects on a stack.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 71

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

stack
scounttomark

count

Get the depth of the topmost mark on stack.

stack
sdup

–

Duplicate an object.

stack
sbdup

–

Duplicate bottom object.

stack count
sndup

–

Duplicate objects on stack.

stack index
sidup

–

Duplicate object on stack at index.

stack index
sibdup

–

Duplicate object on stack at index from bottom.

stack
stuck

–

Tuck duplicate of top object on stack under next object on stack.

stack
sunder

–

Duplicate second object on stack.

stack
sover

–

Duplicate second object on stack.

stack
sexch

–

Exchange top objects on stack.

stack
sup

–

Roll top three objects on stack up one.

stack count
snup

–

Roll count objects on stack up one.

stack
saup

–

Roll objects on stack up one.

stack
sdn

–

Roll top three objects on stack down one.

stack count
sndn

–

Roll count objects on stack down one.

stack
sadn

–

Roll objects on stack down one.

Continued on next page...

72 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

stack amount
srot

–

Rotate objects on stack up by amount.

stack count amount
sroll

–

Roll objects on stack.

stack
spop

obj

Pop object off stack.

stack
sbpop

obj

Pop object off bottom of stack.

stack count
snpop

array

Pop count objects off stack.

stack count
snbpop

array

Pop count objects off bottom of stack.

stack index
sipop

obj

Remove object on stack at index.

stack index
sibpop

obj

Remove object on stack at index from bottom.

stack
snip

obj

Remove second object on stack.

stack
sclear

–

Remove all objects on stack.

stack
scleartomark

–

Remove objects from stack down through topmost mark.

(a) (b)
cat

(a b)

Catenate two stacks.

stacks count
ncat

stack

Catenate stacks.

srcstack dststack
copy

dststack

Copy stack contents.

Number (integer, real) and math operators
a b

add
r

Add a and b.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 73

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

a
inc

r

Add 1 to a.

a b
sub

r

Subtract b from a.

a
dec

r

Subtract 1 from a.

a b
mul

r

Multiply a and b.

a b
div

r

Divide a by b.

a b
idiv

r

Divide a by b (integers).

a b
mod

r

Mod a by b (integers and reals).

a b
pow

r

Raise a to the power of b.

x
exp

r

e (base of natural logarithm) raised to x.

a
sqrt

r

Square root.

a
ln

r

Natural log.

a
log

r

Base 10 log.

a
abs

r

Get the absolute value of a.

a
neg

r

Get the negative of a.

a
ceiling

r

Integer ceiling of a real.

a
floor

r

Integer floor of a real.

Continued on next page...

74 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

a
round

r

Real rounded to integer.

a
trunc

r

Integer from real with truncated fractional.

a
sin

r

Sine in radians.

a
sinh

r

Hyperbolic sine.

a
asin

r

Arcsine.

a
asinh

r

Hyperbolic arcsine.

a
cos

r

Cosine in radians.

a
cosh

r

Hyperbolic cosine.

a
acos

r

Arc cosine.

a
acosh

r

Hyperbolic arc cosine.

x
tan

r

Tangent of x in radians.

x
tanh

r

Hyperbolic tangent.

x
atan

r

Arctangent.

y x
atan2

r

Arctangent in radians of y
x .

x
atanh

r

Hyperbolic arctangent.

seed
srand

–

Seed pseudo-random number generator.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 75

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
rand

integer

Get a pseudo-random number.

String operators
length

string
string

Create a string.

string
length

count

Get string length.

string index
get

integer

Get string element.

string index integer
put

–

Set string element.

string index length
getinterval

substring

Get a string interval.

string index substring
putinterval

–

Copy substring into string.

‘a’ ‘b’
cat

‘ab’

Catenate two strings.

strings count
ncat

string

Catenate strings.

srcstring dststring
copy

dstsubstring

Copy string.

obj depth
sprints

string

Create syntactical string from object.

obj flags
outputs

string

Create formatted string from object.

Name operators
name

length
count

Get name length.

Array operators
–

[
mark

Begin an array declaration.

Continued on next page...

76 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

mark objects
]

array

Construct an array.

length
array

array

Create an array.

array
length

count

Get array length.

array index
get

obj

Get array element.

array index obj
put

–

Set array element.

array index length
getinterval

subarray

Get an array interval.

array index subarray
putinterval

–

Copy subarray into array.

[a] [b]
cat

[a b]

Catenate two arrays.

arrays count
ncat

array

Catenate arrays.

srcarray dstarray
copy

dstsubarray

Copy array.

–
argv

args

Get program arguments.

Dictionary and dictionary stack operators
–

<
mark

Begin a dictionary declaration.

mark kvpairs
>

dict

Construct a dictionary.

–
dict

dict

Create a dictionary.

dict
begin

–

Pust dict onto dstack.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 77

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
end

–

Pop a dictionary off dstack.

key val
def

–

Define key/value pair.

dict key
undef

–

Undefine key in dict.

key
load

val

Look up a key’s value.

dict key
known

boolean

Check for key in dict.

key
where

false

Unsuccessfully get topmost dstack dictionary that defines key.

key
where

dict true

Successfully get topmost dstack dictionary that defines key.

dict
length

count

Get number of dictionary key/value pairs.

dict key
get

value

Get dict value associate with key.

dict key value
put

–

Set dict key/value pair.

srcdict dstdict
copy

dstdict

Copy dictionary contents.

–
currentdict

dict

Get topmost dstack dictionary.

–
dstack

stack

Get dstack snapshot.

thread
threaddstack

stack

Get a reference to thread’s dstack.

–
countdstack

count

Get number of stacks on dstack.

–
gcdict

dict

Get gcdict.

Continued on next page...

78 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
userdict

dict

Get userdict.

–
globaldict

dict

Get globaldict.

–
systemdict

dict

Get systemdict.

–
onyxdict

dict

Get onyxdict.

–
sprintsdict

dict

Get sprintsdict.

–
outputsdict

dict

Get outputsdict.

–
envdict

dict

Get envdict.

–
threadsdict

dict

Get threadsdict.

key val
setenv

–

Set environment variable.

key
unsetenv

–

Unset environment variable.

Class, instance, and handle operators
–

class
class

Create class.

class name
implementor

class/null

Get class that implements name.

class name
implements

boolean

Does class implement name?

class name
method

method

Get class method by name.

class
classname

class/null

Get class’s name.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 79

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

class name/null
setclassname

–

Set class’s name.

class
super

super/null

Get class’s superclass.

class super/null
setsuper

–

Set class’s superclass.

class
methods

dict/null

Get methods dict for class.

class dict/null
setmethods

–

Set methods dict for class.

class/instance
data

dict/null

Get data for class/instance.

class/instance dict/null
setdata

–

Set data for class/instance.

–
instance

instance

Create an instance.

instance
isa

class/null

Get class for instance.

instance class/null
setisa

–

Set class for instance.

instance class
kind

boolean

Is class in instance’s inheritance hierarchy?

name super data methods
cdef

–

Create and define a class.

–
this

method/instance

Get topmost object on cstack.

–
cstack

stack

Get cstack snapshot.

thread
threadcstack

stack

Get a reference to thread’s cstack.

handle
handletag

tag

Get handle tag.

Continued on next page...

80 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
vclass

class

Get vclass.

File and filesystem operators
filename flags

open
file

Open a file.

filename flags mode
open

file

Open a file, creation mode specified.

–
pipe

rfile wfile

Create a pipe.

file
close

–

Close file.

file
read

integer boolean

Read from file.

file string
read

substring boolean

Read from file.

file
readline

string boolean

Read a line from file.

<file dict . . . > timeout
poll

[file . . .]

Wait for file(s) to change status.

file
bytesavailable

count

Get number of buffered readable bytes.

file
iobuf

count

Get size of I/O buffer.

file count
setiobuf

–

Set size of I/O buffer.

file
nonblocking

boolean

Get non-blocking mode.

file boolean
setnonblocking

–

Set non-blocking mode.

file integer/string
write

false

Write to file.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 81

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file integer/string
write

integer/substring true

Write to file.

string
print

–

Print string to stdout.

obj depth
sprint

–

Syntactically print object to stdout.

obj flags
output

–

Formatted print to stdout.

–
pstack

–

Syntactically print ostack elements.

file
flushfile

–

Flush file buffer.

–
flush

–

Flush stdout buffer.

file length
truncate

–

Truncate file.

file offset
seek

–

Move file position pointer.

file
tell

offset

Get file position pointer offset.

path
mkdir

–

Create a directory.

path mode
mkdir

–

Create a directory, mode specified.

path
mkfifo

–

Create a named pipe.

path mode
mkfifo

–

Create a named pipe, mode specified.

old new
rename

–

Rename a file or directory.

file/filename mode
chmod

–

Change file permissions.

Continued on next page...

82 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

file/filename uid gid
chown

–

Change file owner and group.

filename linkname
link

–

Create a hard link.

filename linkname
symlink

–

Create a symbolic link.

filename
unlink

–

Unlink a file.

path
rmdir

–

Remove an empty directory.

file/filename flag
test

boolean

Test a file.

file/filename
status

dict

Get file information.

linkname
readlink

string

Get symbolic link data.

path proc
dirforeach

–

Iterate on directory entries.

–
pwd

path

Get present working directory.

path
cd

–

Change present working directory.

path
chroot

–

Change root directory.

–
stdin

file

Get thread’s stdin.

–
stdout

file

Get thread’s stdout.

–
stderr

file

Get thread’s stderr.

–
gstdin

file

Get global stdin.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 83

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

–
gstdout

file

Get global stdout.

–
gstderr

file

Get global stderr.

file
setstdin

–

Set thread’s stdin.

file
setstdout

–

Set thread’s stdout.

file
setstderr

–

Set thread’s stderr.

file
setgstdin

–

Set global stdin.

file
setgstdout

–

Set global stdout.

file
setgstderr

–

Set global stderr.

Socket and networking operators
family type proto

socket
sock

Create a socket.

family type
socket

sock

Create a socket.

sock addr port
bindsocket

–

Bind socket to address/port.

sock addr
bindsocket

–

Bind socket to address.

sock path
bindsocket

–

Bind socket to port.

sock backlog
listen

–

Listen for socket connections.

sock
listen

–

Listen for socket connections.

Continued on next page...

84 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

sock
accept

sock

Accept a socket connection.

sock addr port
connect

–

Connect a socket.

sock path
connect

–

Connect a socket.

service
serviceport

port

Get port number for service name.

sock
sockname

dict

Get socket information.

sock level optname
sockopt

optval

Get socket option.

sock optname
sockopt

optval

Get socket option.

sock level optname optval
setsockopt

–

Set socket option.

sock optname optval
setsockopt

–

Set socket option.

sock
peername

dict

Get peer socket information.

sock mesg flags
send

nsend

Send a message.

sock mesg
send

count

Send a message.

sock string flags
recv

substring

Receive a message.

sock string
recv

substring

Receive a message.

family type proto
socketpair

sock sock

Create a socket pair.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 85

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

family type
socketpair

sock sock

Create a socket pair.

Logical and bitwise operators
a b

lt
boolean

a less than b? (integer/real, string)

a b
le

boolean

a less than or equal to b? (integer/real, string)

a b
eq

boolean

a equal to b? (any type)

a b
ne

boolean

a not equal to b? (any type)

a b
ge

boolean

a greater than or equal to b? (integer/real, string)

a b
gt

boolean

a greater than b? (integer/real, string)

a b
and

r

Logical/bitwise and. (boolean/integer)

a b
or

r

Logical/bitwise or. (boolean/integer)

a b
xor

r

Logical/bitwise exclusive or. (boolean/integer)

a
not

r

Logical/bitwise not. (boolean/integer)

a shift
shift

integer

Bitwise shift.

–
false

false

Return true.

–
true

true

Return false.

Type, conversion, and attribute operators
obj

type
name

Get object type.

Continued on next page...

86 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

obj
lcheck

boolean

Literal?

obj
xcheck

boolean

Executable?

obj
echeck

boolean

Evaluable?

obj
xecheck

boolean

Executable or evaluable?

obj
ccheck

boolean

Callable?

obj
icheck

boolean

Invokable?

obj
fcheck

boolean

Fetchable?

obj
cvl

obj

Set literal attribute.

obj
cve

obj

Set evaluable attribute.

obj
cvx

obj

Set executable attribute.

obj
cvc

obj

Set callable attribute.

obj
cvi

obj

Set invokable attribute.

obj
cvf

obj

Set fetchable attribute.

string
cvn

name

Convert string to name.

obj
cvs

string

Convert object to string.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 87

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

integer radix
cvrs

string

Convert integer to radix string.

real precision
cvds

string

Convert real to decimal string.

real precision
cves

string

Convert real to exponential string.

Threading and synchronization operators
stack entry

thread
thread

Create and run a thread.

–
self

thread

Get a thread object for the running thread.

thread
join

–

Wait for thread to exit.

thread
detach

–

Detach thread.

–
yield

–

Voluntarily yield the processor.

–
mutex

mutex

Create a mutex.

mutex proc
monitor

–

Evaluate an object under the protection of a mutex.

mutex
lock

–

Acquire mutex.

mutex
trylock

boolean

Try to acquire mutex.

mutex
unlock

–

Release mutex.

–
condition

condition

Create a condition variable.

condition mutex
wait

–

Wait on condition.

Continued on next page...

88 Onyx Manual Chapter 2

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

condition mutex timeout
timedwait

boolean

Wait on condition with timeout.

condition
signal

–

Signal a condition waiter.

condition
broadcast

–

Signal all condition waiters.

–
currentlocking

boolean

Get implicit locking mode.

boolean
setlocking

–

Set implicit locking mode.

obj
ilocked

boolean

Implicitly locked?

Regular expression operators
string flags

regex
regex

Create a regex object.

string
regex

regex

Create a regex object.

input pattern flags
match

boolean

Find pattern matches in input string.

input pattern
match

boolean

Find pattern matches in input string.

input regex
match

boolean

Find regex matches in input string.

input pattern flags limit
split

array

Split input into an array of substrings.

input pattern flags
split

array

Split input into an array of substrings.

input pattern limit
split

array

Split input into an array of substrings.

input pattern
split

array

Split input into an array of substrings.

Continued on next page...

2.11. DICTIONARY REFERENCE Jason Evans 89

Table 2.10: continued

Input(s)
Op/Proc/Var

Output(s)

Description

input regex limit
split

array

Split input into an array of substrings.

input regex
split

array

Split input into an array of substrings.

integer
submatch

substring

Get capturing subpattern match.

input submatch
offset

offset

Get submatch offset from beginning of input.

pattern template flags
regsub

regsub

Create a regsub object.

pattern template
regsub

regsub

Create a regsub object.

input pattern template flags
subst

output count

Substitute template for pattern matches.

input pattern template
subst

output count

Substitute template for pattern matches.

input regsub
subst

output count

Substitute.

Miscellaneous operators
–

product
string

Get the product string.

–
version

string

Get the version string.

proc
bind

proc

Bind names to operators.

–
null

null

Create a null object.

– (fino:
Input(s): None.
Output(s):

fino: A fino object.

90 Onyx Manual Chapter 2

Error(s): None.

Description: Push a fino object onto ostack to denote the bottom of a stack that has not yet
been constructed.

Example(s):
onyx:0> (
onyx:1> pstack
-fino-
onyx:1>

fino objects) stack:
Input(s):

fino: A fino object, usually created by the) operator.
objects: 0 or more objects.

Output(s):
stack: A stack object.

Error(s):
unmatchedfino.

Description: Create a stack object and move all objects from ostack down to the first fino object
to the new stack.

Example(s):
onyx:0> ()
onyx:1> 1 sprint
()
onyx:0> (1 2
onyx:3> pstack
2
1
-fino-
onyx:3>)
onyx:1> 1 sprint
(1 2)
onyx:0>

– < mark:
Input(s): None.

Output(s):
mark: A mark object.

Error(s): None.

Description: Begin a dictionary declaration. See the ¿ operator documentation for more details
on dictionary construction.

Example(s):
onyx:0> < 1 sprint
-mark-
onyx:0>

mark kvpairs > dict:
Input(s):

mark: A mark object.

2.11. DICTIONARY REFERENCE Jason Evans 91

kvpairs: Zero or more pairs of non-mark objects, where the first is a key and the second is
an associated value.

Output(s):
dict: A dictionary that contains kvpairs.

Error(s):
rangecheck.
unmatchedmark.

Description: Construct a dictionary that contains kvpairs.

Example(s):
onyx:0> <
onyx:1> $foo ‘foo’
onyx:3> $bar ‘bar’
onyx:5> $biz ‘biz’
onyx:7> $pop ˜pop
onyx:9> >
onyx:1> pstack
<$pop --pop-- $biz ‘biz’ $bar ‘bar’ $foo ‘foo’>
onyx:1>

– [mark:
Input(s): None.

Output(s):
mark: A mark object.

Error(s): None.

Description: Begin an array declaration. See the] operator documentation for more details on
array construction.

Example(s):
onyx:0> [1 sprint
-mark-
onyx:0>

mark objects] array:
Input(s):

mark: A mark object.
objects: Zero or more non-mark objects.

Output(s):
array: An array that contains objects.

Error(s):
unmatchedmark.

Description: Construct an array that contains all objects on ostack down to the first mark.

Example(s):
onyx:0> mark 1 2 3] 1 sprint
[1 2 3]

a abs r:
Input(s):

a: An integer or real.

92 Onyx Manual Chapter 2

Output(s):
r: Absolute value of a.

Error(s):
stackunderflow.
typecheck.

Description: Return the absolute value of a.
Example(s):

onyx:0> 5 abs 1 sprint
5
onyx:0> -5 abs 1 sprint
5
onyx:0> 3.14 abs 1 sprint
3.140000e+00
onyx:0> -3.14 abs 1 sprint
3.140000e+00
onyx:0>

sock accept sock:
Input(s):

sock: A listening socket.
Output(s):

sock: A socket that is connected to a client.
Error(s):

argcheck.
invalidfileaccess.
ioerror.
neterror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Accept a connection and create a socket that is connected to a client.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup listen
onyx:1> dup accept
onyx:2> dup peername 1 sprint
<$family $AF_INET $address 2130706433 $port 33742>
onyx:2>

a acos r:
Input(s):

a: An integer or real.
Output(s):

r: Arc cosine of a in radians.
Error(s):

rangecheck.

2.11. DICTIONARY REFERENCE Jason Evans 93

stackunderflow.
typecheck.

Description: Return the arc cosine of a in radians.
Example(s):

onyx:0> 1 acos 1 sprint
0.000000e+00
onyx:0>

a acosh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic arc cosine of a.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the hyperbolic arc cosine of a.
Example(s):

onyx:0> 10 acosh 1 sprint
2.993223e+00
onyx:0>

a b add r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The sum of a and b.

Error(s):
stackunderflow.
typecheck.

Description: Return the sum of a and b.
Example(s):

onyx:0> 2 2 add 1 sprint
4
onyx:0> -1 3 add 1 sprint
2
onyx:0> 2.0 3.1 add 1 sprint
5.100000e+00
onyx:0> -1.5 +3e1 add 1 sprint
2.850000e+01
onyx:0>

obj ,,, adn ,,,obj:
Input(s):

obj: An object.
,,,: Zero or more objects.

94 Onyx Manual Chapter 2

Output(s):
,,,: Zero or more objects.
obj: An object.

Error(s):
stackunderflow.

Description: Rotate stack down one position.
Example(s):

onyx:0> 1 2 3 adn pstack
1
3
2
onyx:3>

a b and r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise and, otherwise their logical and.

Error(s):
stackunderflow.
typecheck.

Description: Return the bitwise and of two integers, or the logical and of two booleans.
Example(s):

onyx:0> false true and 1 sprint
false
onyx:0> true true and 1 sprint
true
onyx:0> 5 3 and 1 sprint
1
onyx:0>

– argv args:
Input(s): None.
Output(s):

args: An array of strings. The first string in args is the path of this program, and any
additional array elements are the arguments that were passed during invocation.

Error(s): None.
Description: Get the argument vector that was used to invoke this program.
Example(s):

onyx:0> argv 1 sprint
[‘/usr/local/bin/onyx’]
onyx:0>

length array array:
Input(s):

length: Non-negative number of array elements.
Output(s):

2.11. DICTIONARY REFERENCE Jason Evans 95

array: An array of length elements.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Create an array of length elements. The elements are initialized to null objects.
Example(s):

onyx:0> 3 array 1 sprint
[null null null]
onyx:0> 0 array 1 sprint
[]
onyx:0>

a asin r:
Input(s):

a: An integer or real.
Output(s):

r: Arc sine of a in radians.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the arc sine of a in radians.
Example(s):

onyx:0> -1 asin 1 sprint
-1.570796e+00
onyx:0>

a asinh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic arc sine of a.
Error(s):

stackunderflow.
typecheck.

Description: Return the hyperbolic arc sine of a.
Example(s):

onyx:0> 10 asinh 1 sprint
2.998223e+00
onyx:0>

x atan r:
Input(s):

x: An integer or real.
Output(s):

r: Arctangent of x in radians.

96 Onyx Manual Chapter 2

Error(s):
stackunderflow.
typecheck.

Description: Return the arctangent of x in radians.

Example(s):
onyx:0> 1 atan 1 sprint
7.853982e-01
onyx:0>

y x atan2 r:
Input(s):

y: An integer or real.
x: An integer or real.

Output(s):
r: Arctangent of y

x in radians.

Error(s):
stackunderflow.
typecheck.

Description: Return the arctangent of y
x in radians.

Example(s):
onyx:0> 1 1 atan2 1 sprint
7.853982e-01
onyx:0> 0 1 atan2 1 sprint
0.000000e+00
onyx:0> -1.0 0 atan2 1 sprint
-1.570796e+00
onyx:0>

x atanh r:
Input(s):

x: An integer or real.

Output(s):
r: Hyperbolic arctangent of x.

Error(s):
stackunderflow.
typecheck.
rangecheck.

Description: Return the hyperbolic arctangent of x.

Example(s):
onyx:0> 0.5 atanh 1 sprint
5.493061e-01
onyx:0>

,,,obj aup obj ,,,:
Input(s):

,,,: Zero or more objects.
obj: An object.

2.11. DICTIONARY REFERENCE Jason Evans 97

Output(s):
obj: An object.
,,,: Zero or more objects.

Error(s):
stackunderflow.

Description: Rotate stack up one position.
Example(s):

onyx:0> 1 2 3 aup pstack
2
1
3
onyx:3>

obj ,,, bdup obj ,,,dup:
Input(s):

obj: An object.
,,,: Zero or more objects.

Output(s):
obj: An object.
,,,: Zero or more objects.
dup: A duplicate of obj.

Error(s):
stackunderflow.

Description: Create a duplicate of the bottom object on ostack and put it on top of ostack.
Example(s):

onyx:0> 1 2 3
onyx:3> bdup pstack
1
3
2
1
onyx:4>

dict begin –:
Input(s):

dict: A dictionary.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Push dict onto dstack, thereby adding its keys to the namespace.
Example(s):

onyx:0> <$foo ‘foo’> begin
onyx:0> foo 1 sprint
‘foo’
onyx:0>

proc bind proc:

98 Onyx Manual Chapter 2

Input(s):
proc: A procedure (array). proc will be bound even if it is literal, but contained literal

arrays will not be recursively bound.

Output(s):
proc: The same procedure as was passed in.

Error(s):
stackunderflow.
typecheck.

Description: Recursively bind unbound procedures. Executable names within a procedure are
replaced with their values if defined in dstack, in any of the following cases:

• The value is a literal object.
• The value is an executable or evaluable operator.
• The value is an executable or evaluable handle.
• The value is an executable or evaluable array.

Binding has a large positive impact on performance, since name lookups are thereafter
avoided. However, binding is not done by default because there are situations where it is
useful to leave procedures unbound:

• Debugging is easier, since the names associated with objects are still available.
• Behavior is more dynamic. It is possible to replace a definition on dstack and have it

immediately take effect on unbound procedures. Note however that care must be taken
when relying on this, since binding is recursive, and a lack of complete understanding
of what procedures reference each other can result in undesired bound procedures. For
this reason, it is generally best to make dynamic behavior explicit by using evaluable
names.

• There are situations where a program needs to do some setup before binding a procedure,
and providing manual control over when binding happens allows more sophisticated use
of binding.

Example(s):
onyx:0> {pop sprint {pop sprint}}
onyx:1> dup 2 sprint
{pop sprint {pop sprint}}
onyx:1> bind
onyx:1> dup 2 sprint
{--pop-- _{sprints --print-- ‘\n’ --print-- --flush--}_ {--pop-- -array-}}
onyx:1>

sock addr port bindsocket –:

sock addr bindsocket –:

sock path bindsocket –:
Input(s):

sock: A socket.
addr: An IPv4 address or DNS hostname.
port: An IPv4 port number. If not specified, the OS chooses a port number.
path: A filesystem path for a Unix-domain socket.

Output(s): None.

Error(s):

2.11. DICTIONARY REFERENCE Jason Evans 99

argcheck.
invalidfileaccess.
neterror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Bind an address/port to an IPv4 socket, or a filesystem path to a Unix-domain
socket.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_INET $address 2130706433 $port 7777>
onyx:1> close
onyx:0> $AF_LOCAL $SOCK_STREAM socket
onyx:1> dup ‘/tmp/socket’ bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_LOCAL $path ‘/tmp/socket’>
onyx:1>

obj ,,, bpop ,,,:
Input(s):

,,,: Zero or more objects.
obj: An object.

Output(s):
,,,: Zero or more objects.

Error(s):
stackunderflow.

Description: Remove the bottom object from ostack and discard it.
Example(s):

onyx:0> 1 2
onyx:2> bpop pstack
2
onyx:1>

condition broadcast –:
Input(s):

condition: A condition object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Signal all threads that are waiting on condition. If there are no waiters, this
operator has no effect.

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch broadcast unlock}

100 Onyx Manual Chapter 2

onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

file bytesavailable count:
Input(s):

file: A file object.
Output(s):

count: Number of buffered readable bytes.
Error(s):

stackunderflow.
typecheck.

Description: Get the number of buffered readable bytes that can be read without the possibility
of blocking.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup ‘Goodbye\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1> dup bytesavailable 1 sprint
8
onyx:1>

[a] [b] cat [a b]:

(a) (b) cat (a b):

‘a’ ‘b’ cat ‘ab’:
Input(s):

a: An array, stack, or string.
b: An array, stack, or string.

Output(s):
ab: The catenation of a and b.

Error(s):
stackunderflow.
typecheck.

Description: Catenate two arrays, strings, or stacks.
Example(s):

onyx:0> [‘a’] [‘b’] cat
onyx:1> 1 sprint
[‘a’ ‘b’]
onyx:0> (‘a’) (‘b’) cat
onyx:1> 1 sprint
(‘a’ ‘b’)
onyx:0> ‘a’ ‘b’ cat
onyx:1> 1 sprint
‘ab’
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 101

obj ccheck boolean:
Input(s):

obj: An object.

Output(s):
boolean: True if obj has the callable attribute, false otherwise.

Error(s):
stackunderflow.

Description: Check obj for callable attribute.

Example(s):
onyx:0> $name ccheck 1 sprint
false
onyx:0> $name cvc ccheck 1 sprint
true
onyx:0>

path cd –:
Input(s):

path: A string that represents a filesystem path.

Output(s): None.

Error(s):
invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: Change the present working directory to path.

Example(s):
onyx:0> pwd 1 sprint
‘/usr/local’
onyx:0> ‘bin’ cd
onyx:0> pwd 1 sprint
‘/usr/local/bin’
onyx:0>

name super data methods cdef –:
Input(s):

name: An object (usually a name) to set the class’s name to and associate the class with.
super: A superclass, or null.
data: A dictionary of data definitions, or null.
methods: A dictionary of method definitions, or null.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Create a new class with name as its name, super as its superclass, data as its
data definitions, and methods as its method definitions. Define name in currentdict to be
the class.

102 Onyx Manual Chapter 2

Example(s):
onyx:0> $fooclass vclass <$foodata ‘foo’> <$foomethod {‘hi’ 1 sprint}> cdef
onyx:0> fooclass 1 sprint
-class-
onyx:0> fooclass:foomethod
‘hi’
onyx:0>

a ceiling r:
Input(s):

a: An integer or real.

Output(s):
r: Integer ceiling of a.

Error(s):
stackunderflow.
typecheck.

Description: Return the integer ceiling of a.

Example(s):
onyx:0> -1.51 ceiling 1 sprint
-1
onyx:0> -1.49 ceiling 1 sprint
-1
onyx:0> 0 ceiling 1 sprint
0
onyx:0> 1.49 ceiling 1 sprint
2
onyx:0> 1.51 ceiling 1 sprint
2
onyx:0>

file/filename mode chmod –:
Input(s):

file: A file object.
filename: A string that represents a filename.
mode: An integer that represents a Unix file mode.

Output(s): None.

Error(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description:
Example(s):

onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ status $mode get 1 sprint
16877

2.11. DICTIONARY REFERENCE Jason Evans 103

onyx:0> ‘/tmp/tdir’ ‘r’ open
onyx:1> dup 8@555 chmod
onyx:1> ‘/tmp/tdir’ status $mode get 1 sprint
16749
onyx:1>

file/filename uid gid chown –:

Input(s):
file: A file object.
filename: A string that represents a filename.
uid: An integer that represents a user ID.
gid: An integer that represents a group ID.

Output(s): None.

Error(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Change the owner and group of a file.

Example(s):
onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ status
onyx:1> dup $uid get 1 sprint
1001
onyx:1> $gid get 1 sprint
0
onyx:0> ‘/tmp/tdir’ 1001 1001 chown
onyx:0> ‘/tmp/tdir’ status
onyx:1> dup $uid get 1 sprint
1001
onyx:1> $gid get 1 sprint
1001
onyx:0>

path chroot –:

Input(s):
path: A string that represents a filesystem path.

Output(s): None.

Error(s):
invalidaccess.
ioerror.
stackunderflow.
typecheck.

Description: Change the root directory to path. This operator requires super-user priviledges.

104 Onyx Manual Chapter 2

Example(s):
onyx:0> pwd 1 sprint
‘/home/jasone/cw/devroot’
onyx:0> ‘/home/jasone’ chroot
onyx:0> pwd 1 sprint
‘/cw/devroot’
onyx:0>

– class class:
Input(s): None.

Output(s):
class: A class object.

Error(s): None.

Description: Create a class object.

Example(s):
onyx:0> class 1 sprint
-class-
onyx:0>

class classname –:
Input(s):

class: A class object.

Output(s):
name/null: A name or null object.

Error(s):
stackunderflow.
typecheck.

Description: Get class’s name.

Example(s):
onyx:0> class classname 1 sprint
null
onyx:0> vclass classname 1 sprint
$vclass
onyx:0>

objects clear –:
Input(s):

objects: All objects on ostack.

Output(s): None.

Error(s): None.

Description: Pop all objects off of ostack.

Example(s):
onyx:0> 1 2 3 pstack
3
2
1
onyx:3> clear pstack
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 105

mark . . . cleartomark –:
Input(s):

. . . : Zero or more objects.
mark: A mark object.

Output(s): None.
Error(s):

unmatchedmark.
Description: Remove objects from ostack down to and including the topmost mark.
Example(s):

onyx:0> 3 mark 1 0 pstack
0
1
-mark-
3
onyx:4> cleartomark pstack
3
onyx:1>

file close –:
Input(s):

file: A file object.
Output(s): None.
Error(s):

ioerror.
stackunderflow.
typecheck.

Description: Close a file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> close
onyx:0>

– condition condition:
Input(s): None.
Output(s):

condition: A condition object.
Error(s): None.
Description: Create a condition object.
Example(s):

onyx:0> condition 1 sprint
-condition-
onyx:0>

sock addr port connect –:

sock path connect –:
Input(s):

sock: A socket.

106 Onyx Manual Chapter 2

addr: An IPv4 address or DNS hostname.
port: An IPv4 port number. If not specified, the OS chooses a port number.
path: A filesystem path for a Unix-domain socket.

Output(s): None.
Error(s):

argcheck.
invalidfileaccess.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Connect sock.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 connect
onyx:1>

– continue –:
Input(s): None.
Output(s): None.
Error(s): None.
Description: Terminate the current iteration of the innermost enclosing context, and start at

the beginning of the next iteration. This operator can be called within the looping context of
for, repeat, while, until, loop, foreach, and dirforeach.

Example(s):
onyx:0> 1 1 5 {1 sprint continue bang} for
1
2
3
4
5
onyx:0>

srcarray dstarray copy dstsubarray:

srcdict dstdict copy dstdict:

srcstack dststack copy dststack:

srcstring dststring copy dstsubstring:
Input(s):

srcarray: An array object.
srcdict: A dict object.
srcstack: A stack object.
srcstring: A string object.
dstarray: An array object, at least as long as srcarray.
dstdict: A dict object.
dststack: A stack object.
dststring: A string object, at least as long as srcstring.

2.11. DICTIONARY REFERENCE Jason Evans 107

Output(s):
dstsubarray: A subarray of dstarray, with the same contents as srcarray.
dstdict: The same object as the input dstdict, but with the contents of srcdict inserted.
dststack: The same object as the input dststack, but with the contents of srcstack pushed.
dstsubstring: A substring of dststring, with the same contents as srcstring.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Copy from one object to another. Array and string copying are destructive; dictio-
nary and stack copying are not.

Example(s):
onyx:0> [‘a’] [‘b’ ‘c’] copy 1 sprint
[‘a’]
onyx:0> <$foo ‘foo’> <$bar ‘bar’> copy 1 sprint
<$bar ‘bar’ $foo ‘foo’>
onyx:1> (1 2) (3 4) copy 1 sprint
(3 4 1 2)
onyx:1> ‘a’ ‘bc’ copy 1 sprint
‘a’
onyx:1>

a cos r:
Input(s):

a: An integer or real.
Output(s):

r: Cosine of a in radians.
Error(s):

stackunderflow.
typecheck.

Description: Return the cosine of a in radians.
Example(s):

onyx:0> 0 cos 1 sprint
1.000000e+00
onyx:0> 3.14 cos 1 sprint
-9.999987e-01
onyx:0> 3.1415927 cos 1 sprint
-1.000000e+00
onyx:0>

a cosh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic cosine of a in radians.
Error(s):

stackunderflow.
typecheck.

108 Onyx Manual Chapter 2

Description: Return the hyperbolic cosine of a in radians.

Example(s):
onyx:0> 3 cosh 1 sprint
1.006766e+01
onyx:0>

– count count:
Input(s): None.

Output(s):
count: The number of objects on ostack.

Error(s): None.

Description: Get the number of objects on ostack.

Example(s):
onyx:0> 2 1 0 count pstack
3
0
1
2
onyx:4>

– countdstack count:
Input(s): None.

Output(s):
count: Number of dictionaries on dstack.

Error(s): None.

Description: Get the number of dictionaries on dstack.

Example(s):
onyx:0> countdstack 1 sprint
4
onyx:0> dict begin
onyx:0> countdstack 1 sprint
5
onyx:0>

– countestack count:
Input(s): None.

Output(s):
count: The number of objects currently on the execution stack (recursion depth).

Error(s): None.

Description: Get the current number of objects on the execution stack.

Example(s):
onyx:0> countestack 1 sprint
3
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

mark . . . counttomark mark . . . count:

2.11. DICTIONARY REFERENCE Jason Evans 109

Input(s):
. . . : Zero or more objects.
mark: A mark object.

Output(s):
. . . : count objects.
mark: The same mark that was passed in.
count: The depth of mark on ostack.

Error(s):
unmatchedmark.

Description: Get the depth of the topmost mark on ostack.

Example(s):
onyx:0> 4 mark 2 1 0 counttomark 1 sprint
3
onyx:5>

– cstack stack:
Input(s): None.

Output(s):
stack: A snapshot of cstack.

Error(s): None.

Description: Get a snapshot of cstack.

Example(s):
onyx:0> cstack 1 sprint
()
onyx:0>

– currentdict dict:
Input(s): None.

Output(s):
dict: Topmost stack on dstack.

Error(s): None.

Description: Get the topmost dictionary on dstack.

Example(s):
onyx:0> <$foo ‘foo’> begin
onyx:0> currentdict 1 sprint
<$foo ‘foo’>
onyx:0>

– currentlocking boolean:
Input(s): None.

Output(s):
boolean: If false, new objects are created with implicit locking disabled. Otherwise, new

objects are created with implicit locking enabled.

Error(s): None.

Description: Get the current implicit locking mode. See Section 2.7.1 for implicit synchroniza-
tion details.

110 Onyx Manual Chapter 2

Example(s):
onyx:0> currentlocking 1 sprint
false
onyx:0> true setlocking
onyx:0> currentlocking 1 sprint
true
onyx:0>

obj cvc obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the callable attribute set.
Error(s):

stackunderflow.
Description: Set the callable attribute for obj.
Example(s):

onyx:0> $foo cvc 1 sprint
:foo
onyx:0>

real precision cvds string:
Input(s):

real: A real.
precision: Number of digits after the decimal point to show. If negative, do not show

trailing zeros.
Output(s):

string: A string representation of real in decimal form with precision digits of decimal
precision.

Error(s):
stackunderflow.
typecheck.

Description: Convert real to a string representation in decimal notation, with precision digits
of decimal precision.

Example(s):
onyx:0> 42.3 0 cvds 1 sprint
‘42’
onyx:0> 42.3 1 cvds 1 sprint
‘42.3’
onyx:0> -42.3 4 cvds 1 sprint
‘-42.3000’
onyx:0> -43.3 -4 cvds 1 sprint
‘-42.3’
onyx:0>

obj cve obj:
Input(s):

obj: An object.
Output(s):

2.11. DICTIONARY REFERENCE Jason Evans 111

obj: The same object that was passed in, but with the evaluable attribute set.
Error(s):

stackunderflow.
Description: Set the evaluable attribute for obj.
Example(s):

onyx:0> [1 2 3] cve 1 sprint
{1 2 3}
onyx:0>

real precision cves string:
Input(s):

real: A real.
precision: Number of digits after the decimal point to show.

Output(s):
string: A string representation of real in exponential form with precision digits of decimal

precision.
Error(s):

stackunderflow.
typecheck.

Description: Convert real to a string representation in exponential notation, with precision
digits of decimal precision.

Example(s):
onyx:0> 42.3 0 cves 1 sprint
‘4e+01’
onyx:0> 42.3 1 cves 1 sprint
‘4.2e+01’
onyx:0> 42.3 2 cves 1 sprint
‘4.23e+01’
onyx:0> -42.3 5 cves 1 sprint
‘-4.23000e+01’
onyx:0>

obj cvf obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the fetchable attribute set.
Error(s):

stackunderflow.
Description: Set the fetchable attribute for obj.
Example(s):

onyx:0> $foo cvf 1 sprint
,foo
onyx:0>

obj cvi obj:
Input(s):

obj: An object.

112 Onyx Manual Chapter 2

Output(s):
obj: The same object that was passed in, but with the invokable attribute set.

Error(s):
stackunderflow.

Description: Set the invokable attribute for obj.
Example(s):

onyx:0> $foo cvi 1 sprint
;foo
onyx:0>

obj cvl obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the literal attribute set.
Error(s):

stackunderflow.
Description: Set the literal attribute for obj.
Example(s):

onyx:0> {1 2 3} cvl 1 sprint
[1 2 3]
onyx:0>

string cvn name:
Input(s):

string: A string.
Output(s):

name: A literal name that corresponds to string.
Error(s):

stackunderflow.
typecheck.

Description: Convert string to a literal name.
Example(s):

onyx:0> ‘foo’ cvn 1 sprint
$foo
onyx:0>

integer radix cvrs string:
Input(s):

integer: An integer.
radix: A numerical base, from 2 to 36, inclusive.

Output(s):
string: A string representation of integer in base radix.

Error(s):
rangecheck.
stackunderflow.
typecheck.

2.11. DICTIONARY REFERENCE Jason Evans 113

Description: Convert integer to a string representation in base radix.
Example(s):

onyx:0> 42 2 cvrs 1 sprint
‘101010’
onyx:0> 42 16 cvrs 1 sprint
‘2a’
onyx:0>

obj cvs string:
Input(s):

obj: An object.
Output(s):

string: A string representation of obj. The string depends on the type of obj:
boolean: ‘true’ or ‘false’ .
name: The string representation of the name.
integer: The integer in base 10.
operator: The string representation of the operator name or ‘-operator-’ .
real: The real in exponential notation.
string: A printable representation of obj. The result can be evaluated to produce the

original string.
Other types: ‘--nostringval--’ .

Error(s):
stackunderflow.

Description: Convert obj to a string representation.
Example(s):

onyx:0> true cvs 1 sprint
‘true’
onyx:0> $foo cvs 1 sprint
‘foo’
onyx:0> 42 cvs 1 sprint
‘42’
onyx:0> ˜pop cvs 1 sprint
‘pop’
onyx:0> 42.0 cvs 1 sprint
‘4.200000e+01’
onyx:0> ‘foo\nbar\\biz\‘baz’ cvs 1 sprint
‘\‘foo\\nbar\\\\biz\\\‘baz\’’
onyx:0> mutex cvs 1 sprint
‘--nostringval--’
onyx:0>

obj cvx obj:
Input(s):

obj: An object.
Output(s):

obj: The same object that was passed in, but with the executable attribute set.
Error(s):

stackunderflow.
Description: Set the executable attribute for obj.

114 Onyx Manual Chapter 2

Example(s):
onyx:0> [1 2 3] cvx 1 sprint
{1 2 3}
onyx:0>

class/instance data dict/null:
Input(s):

class/instance: A class or instance object.
Output(s):

dict/null: A dict or null object.
Error(s):

stackunderflow.
typecheck.

Description: Get the data associated with class or instance.
Example(s):

onyx:0> vclass data 1 sprint
<>
onyx:0>

a dec r:
Input(s):

a: An integer.
Output(s):

r: a− 1.
Error(s):

stackunderflow.
typecheck.

Description: Subtract one from a.
Example(s):

onyx:0> 1 dec 1 sprint
0
onyx:0>

key val def –:
Input(s):

key: An object.
val: A value associated with key.

Output(s): None.
Error(s):

stackunderflow.
Description: Define key with associated value val in the topmost dictionary on dstack. If key is

already defined in that dictionary, the old definition is replaced.
Example(s):

onyx:0> $foo ‘foo’ def
onyx:0> foo 1 sprint
‘foo’
onyx:0> $foo ‘FOO’ def
onyx:0> foo 1 sprint
‘FOO’
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 115

thread detach –:
Input(s):

thread: A thread object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Detach thread so that its resources will be automatically reclaimed after it exits.
A thread may only be detached or joined once; any attempt to do so more than once results
in undefined behavior (likely crash).

Example(s):
onyx:0> (1 2) {add 1 sprint self detach} thread
3
onyx:1>

– dict dict:
Input(s): None.
Output(s):

dict: An empty dictionary.
Error(s): None.
Description: Create an empty dictionary.
Example(s):

onyx:0> dict 1 sprint
<>
onyx:0>

status die –:
Input(s):

status: A integer from 0 to 255 that is used as the program exit code.
Output(s): None.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Exit the program with exit code status.
Example(s):

onyx:0> 1 die

path proc dirforeach –:
Input(s):

path: A string that represents a filesystem path.
proc: An object to be executed.

Output(s): None.
Error(s):

invalidaccess.
ioerror.

116 Onyx Manual Chapter 2

stackunderflow.
typecheck.

Description: For each entry in the directory represented by path except for “.” and “..”, push
a string that represents the entry onto ostack and execute proc. This operator supports the
continue and exit operators.

Example(s):
onyx:0> pwd {1 sprint} dirforeach
‘CVS’
‘.cvsignore’
‘Cookfile’
‘Cookfile.inc’
‘latex’
‘Cookfile.inc.in’
onyx:0> pwd {‘Cookfile.inc’ match

{pop ‘Yes: ’ print 1 sprint pop exit}
{‘Not: ’ print 1 sprint} ifelse

} dirforeach
Not: ‘CVS’
Not: ‘.cvsignore’
Not: ‘Cookfile’
Yes: ‘Cookfile.inc’
onyx:0>

a b div r:
Input(s):

a: An integer or real.
b: A non-zero integer or real.

Output(s):
r: The quotient of a divided by b.

Error(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the quotient of a divided by b.
Example(s):

onyx:0> 4 2 div 1 sprint
2.000000e+00
onyx:0> 5 2.0 div 1 sprint
2.500000e+00
onyx:0> 5.0 0 div
Error $undefinedresult
ostack: (5.000000e+00 0)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: --div--
1: -file-
2: --start--
onyx:3>

a b c dn b c a:

2.11. DICTIONARY REFERENCE Jason Evans 117

Input(s):
a: An object.
b: An object.
c: An object.

Output(s):
b: An object.
c: An object.
a: An object.

Error(s):
stackunderflow.

Description: Rotate the top three objects on ostack down one position.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ dn pstack
‘b’
‘d’
‘c’
‘a’
onyx:4>

– dstack stack:
Input(s): None.

Output(s):
stack: A snapshot of dstack.

Error(s): None.

Description: Get a snapshot of dstack.

Example(s):
onyx:0> dstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0>

obj dup obj dup:
Input(s):

obj: An object.

Output(s):
obj: The same object that was passed in.
dup: A duplicate of obj.

Error(s):
stackunderflow.

Description: Create a duplicate of the top object on ostack. For composite objects, the new
object is a reference to the same composite object.

Example(s):
onyx:0> 1 dup pstack
1
1
onyx:2>

obj echeck boolean:

118 Onyx Manual Chapter 2

Input(s):
obj: An object.

Output(s):
boolean: True if obj has the evaluable attribute, false otherwise.

Error(s):
stackunderflow.

Description: Check obj for evaluable attribute.

Example(s):
onyx:0> {1 2 3} cve
onyx:1> dup 1 sprint
{1 2 3}
onyx:1> echeck 1 sprint
true
onyx:0> {1 2 3} echeck 1 sprint
false
onyx:0> [1 2 3] echeck 1 sprint
false
onyx:0>

– egid gid:
Input(s): None.

Output(s):
gid: Process’s effective group ID.

Error(s): None.

Description: Get the process’s effective group ID.

Example(s):
onyx:0> egid 1 sprint
1001
onyx:0>

– end –:
Input(s): None.

Output(s): None.

Error(s):
stackunderflow.

Description: Pop the topmost dictionary off dstack, thereby removing its contents from the
namespace.

Example(s):
onyx:0> <$foo ‘foo’> begin
onyx:0> foo 1 sprint
‘foo’
onyx:0> end
onyx:0> foo 1 sprint
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):

2.11. DICTIONARY REFERENCE Jason Evans 119

0: foo
1: -file-
2: --start--
onyx:1>

– envdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Error(s): None.

Description: Get envdict. See Section 2.11.2 for details on envdict.

Example(s):
onyx:0> envdict 0 sprint
-dict-
onyx:0>

arg escape –:
Input(s):

arg: Argument to be returned by the trapped operator invocation that traps this escape.

Output(s): None.

Error(s):
stackunderflow.

Description: Unwind the execution stack to the innermost trapped or start context.

Example(s):
onyx:0> {$arg escape} trapped {1 sprint} if
$arg
onyx:0>

a b eq boolean:
Input(s):

a: An object.
b: An object.

Output(s):
boolean: True if a is equal to b, false otherwise.

Error(s):
stackunderflow.

Description: Compare two objects for equality. Equality has the following meaning, depending
on the types of a and b:

array, condition, dict, file, handle, mutex, stack, thread: a and b are equal iff they re-
fer to the same memory.

operator: a and b are equal iff they refer to the same function.
name, string: a and b are equal iff they are lexically equivalent. A name can be equal to a

string.
boolean: a and b are equal iff they are the same value.
integer, real: a and b are equal iff they are the same value.

120 Onyx Manual Chapter 2

Example(s):
onyx:0> mutex mutex eq 1 sprint
false
onyx:0> mutex dup eq 1 sprint
true
onyx:0> $foo ‘foo’ eq 1 sprint
true
onyx:0> true true eq 1 sprint
true
onyx:0> true false eq 1 sprint
false
onyx:0> 1 1 eq 1 sprint
true
onyx:0> 1 2 eq 1 sprint
false
onyx:0> 1.0 1 eq 1 sprint
true
onyx:0> 1.0 1.1 eq 1 sprint
false
onyx:0>

– estack stack:
Input(s): None.

Output(s):
stack: A current snapshot (copy) of the execution stack.

Error(s): None.

Description: Get a current snapshot of the execution stack.

Example(s):
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

– euid uid:
Input(s): None.

Output(s):
uid: Process’s effective user ID.

Error(s): None.

Description: Get the process’s effective user ID.

Example(s):
onyx:0> euid 1 sprint
1001
onyx:0>

obj eval –:
Input(s):

obj: An object.

Output(s): None.

Error(s):
stackunderflow.

2.11. DICTIONARY REFERENCE Jason Evans 121

Description: Evaluate object. See Section 2.1 for details on object evaluation.

Example(s):
onyx:0> ‘‘hi’ 1 sprint’ cvx eval
‘hi’
onyx:0>

a b exch b a:
Input(s):

a: An object.
b: An object.

Output(s):
b: The same object that was passed in.
a: The same object that was passed in.

Error(s):
stackunderflow.

Description: Exchange the top two objects on ostack.

Example(s):
onyx:0> 1 2 pstack
2
1
onyx:2> exch pstack
1
2
onyx:2>

args exec –:
Input(s):

args: An array of strings. The first string in args is the path of the program to invoke, and
any additional array elements are passed as command line arguments to the invoked
program.

Output(s): None (this operator does not return).

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Overlay a new program and execute it. The current contents of envdict are used
to construct the new program’s environment.

Example(s):
onyx:0> ‘Old program’
onyx:1> [‘/usr/local/bin/onyx’] exec
Canonware Onyx, version 1.0.0.
onyx:0>

– exit –:
Input(s): None.

Output(s): None.

Error(s): None.

122 Onyx Manual Chapter 2

Description: Exit the innermost enclosing looping context immediately. This operator can be
called within the looping context of for, repeat, while, until, loop, foreach, and dirfore-
ach.

Example(s):
onyx:0> {‘hi’ 1 sprint exit ‘bye’ 1 sprint} loop
‘hi’
onyx:0>

b exp r:
Input(s):

a: An integer or real.

Output(s):
r: e raised to the b power.

Error(s):
stackunderflow.
typecheck.

Description: Return e (the base of natural logarithm) raised to the b power.

Example(s):
onyx:0> 3 exp 1 sprint
2.008554e+01
onyx:0>

– false false:
Input(s): None.

Output(s):
false: The boolean value false.

Error(s): None.

Description: Return false.

Example(s):
onyx:0> false 1 sprint
false
onyx:0>

obj fcheck boolean:
Input(s):

obj: An object.

Output(s):
boolean: True if obj has the fetchable attribute, false otherwise.

Error(s):
stackunderflow.

Description: Check obj for fetchable attribute.

Example(s):
onyx:0> $name fcheck 1 sprint
false
onyx:0> $name cvf fcheck 1 sprint
true
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 123

a floor r:
Input(s):

a: An integer or real.
Output(s):

r: Integer floor of a.
Error(s):

stackunderflow.
typecheck.

Description: Return the integer floor of a.
Example(s):

onyx:0> -1.51 floor 1 sprint
-2
onyx:0> -1.49 floor 1 sprint
-2
onyx:0> 0 floor 1 sprint
0
onyx:0> 1.49 floor 1 sprint
1
onyx:0> 1.51 floor 1 sprint
1
onyx:0>

– flush –:
Input(s): None.
Output(s): None.
Error(s):

ioerror.
Description: Flush any buffered data associated with stdout.
Example(s):

onyx:0> ‘Hi\n’ print
onyx:0> flush
Hi
onyx:0>

file flushfile –:
Input(s):

file: A file object.
Output(s): None.
Error(s):

ioerror.
stackunderflow.
typecheck.

Description: Flush any buffered data associated with file.
Example(s):

onyx:0> ‘Hi\n’ print
onyx:0> stdout flushfile
Hi
onyx:0>

124 Onyx Manual Chapter 2

init inc limit proc for –:
Input(s):

init: Initial value of control variable.
inc: Amount to increment control variable by at the end of each iteration.
limit: Inclusive upper bound for control variable if less than or equal to init, otherwise

inclusive lower bound for control variable.
proc: An object.

Output(s): At the beginning of each iteration, the current value of the control variable is pushed
onto ostack.

Error(s):
stackunderflow.
typecheck.

Description: Iteratively evaluate proc, pushing a control variable onto ostack at the beginning
of each iteration, until the control variable has exceeded limit. This operator supports the
continue andexit operators.

Example(s):
onyx:0> 0 1 3 {1 sprint} for
0
1
2
3
onyx:0> 0 -1 -3 {1 sprint} for
0
-1
-2
-3
onyx:0> 0 2 7 {1 sprint} for
0
2
4
6
onyx:0> 0 1 1000 {dup 1 sprint 3 eq {exit} if} for
0
1
2
3
onyx:0>

array proc foreach –:

dict proc foreach –:

stack proc foreach –:

string proc foreach –:
Input(s):

array: An array object.
dict: A dict object.
stack: A stack object.
string: A string object.

Output(s): None.

2.11. DICTIONARY REFERENCE Jason Evans 125

Error(s):
stackunderflow.
typecheck.

Description: For each entry in the first input argument (array, dict, stack, or string), push the
entry onto ostack and execute proc. This operator supports the continue and exit operators.
The object being iterated over can be modified during iteration, with the expectation of no
ill consequences, and in most cases the modifications are immediately apparent. However,
there are some cases in which behavior does not follow this guideline:

• Objects inserted into a dictionary during iteration may or may not be iterated over.
• In the case of stack iteration, a snapshot is taken before iteration begins, so any changes

to the stack during iteration will not affect iteration in any way.

Example(s):
onyx:0> [1 2] {1 sprint} foreach
1
2
onyx:0> <$foo ‘foo’ $bar ‘bar’> {pstack clear} foreach
‘bar’
$bar
‘foo’
$foo
onyx:0> (1 2) {pstack clear} foreach
2
1
onyx:0> ‘ab’ {pstack clear} foreach
97
98
onyx:0>

args forkexec pid:

args redirects forkexec pid:
Input(s):
args: An array of strings. The first string in args is the path of the program to invoke, and any

additional array elements are passed as command line arguments to the invoked program.

redirects: A dictionary of file redirections. Each key/value pair specifies that the file descriptor
associated with the key should be replaced by the file descriptor associated with the value.
The file descriptor associated with the key is kept open across the exec.

Output(s):
pid: Process identifier for the new process, or 0 if the child process.

Error(s):
argcheck.
limitcheck.
rangecheck.
stackunderflow.
typecheck.

Description: Fork and exec a new process. The current contents of envdict are used to construct
the new program’s environment.

126 Onyx Manual Chapter 2

Example(s):
onyx:0> [‘/bin/date’] forkexec dup 1 sprint waitpid 1 sprint
6516
Sat Jul 13 20:47:54 PDT 2002
0
onyx:0>

– gcdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Error(s): None.
Description: Get gcdict. See Section 2.11.4 for details on gcdict.
Example(s):

onyx:0> gcdict 0 sprint
-dict-
onyx:0>

a b ge boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is greater than or equal to b, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.
Example(s):

onyx:0> 1 2 ge 1 sprint
false
onyx:0> 1 1 ge 1 sprint
true
onyx:0> 2 1 ge 1 sprint
true
onyx:0> 1 1.1 ge 1 sprint
false
onyx:0> 1.1 1.1 ge 1 sprint
true
onyx:0> 1.1 1 ge 1 sprint
true
onyx:0> ‘a’ ‘b’ ge 1 sprint
false
onyx:0> ‘a’ ‘a’ ge 1 sprint
true
onyx:0> ‘b’ ‘a’ ge 1 sprint
true
onyx:0>

array index get obj:

2.11. DICTIONARY REFERENCE Jason Evans 127

dict key get value:

string index get integer:
Input(s):

array: An array object.
dict: A dict object.
string: A string object.
index: Offset of array element or string element.
key: A key in dict.

Output(s):
obj: The object in array at offset index.
value: The value in dict corresponding to key.
integer: The ascii value of the character in string at offset index.

Error(s):
rangecheck.
stackunderflow.
typecheck.
undefined.

Description: Get an element of array, a value in dict, or an element of string.
Example(s):

onyx:0> [‘a’ ‘b’ ‘c’] 1 get 1 sprint
‘b’
onyx:0> <$foo ‘foo’ $bar ‘bar’> $bar get 1 sprint
‘bar’
onyx:0> ‘abc’ 1 get 1 sprint
98
onyx:0>

array index length getinterval subarray:

string index length getinterval substring:
Input(s):

array: An array object.
string: A string object.
index: The offset into array or string to get the interval from.
length: The length of the interval in array or string to get.

Output(s):
subarray: A subarray of array at offset index and of length length.
substring: A substring of string at offset index and of length length.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Get an interval of array or string.
Example(s):

onyx:0> [0 1 2 3] 1 2 getinterval 1 sprint
[1 2]
onyx:0> ‘abcd’ 1 2 getinterval 1 sprint
‘bc’
onyx:0>

128 Onyx Manual Chapter 2

pid getpgid pgid:
Input(s):

pid: Process ID, or 0 (same as specifying the calling process’s ID).
Output(s):

pgid: Process group ID.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Get the process group ID for the process with ID pid.
Example(s):

onyx:0> 0 getpgid 1 sprint
15864
onyx:0>

pid getsid sid:
Input(s):

pid: Process ID, or 0 (same as specifying the calling process’s ID).
Output(s):

sid: Session ID.
Error(s):

stackunderflow.
typecheck.

Description: Get the session ID for the process with ID pid.
Example(s):

onyx:0> 0 getsid 1 sprint
1120
onyx:0>

– gid gid:
Input(s): None.
Output(s):

gid: Process’s group ID.
Error(s): None.
Description: Get the process’s group ID.
Example(s):

onyx:0> gid 1 sprint
1001
onyx:0>

– globaldict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Error(s): None.
Description: Get globaldict. See Section 2.11.5 for details on globaldict.

2.11. DICTIONARY REFERENCE Jason Evans 129

Example(s):
onyx:0> globaldict 1 sprint
<>
onyx:0>

– gmaxestack count:
Input(s): None.
Output(s):

count: Default maximum allowable estack depth.
Error(s): None.
Description: Get the default maximum allowable estack depth. This value is used when creat-

ing new threads.
Example(s):

onyx:0> gmaxestack 1 sprint
256
onyx:0>

– gstderr file:
Input(s): None.
Output(s):

file: A file object corresponding to the global stderr.
Error(s): None.
Description: Get the global stderr that is inherited by new threads. See Section 2.4 for stan-

dard I/O details.
Example(s):

onyx:0> gstderr pstack
-file-
onyx:1>

– gstdin file:
Input(s): None.
Output(s):

file: A file object corresponding to the global stdin.
Error(s): None.
Description: Get the global stdin that is inherited by new threads. See Section 2.4 for standard

I/O details.
Example(s):

onyx:0> gstdin pstack
-file-
onyx:1>

– gstdout file:
Input(s): None.
Output(s):

file: A file object corresponding to the global stdout.
Error(s): None.
Description: Get the global stdout that is inherited by new threads. See Section 2.4 for stan-

dard I/O details.

130 Onyx Manual Chapter 2

Example(s):
onyx:0> gstdout pstack
-file-
onyx:1>

a b gt boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is greater than b, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.

Example(s):
onyx:0> 1 1 gt 1 sprint
false
onyx:0> 2 1 gt 1 sprint
true
onyx:0> 1.1 1.1 gt 1 sprint
false
onyx:0> 1.1 1 gt 1 sprint
true
onyx:0> ‘a’ ‘a’ gt 1 sprint
false
onyx:0> ‘b’ ‘a’ gt 1 sprint
true
onyx:0>

– gtailopt boolean:
Input(s): None.

Output(s):
boolean: True if tail call optimization is enabled by default for new threads, false other-

wise.

Error(s): None.

Description: Get whether tail call optimization is enabled by default for new threads.

Example(s):
onyx:0> gtailopt 1 sprint
true
onyx:0>

handle handletag tag:
Input(s):

handle: A handle object.

Output(s):
tag: The tag associated with handle.

Error(s):

2.11. DICTIONARY REFERENCE Jason Evans 131

stackunderflow.
typecheck.

Description: Get the tag associated with handle.

. . . obj ,,,index ibdup . . . obj ,,,dup:

Input(s):
. . . : index objects.
obj: An object.
,,,: Zero or more objects.
index: Offset from bottom of ostack, counting from 0.

Output(s):
. . . : index objects.
obj: An object.
,,,: Zero or more objects.
dup: Duplicate of obj.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on ostack that is at offset index from the bottom
of ostack.

Example(s):
onyx:4> 2 ibdup pstack
2
3
2
1
0
onyx:5>

. . . obj ,,,index ibpop . . . ,,,:

Input(s):
. . . : index objects.
obj: An object.
,,,: Zero or more objects.
index: Offset from bottom of ostack, counting from 0.

Output(s):
. . . : index objects.
,,,: Zero or more objects.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the object from ostack that is at offset index from the bottom of ostack.

132 Onyx Manual Chapter 2

Example(s):
onyx:0> 0 1 2 3
onyx:4> 2 ibpop pstack
3
1
0
onyx:3>

obj icheck boolean:
Input(s):

obj: An object.
Output(s):

boolean: True if obj has the invokable attribute, false otherwise.
Error(s):

stackunderflow.
Description: Check obj for invokable attribute.
Example(s):

onyx:0> $name icheck 1 sprint
false
onyx:0> $name cvi icheck 1 sprint
true
onyx:0>

a b idiv r:
Input(s):

a: An integer.
b: A non-zero integer.

Output(s):
r: The integer quotient of a divided by b.

Error(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the integer quotient of a divided by b.
Example(s):

onyx:0> 4 2 idiv 1 sprint
2
onyx:0> 5 2 idiv 1 sprint
2
onyx:0> 5 0 idiv
Error $undefinedresult
ostack: (5 0)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: --idiv--
1: -file-
2: --start--
onyx:3>

2.11. DICTIONARY REFERENCE Jason Evans 133

obj . . . index idup obj . . . dup:
Input(s):

obj: An object.
index: Offset from top of ostack, counting from 0, not counting index), of the object to

duplicate on ostack.

Output(s):
obj: The same object that was passed in.
dup: A duplicate of obj.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on ostack at index.

Example(s):
onyx:0> 3 2 1 0 2 idup pstack
2
0
1
2
3
onyx:5>

boolean obj if –:
Input(s):

boolean: A boolean.
obj: An object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Evaluate obj if boolean is true.

Example(s):
onyx:0> true {‘yes’ 1 sprint} if
‘yes’
onyx:0> false {‘yes’ 1 sprint} if
onyx:0>

boolean a b ifelse –:
Input(s):

boolean: A boolean.
a: An object.
b: An object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

134 Onyx Manual Chapter 2

Description: Evaluate a if boolean is true, evaluate b otherwise. See Section 2.1 for details on
object evaluation.

Example(s):
onyx:0> true {‘yes’}{‘no’} ifelse 1 sprint
‘yes’
onyx:0> false {‘yes’}{‘no’} ifelse 1 sprint
‘no’
onyx:0>

obj ilocked boolean:
Input(s):

obj: An array, dict, file, or string.

Output(s):
boolean: True if obj is implicitly locked, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Check if obj is implicitly locked.

Example(s):
onyx:0> false setlocking
onyx:0> [1 2 3] ilocked 1 sprint
false
onyx:0> true setlocking
onyx:0> [1 2 3] ilocked 1 sprint
true
onyx:0>

class name implementor class/null:
Input(s):

class: A class object.
name: An object of any type, usually a name object.

Output(s):
class/null: A class or null object.

Error(s):
stackunderflow.
typecheck.

Description: Search up class’s inheritance hierarchy and return the first class that implements
name, or a null object if name is not implemented.

Example(s):
onyx:0> class dup vclass setsuper
onyx:1> $new implementor classname 1 sprint
$vclass
onyx:0>

class name implements boolean:
Input(s):

class: A class object.
name: An object of any type, usually a name object.

2.11. DICTIONARY REFERENCE Jason Evans 135

Output(s):
boolean: True if name is implemented by class, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Return true if name is implemented by class; return false otherwise.
Example(s):

onyx:1> vclass $new implements 1 sprint
true
onyx:1> vclass $foo implements 1 sprint
false
onyx:1>

a inc r:
Input(s):

a: An integer.
Output(s):

r: a + 1.
Error(s):

stackunderflow.
typecheck.

Description: Add one to a.
Example(s):

onyx:0> 1 inc 1 sprint
2
onyx:0>

– instance instance:
Input(s): None.
Output(s):

instance:
Error(s): None.
Description: Create an instance object.
Example(s):

onyx:0> instance 1 sprint
-instance-
onyx:0>

file iobuf count:
Input(s):

file: A file object.
Output(s):

count: The size in bytes of the I/O buffer associated with file.
Error(s):

stackunderflow.
typecheck.

Description: Get the size of the I/O buffer associated with file.

136 Onyx Manual Chapter 2

Example(s):
onyx:0> stdout iobuf 1 sprint
512
onyx:0> stderr iobuf 1 sprint
0
onyx:0>

obj . . . index ipop . . . :
Input(s):

obj: An object.
index: Offset from top of ostack, counting from 0, not counting index), of the object to

remove from ostack.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Remove the obj at index from ostack.

Example(s):
onyx:0> 2 1 0
onyx:3> 1 ipop pstack
0
2
onyx:2>

instance isa class/null:
Input(s):

instance: An instance object.

Output(s):
class/null: A class or null object.

Error(s):
stackunderflow.
typecheck.

Description: Get the class object that instance is an instance of.

Example(s):
onyx:0> instance isa 1 sprint
null
onyx:0> instance dup vclass setisa
onyx:1> isa classname 1 sprint
$vclass
onyx:0>

– istack stack:
Input(s): None.

Output(s):
stack: A current snapshot (copy) of the index stack.

Error(s): None.

Description: Get a current snapshot of the index stack.

2.11. DICTIONARY REFERENCE Jason Evans 137

Example(s):
onyx:0> istack 1 sprint
(0 0 0)
onyx:0>

thread join –:
Input(s):

thread: A thread object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Wait for thread to exit. A thread may only be detached or joined once; any attempt
to do so more than once results in undefined behavior (likely crash).

Example(s):
onyx:0> (1 2) {add 1 sprint} thread join ‘Done\n’ print flush
3
Done
onyx:0>

pid sig kill –:
Input(s):

pid: An integer. If pid is greater than 0, it specifies a process ID. If pid is 0, it specifies
the calling program’s process group. If pid is -1, the signal is sent to all non-system
processes with ID 1. If pid is less than -1, its absolute value specifies a process group.

sig: An integer, or one of the following names:
• $SIGABRT
• $SIGALRM
• $SIGBUS
• $SIGCHLD
• $SIGCONT
• $SIGFPE
• $SIGHUP
• $SIGILL
• $SIGINT
• $SIGKILL
• $SIGPIPE
• $SIGQUIT
• $SIGSEGV
• $SIGSTOP
• $SIGTERM
• $SIGTSTP
• $SIGTTIN
• $SIGTTOU
• $SIGUSR1
• $SIGUSR2
• $SIGPOLL (may not be present)

138 Onyx Manual Chapter 2

• $SIGPROF
• $SIGSYS
• $SIGTRAP
• $SIGURG
• $SIGVTALRM (may not be present)
• $SIGXCPU
• $SIGXFSZ

Output(s): None.

Error(s):
argcheck.
invalidaccess.
limitcheck.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Send the signal specified by sig to the process or process group specified by pid.

Example(s):
onyx:0> pid $SIGCONT kill
onyx:0>

instance class kind boolean:
Input(s):

instance: An instance object.
class: A class object.

Output(s):
boolean: True if class is in instance’s inheritance hierarchy, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Determine whether class is in instance’s inheritance hierarchy.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> instance dup fooclass setisa
onyx:1> dup fooclass kind 1 sprint
true
onyx:1> dup vclass kind 1 sprint
true
onyx:1>

dict key known boolean:
Input(s):

dict: A dictionary.
key: A key to look for in dict.

Output(s):
boolean: True if key is defined in dict, false otherwise.

2.11. DICTIONARY REFERENCE Jason Evans 139

Error(s):
stackunderflow.
typecheck.

Description: Check whether key is defined in dict.
Example(s):

onyx:1> <$foo ‘foo’> $foo known 1 sprint
true
onyx:1> <$foo ‘foo’> $bar known 1 sprint
false
onyx:1>

obj lcheck boolean:
Input(s):

obj: An object.

Output(s):
boolean: True if obj has the literal attribute, false otherwise.

Error(s):
stackunderflow.

Description: Check obj for literal attribute.

Example(s):
onyx:0> {1 2 3} lcheck 1 sprint
false
onyx:0> [1 2 3] lcheck 1 sprint
true
onyx:0>

a b le boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is less than or equal to b, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.

Example(s):
onyx:0> 1 2 le 1 sprint
true
onyx:0> 1 1 le 1 sprint
true
onyx:0> 2 1 le 1 sprint
false
onyx:0> 1 1.1 le 1 sprint
true
onyx:0> 1.1 1.1 le 1 sprint
true
onyx:0> 1.1 1 le 1 sprint

140 Onyx Manual Chapter 2

false
onyx:0> ‘a’ ‘b’ le 1 sprint
true
onyx:0> ‘a’ ‘a’ le 1 sprint
true
onyx:0> ‘b’ ‘a’ le 1 sprint
false
onyx:0>

array length count:

dict length count:

name length count:

string length count:
Input(s):

array: An array object.
dict: A dict object.
name: A name object.
string: A string object.

Output(s):
count: Number of elements in array, number of entries in dict, number of characters in

name, or number of characters in string.
Error(s):

stackunderflow.
typecheck.

Description: Get the umber of elements in array, number of entries in dict, number of charac-
ters in name, or number of characters in string.

Example(s):
onyx:0> [1 2 3] length 1 sprint
3
onyx:0> <$foo ‘foo’ $bar ‘bar’> length 1 sprint
2
onyx:0> $foo length 1 sprint
3
onyx:0> ‘foo’ length 1 sprint
3
onyx:0>

filename linkname link –:
Input(s):

filename: A string that represents a filename.
linkname: A string that represents a filename.

Output(s): None.
Error(s):

invalidfileaccess.
ioerror.
stackunderflow.
typecheck.

2.11. DICTIONARY REFERENCE Jason Evans 141

undefinedfilename.
unregistered.

Description: Create a hard link from linkname to filename.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ ‘/tmp/bar’ link
onyx:0> ‘/tmp/bar’ ‘r’ open
onyx:1> readline
onyx:2> pstack
false
‘Hello’
onyx:2>

sock backlog listen –:

sock listen –:
Input(s):

sock: A socket.
backlog: Maximum backlog of connections to listen for. If not specified, the maximum

backlog is used.

Output(s): None.

Error(s):
invalidfileaccess.
neterror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Listen for connections on a socket.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup listen
onyx:1>

a ln r:
Input(s):

a: An integer or real.

Output(s):
r: Natural logarithm of a.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Return the natural logarithm of a.

142 Onyx Manual Chapter 2

Example(s):
onyx:0> 5 ln 1 sprint
1.609438e+00
onyx:0> 8.5 ln 1 sprint
2.140066e+00
onyx:0>

key load val:
Input(s):

key: A key to look up in dstack.

Output(s):
val: The value associated with the topmost definition of key in dstack.

Error(s):
stackunderflow.
undefined.

Description: Get the topmost definition of key in dstack.

Example(s):
onyx:1> <$foo ‘foo’> begin
onyx:1> <$foo ‘FOO’> begin
onyx:1> $foo load 1 sprint
‘FOO’
onyx:1>

nsecs localtime dict:
Input(s):

nsecs: Number of nanoseconds since the epoch.

Output(s):
dict: A dictionary that contains the following entries:

sec: Seconds (0-59).
min: Minutes (0-59).
hour: Hours (0-23).
mday: Month day (1-31).
mon: Month (0-11).
year: Year.
wday: Week day (0-6, Sunday is 0).
yday: Year day (0-365).
isdst: Is daylight savings time (true or false).
zone: Time zone (string).
gmtoff: Offset from UTC in seconds.

Error(s):
stackunderflow.
rangecheck.
typecheck.

Description: Convert a time, as returned by realtime, to a dictionary that contains time infor-
mation in a more human-usable format.

2.11. DICTIONARY REFERENCE Jason Evans 143

Example(s):
onyx:0> $date {

realtime localtime

[‘Sunday’ ‘Monday’ ‘Tuesday’ ‘Wednesday’ ‘Thursday’ ‘Friday’ ‘Saturday’]
over $wday get
get
‘ ’ cat

over $year get cvs
‘/’ 3 ncat

over $mon get inc <$w 2 $p ‘0’> outputs
‘/’ 3 ncat

over $mday get <$w 2 $p ‘0’> outputs
‘ ’ 3 ncat

over $hour get <$w 2 $p ‘0’> outputs
‘:’ 3 ncat

over $min get <$w 2 $p ‘0’> outputs
‘:’ 3 ncat

over $sec get <$w 2 $p ‘0’> outputs
‘ (’ 3 ncat

exch $zone get
‘)\n’ 3 ncat

print flush
} def
onyx:0> date
Monday 2003/03/17 01:31:49 (PST)
onyx:0>

mutex lock –:
Input(s):

mutex: A mutex object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Acquire mutex, waiting if necessary. Attempting to acquire mutex recursively will
result in undefined behavior (likely deadlock or crash).

Example(s):
onyx:0> mutex dup lock unlock
onyx:0>

a log r:
Input(s):

144 Onyx Manual Chapter 2

a: An integer or real.

Output(s):
r: Base 10 logarithm of a.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Return the base 10 logarithm of a.

Example(s):
onyx:0> 5 log 1 sprint
6.989700e-01
onyx:0> 8.5 log 1 sprint
9.294189e-01
onyx:0>

proc loop –:
Input(s):

proc: An object to evaluate.

Output(s): None.

Error(s):
stackunderflow.

Description: Repeatedly evaluate proc indefinitely. This operator supports the continue and
exit operators.

Example(s):
onyx:0> 0 {1 add dup 1 sprint dup 3 eq {pop exit} if} loop
1
2
3
onyx:0>

a b lt boolean:
Input(s):

a: A number (integer or real) or string.
b: An object of a type compatible with a.

Output(s):
boolean: True if a is less than b, false otherwise.

Error(s):
stackunderflow.
typecheck.

Description: Compare two numbers or strings.

Example(s):
onyx:0> 1 2 lt 1 sprint
true
onyx:0> 1 1 lt 1 sprint
false
onyx:0> 1 1.1 lt 1 sprint
true

2.11. DICTIONARY REFERENCE Jason Evans 145

onyx:0> 1.1 1.1 lt 1 sprint
false
onyx:0> 1.1 1 lt 1 sprint
false
onyx:0> ‘a’ ‘b’ lt 1 sprint
true
onyx:0> ‘a’ ‘a’ lt 1 sprint
false
onyx:0>

– mark mark:
Input(s): None.

Output(s):
mark: A mark object.

Error(s): None.

Description: Push a mark onto ostack.

Example(s):
onyx:0> mark pstack
-mark-
onyx:1>

– maxestack count:
Input(s): None.

Output(s):
count: Maximum allowable estack depth.

Error(s): None.

Description: Get the maximum allowable estack depth.

Example(s):
onyx:0> maxestack 1 sprint
256
onyx:0>

input pattern flags match boolean:

input pattern match boolean:

input regex match boolean:
Input(s):

input: An input string to find matches in.
pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$c: Continue where previous match ended. Don’t update the offset to start the next
match from unless this match is successful. Defaults to false.

$g: Continue where previous match ended. If the match is unsuccessful, update the
offset to start the next match from to the beginning of input. Defaults to false.

$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.

146 Onyx Manual Chapter 2

regex: A regex object.

Output(s):
boolean:

true: Match successful.
false: No match found.

Error(s):
regexerror.
stackunderflow.
typecheck.

Description: Look in input for a match to the regular expression specified by regex/pattern/flags.

Example(s):
onyx:0> ‘input’ ‘I’ <$i true> match {0 submatch 1 sprint} if
‘i’
onyx:0> ‘input’ ‘I’ <$i true> regex match {0 submatch 1 sprint} if
‘i’
onyx:0> ‘input’ ‘I’ match {0 submatch 1 sprint} if
onyx:0>

class name method method:
Input(s):

class: A class object.
name: An object of any type, usually a name object.

Output(s):
method: The bottommost method associated with name in class’s inheritance hierarchy.

Error(s):
stackunderflow.
typecheck.
undefined.

Description: Get the bottommost method associated with name in class’s inheritance hierar-
chy.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> fooclass $new method 1 sprint
{--instance-- --dup-- --dn-- --setisa-- --dup-- --dict-- --setdata--}
onyx:0>

class methods dict/null:
Input(s):

class: A class object.

Output(s):
dict/null: A dict or null object.

Error(s):
stackunderflow.
typecheck.

Description: Get the methods associated with class.

2.11. DICTIONARY REFERENCE Jason Evans 147

Example(s):
onyx:0> vclass methods 0 sprint
-dict-
onyx:0>

path mkdir –:

path mode mkdir –:
Input(s):

path: A string object that represents a directory path.
mode: An integer that represents a Unix file mode.

Output(s): None.

Error(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Create a directory.

Example(s):
onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ {1 sprint} dirforeach
‘.’
‘..’
onyx:0>

path mkfifo –:

path mode mkfifo –:
Input(s):

path: A string object that represents a directory path.
mode: An integer that represents a Unix file mode.

Output(s): None.

Error(s):
invalidfileaccess.
ioerror.
rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Create a named pipe.

Example(s):
onyx:0> ‘/tmp/fifo’ mkfifo
onyx:0>

a b mod r:
Input(s):

148 Onyx Manual Chapter 2

a: An integer or real.
b: A non-zero integer or real.

Output(s):
r: The modulus of a and b.

Error(s):
stackunderflow.
typecheck.
undefinedresult.

Description: Return the modulus of a and b. Note that a and b can be any combination of
integers and reals.

Example(s):
onyx:0> 4 2 mod 1 sprint
0
onyx:0> 5 2 mod 1 sprint
1
onyx:0> 5 0 mod
Error $undefinedresult
ostack: (5 0)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: --mod--
1: -file-
2: --start--
onyx:3>

path symbol modload –:
Input(s):

path: A string that represents a module filename.
symbol: A string that represents the symbol name of a module initialization function to be

executed.

Output(s): None.

Error(s):
invalidfileaccess.
stackunderflow.
typecheck.
undefined.

Description: Dynamically load a module, create a handle object that encapsulates the handle
returned by dlopen(3) (handle data pointer) and the module initialization function (handle
evaluation function), and evaluate the handle.
All objects that refer to code and/or data that are part of the module must directly and/or in-
directly maintain a reference to the handle that is evaluated by this operator, since failing to
do so would allow the garbage collector to unload the module, which could result in dangling
pointers to unmapped memory regions.
Loadable modules present a problem for the garbage collector during the sweep phase. All
objects that refer to memory that is dynamically mapped as part of the module must be de-
stroyed before the module is unloaded. Destruction ordering constraints show up in other
situations as well, but in the case of loadable modules, there is no reasonable solution except

2.11. DICTIONARY REFERENCE Jason Evans 149

to explicitly order the destruction of objects. Therefore, by default, the handle that is evalu-
ated by modload is destroyed during the second sweep pass (count starts at 0). It is possible
for a module to override what sweep pass the handle is destroyed on, in cases where there
are additional ordering constraints for the objects created by a module. This isn’t important
from the Onyx language perspective, but is important to understand when implementing
modules.

Example(s):
onyx:0> ‘/usr/local/share/onyx/nxm/modprompt.nxm’ ‘modprompt_init’
onyx:2> modload
onyx:0>

mutex proc monitor –:
Input(s):

mutex: A mutex.
proc: Any object.

Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Execute proc while holding mutex.
Example(s):

onyx:0> mutex {‘hello\n’ print} monitor flush
hello
onyx:0>

file symbol mrequire –:
Input(s):

file: A string that represents a module filename.
symbol: A string that represents the symbol name of a module initialization function to be

executed.
Output(s): None.
Error(s):

invalidfileaccess.
stackunderflow.
typecheck.
undefined.
undefinedfilename.

Description: Search for and load a module. The module is searched for by catenating a prefix,
a “/”, and file to form a file path. Prefixes are tried in the following order:
1. The ordered elements of the mpath pre array, which is defined in onyxdict.
2. If defined, the ordered elements of the ONYX MPATH environment variable, which is a

colon-separated list.
3. The ordered elements of the mpath post array, which is defined in onyxdict.

Example(s):
onyx:0> ‘modgtk.nxm’ ‘modgtk_init’ mrequire
onyx:0>

a b mul r:

150 Onyx Manual Chapter 2

Input(s):
a: An integer or real.
b: An integer or real.

Output(s):
r: The product of a and b.

Error(s):
stackunderflow.
typecheck.

Description: Return the product of a and b.

Example(s):
onyx:0> 3 17 mul 1 sprint
51
onyx:0> -5 -6 mul 1 sprint
30
onyx:0> 3.5 4.0 mul 1 sprint
1.400000e+01
onyx:0> -1.5 3 mul 1 sprint
-4.500000e+00
onyx:0>

– mutex mutex:
Input(s): None.

Output(s):
mutex: A mutex object.

Error(s): None.

Description: Create a mutex.

Example(s):
onyx:0> mutex 1 sprint
-mutex-
onyx:0>

objects . . . count nbpop . . . :
Input(s):

objects: Zero or more objects.
count: Number of objects to pop.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the bottom count objects from ostack and discard them.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ 2 nbpop pstack
‘c’
onyx:1>

arrays count ncat array:

2.11. DICTIONARY REFERENCE Jason Evans 151

stacks count ncat stack:

strings count ncat string:
Input(s):

arrays: count arrays.
stacks: count stacks.
strings: count strings.
count: Number of arrays, stacks, or strings to catenate.

Output(s):
obj: The catenation of arrays, stacks, or strings.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Catenate count arrays, stacks, or strings.

Example(s):
onyx:0> [‘a’] [‘b’] [‘c’] 3 ncat 1 sprint
[‘a’ ‘b’ ‘c’]
onyx:0> (‘a’) (‘b’) (‘c’) 3 ncat 1 sprint
(‘a’ ‘b’ ‘c’)
onyx:0> ‘a’ ‘b’ ‘c’ 3 ncat 1 sprint
‘abc’
onyx:0>

a . . . b count ndn . . . b a:
Input(s):

a: An object.
. . . : count− 2 objects.
b: An object.
count: Number of objects to rotate downward.

Output(s):
. . . : count− 2 objects.
b: An object.
a: An object.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Rotate count objects on ostack down one position.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ 4 ndn pstack
‘b’
‘e’
‘d’
‘c’
‘a’
onyx:5>

152 Onyx Manual Chapter 2

objects count ndup objects objects:
Input(s):

objects: Zero or more objects.
count: The number of objects do duplicate.

Output(s):
objects: The same objects that were passed in.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create duplicates of the top count objects on ostack. For composite objects, the
new object is a reference to the same composite object.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ 2 ndup pstack
‘c’
‘b’
‘c’
‘b’
‘a’
onyx:5>

a b ne boolean:
Input(s):

a: An object.
b: An object.

Output(s):
boolean: True if a is not equal to b, false otherwise.

Error(s):
stackunderflow.

Description: Compare two objects for inequality. Inequality has the following meaning, de-
pending on the types of a and b:

array, condition, dict, file, handle, mutex, stack, thread: a and b are not equal unless
they refer to the same memory.

operator: a and b are not equal unless they refer to the same function.
name, string: a and b are not equal iff they are lexically equivalent. A name can be equal

to a string.
boolean: a and b are not equal unless they are the same value.
integer, real: a and b are not equal unless they are the same value.

Example(s):
onyx:0> mutex mutex ne 1 sprint
true
onyx:0> mutex dup ne 1 sprint
false
onyx:0> $foo ‘foo’ ne 1 sprint
false
onyx:0> $foo $bar ne 1 sprint
true

2.11. DICTIONARY REFERENCE Jason Evans 153

onyx:0> true false ne 1 sprint
true
onyx:0> true true ne 1 sprint
false
onyx:0> 1 1 ne 1 sprint
false
onyx:0> 1 2 ne 1 sprint
true
onyx:0> 1.0 1 ne 1 sprint
false
onyx:0> 1.0 1.1 ne 1 sprint
true
onyx:0>

a neg r:
Input(s):

a: An integer.
Output(s):

r: The negative of a.
Error(s):

stackunderflow.
typecheck.

Description: Return the negative of a.
Example(s):

onyx:0> 0 neg 1 sprint
0
onyx:0> 5 neg 1 sprint
-5
onyx:0> -5 neg 1 sprint
5
onyx:0> 3.14 neg 1 sprint
-3.140000e+00
onyx:0> -3.14 neg 1 sprint
3.140000e+00
onyx:0>

a b nip b:
Input(s):

a: An object.
b: An object.

Output(s):
b: An object.

Error(s):
stackunderflow.

Description: Remove the second to top object from ostack.
Example(s):

onyx:0> ‘a’ ‘b’ ‘c’
onyx:3> nip pstack
‘c’
‘a’
onyx:2>

154 Onyx Manual Chapter 2

file nonblocking boolean:
Input(s):

file: A file object.

Output(s):
boolean: Nonb-blocking mode for file.

Error(s):
stackunderflow.
typecheck.

Description: Get non-blocking mode for file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup nonblocking 1 sprint
false
onyx:1> dup true setnonblocking
onyx:1> dup nonblocking 1 sprint
true
onyx:1>

a not r:
Input(s):

a: An integer or boolean.

Output(s):
r: If a is an integer, the bitwise negation of a, otherwise the logical negation of a.

Error(s):
stackunderflow.
typecheck.

Description: Return the bitwise negation of an integer, or the logical negation of a boolean.

Example(s):
onyx:0> true not 1 sprint
false
onyx:0> false not 1 sprint
true
onyx:0> 1 not 1 sprint
-2
onyx:0>

objects count npop –:
Input(s):

objects: Zero or more objects.
count: Number of objects to pop.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the top count objects from ostack and discard them.

2.11. DICTIONARY REFERENCE Jason Evans 155

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ 2 npop pstack
‘a’
onyx:1>

nanoseconds nsleep –:

Input(s):
nanoseconds: Minimum number of nanoseconds to sleep. Must be greater than 0.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Sleep for at least nanoseconds nanonseconds.

Example(s):
onyx:0> 1000 nsleep
onyx:0>

– null null:

Input(s): None.

Output(s):
null: A null object.

Error(s): None.

Description: Create a null object.

Example(s):
onyx:0> null pstack
null
onyx:1>

a . . . b count nup b a . . . :

Input(s):
a: An object.
. . . : count− 2 objects.
b: An object.
count: Number of objects to rotate upward.

Output(s):
b: An object.
a: An object.
. . . : count− 2 objects.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Rotate count objects on ostack up one position.

156 Onyx Manual Chapter 2

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ 4 nup pstack
‘d’
‘c’
‘b’
‘e’
‘a’
onyx:5>

input submatch offset offset:
Input(s):

input: A string.
submatch: A substring of input.

Output(s):
offset: The integer offset of submatch, relative to the beginning of input.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Get the offset of submatch, relative to the beginning of input. submatch must be
a substring of input.

Example(s):
onyx:0> ‘input’ dup ‘n(p)u’ match {1 submatch offset 1 sprint} if
2
onyx:0>

– onyxdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Error(s): None.

Description: Get onyxdict. See Section 2.11.6 for details on onyxdict.

Example(s):
onyx:0> onyxdict 1 sprint
<$rpath_pre -array- $rpath_post -array- $mpath_pre -array- $mpath_post -array->
onyx:0>

filename flags open file:

filename flags mode open file:
Input(s):

filename: A string that represents a filename.
flags: A string that represents a file mode:

‘r’: Read only.
‘r+’: Read/write, starting at offset 0.
‘w’: Write only. Create file if necessary. Truncate file if non-zero length.
‘w+’: Read/write, starting at offset 0. Create file if necessary.
‘a’: Write only, starting at end of file.

2.11. DICTIONARY REFERENCE Jason Evans 157

‘a+’: Read/write, starting at end of file.
mode: Mode to use when creating a new file (defaults to 0777). Note that the process’s

umask also affects creation mode.

Output(s):
file: A file object.

Error(s):
invalidfileaccess.
ioerror.
limitcheck.
rangecheck.
stackunderflow.
typecheck.

Description: Open a file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open pstack
-file-
onyx:1>

a b or r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise or, otherwise their logical or.

Error(s):
stackunderflow.
typecheck.

Description: Return the bitwise or of two integers, or the logical or of two booleans.

Example(s):
onyx:0> false false or 1 sprint
false
onyx:0> true false or 1 sprint
true
onyx:0> 5 3 or 1 sprint
7
onyx:0>

array origin false:

array origin string line true:
Input(s):

array:
Output(s):

string: A string (typically a filename) that tells what the origin of array was.
line: An integer that represents the line within string that array started at.
false/true: If false, no origin is recorded for array. If true, the origin is recorded for array,

and string and line are also returned.

158 Onyx Manual Chapter 2

Error(s):
stackunderflow.
typecheck.

Description: If the origin of array is recorded, return the string and line that represent the
origin.

Example(s):
onyx:0> {} origin {exch 1 sprint 1 sprint} if
‘*stdin*’
1
onyx:0> [] origin {exch 1 sprint 1 sprint} if
onyx:0>

– ostack stack:
Input(s): None.

Output(s):
stack: A current snapshot (copy) of ostack.

Error(s): None.

Description: Get a current snapshot of ostack.

Example(s):
onyx:0> 1 2 3 ostack pstack
(1 2 3)
3
2
1
onyx:4>

obj depth output –:
Input(s):

obj: An object to print syntactically.
depth: Maximum recursion depth.

Output(s): None.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Syntactically print obj. See Section 2.11.7 for format specifier details.

Example(s):
onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 1> output ‘\n’ print flush
___[1 -array- 4]____
onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 2> output ‘\n’ print flush
____[1 [2 3] 4]_____
onyx:0> 4242 <$s $+> output ‘\n’ print flush
+4242
onyx:0> ‘0x’ print 4242 <$b 16> output ‘\n’ print flush
0x1092
onyx:0> ‘0x’ 4242 <$b 16> outputs cat <$w 10 $p ‘.’>
onyx:2> output ‘\n’ print flush
....0x1092

2.11. DICTIONARY REFERENCE Jason Evans 159

onyx:0> ‘0x’ print 4242 <$w 8 $p ‘0’ $b 16> output ‘\n’ print flush
0x00001092
onyx:0>

obj flags outputs string:
Input(s):

obj: An object to print syntactically.
depth: Formatting flags. See Section 2.11.7 for details on the supported flags.

Output(s):
string: A formatted string representation of obj. See Section 2.11.7 for format specifier

details.
Error(s):

stackunderflow.
typecheck.

Description: Create a formatted string representation of obj.
Example(s):

onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 1> outputs print ‘\n’ print flush
___[1 -array- 4]____
onyx:0> [1 [2 3] 4] <$w 20 $p ‘_’ $j $c $r 2> outputs print ‘\n’ print flush
____[1 [2 3] 4]_____
onyx:0> 4242 <$s $+> outputs print ‘\n’ print flush
+4242
onyx:0> ‘0x’ print 4242 <$b 16> outputs print ‘\n’ print flush
0x1092
onyx:0> ‘0x’ 4242 <$b 16> outputs cat <$w 10 $p ‘.’> outputs
onyx:1> print ‘\n’ print flush
....0x1092
onyx:0> ‘0x’ print 4242 <$w 8 $p ‘0’ $b 16> outputs print ‘\n’ print flush
0x00001092
onyx:0>

– outputsdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Error(s): None.
Description: Get outputsdict. See Section 2.11.7 for details on outputsdict.
Example(s):

onyx:0> outputsdict 0 sprint
-dict-
onyx:0>

a b over a b a:
Input(s):

a: An object.
b: An object.

Output(s):
a: An object.
b: An object.

160 Onyx Manual Chapter 2

Error(s):
stackunderflow.

Description: Create a duplicate of the second object on ostack and push it onto ostack.

Example(s):
onyx:0> 0 1 2 over pstack
1
2
1
0
onyx:4>

prog path path/null:
Input(s):

prog: A string that specifies a program to search for in the PATH environment variable.

Output(s):
path: A string that specifies the path to prog.
null: prog was not found.

Error(s):
stackunderflow.
typecheck.

Description: Search for prog in the PATH, and return a string that is suitable for subsequent
calls to operators such as exec, forkexec, and system.

Example(s):
onyx:0> ‘cat’ path 1 sprint
‘/bin/cat’
onyx:0>

sock peername dict:
Input(s):

sock: A socket.

Output(s):
dict: A dictionary of information about the peer end of sock. Depending on the socket

family, the following entries may exist:
family: Socket family.
address: IPv4 address.
port: IPv4 port.
path: Unix-domain socket path.

Error(s):
argcheck.
ioerror.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Get information about the peer end of sock.

2.11. DICTIONARY REFERENCE Jason Evans 161

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup listen
onyx:1> dup accept
onyx:2> dup peername 1 sprint
<$family $AF_INET $address 2130706433 $port 33746>
onyx:2>

– pid pid:
Input(s): None.

Output(s):
pid: Process identifier.

Error(s): None.

Description: Get the process ID of the running process.

Example(s):
onyx:0> pid 1 sprint
80624
onyx:0>

– pipe rfile wfile:
Input(s): None.

Output(s):
rfile: A readable file object. Data read from rfile were previously written to wfile.
wfile: A writeable file object. Data written to wfile can subsequently be read from rfile.

Error(s):
ioerror.
unregistered.

Description: Create a pipe.

Example(s):
onyx:0> pipe
onyx:2> $wfile exch def
onyx:1> $rfile exch def
onyx:0> wfile ‘foo\n’ write
onyx:0> wfile flushfile
onyx:0> rfile readline pop 1 sprint
‘foo’
onyx:0>

<file flags . . . > timeout poll [file . . .]:
Input(s):

<. . . >: A dictionary of file/flags key/value pairs.
file: A file object.
flags: A dictionary that contains keys corresponding to file status attributes to poll.

The following keys are heeded:
$POLLIN: Normal or priority data are available for reading.
$POLLRDNORM: Normal data are available for reading.
$POLLRDBAND: Priority data are available for reading.

162 Onyx Manual Chapter 2

$POLLPRI: High-priority data are available for reading.
$POLLOUT: Normal data can be written.
$POLLWRNORM: Normal data can be written.
$POLLWRBAND: Priority data can be written.
The values associated with the keys are disregarded, but are set appropriately before
poll returns (true/false).

timeout: Timeout, in milliseconds (maximum 231 − 1). -1 is treated specially to mean infi-
nite timeout.

Output(s):
[. . .]: An array containing a reference to each file in <. . . > for which a non-zero number of

status attributes is set to true. A zero-length array indicates that the poll timed out.
file: A reference to a file object passed in that has one or more attributes set to true.

Although <. . . > is not returned, its contents are modified.

flags: The dictionary passed in. For recognized key that is defined, the associated value is
set to true or false, depending on the status of file. In addition, the following keys may
defined (if not already defined) with a value of true in the case of errors:
$POLLERR: An error has occurred.
$POLLHUP: Hangup has occurred.
$POLLNVAL: file is not an open file.

Error(s):
stackunderflow.
rangecheck.
typecheck.

Description: Wait for any of the flags associated with a file in <. . . > to be true.
Example(s):

onyx:0> <stdout <$POLLOUT null> stderr <$POLLWRNORM null>> dup 0 poll
onyx:2> 2 sprint 2 sprint
[-file- -file-]
<-file- <$POLLWRNORM true> -file- <$POLLOUT true>>
onyx:0>

obj pop –:
Input(s):

obj: An object.
Output(s): None.
Error(s):

stackunderflow.
Description: Remove the top object from ostack and discard it.
Example(s):

onyx:0> 1 2
onyx:2> pstack
2
1
onyx:2> pop
onyx:1> pstack
1
onyx:1>

2.11. DICTIONARY REFERENCE Jason Evans 163

a b pow r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: a to the b power.

Error(s):
stackunderflow.
typecheck.

Description: Return a to the b power. If a negative exponent is specified, the result will always
be a real, even if both arguments are integers.

Example(s):
onyx:0> 5 0 pow 1 sprint
1
onyx:0> 5 1 pow 1 sprint
5
onyx:0> 5 2 pow 1 sprint
25
onyx:0> -5 3 pow 1 sprint
-125
onyx:0> 5 -3 pow 1 sprint
8.000000e-03
onyx:0> 2.1 3.5 pow 1 sprint
1.342046e+01
onyx:0> 100 .01 pow 1 sprint
1.000000e+02
onyx:0>

– ppid pid:
Input(s): None.
Output(s):

pid: Process identifier.
Error(s): None.
Description: Get the process ID of the running process’s parent.
Example(s):

onyx:0> ppid 1 sprint
352
onyx:0>

string print –:
Input(s):

string: A string object.
Output(s): None.
Error(s):

ioerror.
stackunderflow.
typecheck.

Description: Print string to stdout.

164 Onyx Manual Chapter 2

Example(s):
onyx:0> ‘Hi\n’ print flush
Hi
onyx:0>

– product string:
Input(s): None.
Output(s):

string: A string that contains the product name, normally ‘Canonware Onyx’.
Error(s): None.
Description: Get the product string. The string returned is a reference to the original product

string.
Example(s):

onyx:0> product pstack
‘Canonware Onyx’
onyx:1>

– pstack –:
Input(s): None.
Output(s): None.
Error(s):

ioerror.
Description: Syntactically print the elements of ostack, one per line.
Example(s):

onyx:0> ‘a’ 1 mark $foo [1 2 3] (4 5 6)
onyx:6> pstack
(4 5 6)
[1 2 3]
$foo
-mark-
1
‘a’
onyx:6>

array index obj put –:

dict key value put –:

string index integer put –:
Input(s):

array: An array object.
dict: A dict object.
string: A string object.
index: Offset in array or string to put obj or integer, respectively.
key: An object to use as a key in dict.
obj: An object to insert into array at offset index.
value: An object to associate with key in dict.
integer: The ascii value of a character to insert into string at offset index.

Output(s): None.

2.11. DICTIONARY REFERENCE Jason Evans 165

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Insert into array, dict, or string.
Example(s):

onyx:0> 3 array dup 1 ‘a’ put 1 sprint
[null ‘a’ null]
onyx:0> dict dup $foo ‘foo’ put 1 sprint
<$foo ‘foo’>
onyx:0> 3 string dup 1 97 put 1 sprint
‘\x00a\x00’
onyx:0>

array index subarray putinterval –:

string index substring putinterval –:
Input(s):

array: An array object.
string: A string object.
index: Offset into array or string to put subarray or substring, respectively.
subarray: An array object to put into array at offset index. When inserted subarray must

not extend past the end of array.
substring: A string object to put into string at offset index. When inserted substring must

not extend past the end of string.
Output(s): None.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Replace a portion of array or string.
Example(s):

onyx:0> 4 array dup 1 [‘a’ ‘b’] putinterval 1 sprint
[null ‘a’ ‘b’ null]
onyx:0> 4 string dup 1 ‘ab’ putinterval 1 sprint
‘\x00ab\x00’
onyx:0>

– pwd path:
Input(s): None.
Output(s):

path: A string that represents the present working directory.
Error(s):

invalidaccess.
Description: Push a string onto ostack that represents the present working directory.
Example(s):

onyx:0> pwd
onyx:1> pstack
‘/usr/local/bin’
onyx:1>

166 Onyx Manual Chapter 2

– quit –:
Input(s): None.
Output(s): None.
Error(s): None.
Description: Unwind the execution stack to the innermost start context. Under normal cir-

cumstances, there is always at least one such context.
Example(s):

onyx:0> stdin cvx start
onyx:0> estack 1 sprint
(--start-- -file- --start-- -file- --estack--)
onyx:0> quit
onyx:0> estack 1 sprint
(--start-- -file- --estack--)
onyx:0>

– rand integer:
Input(s): None.
Output(s):

integer: A pseudo-random non-negative integer, with 63 bits of psuedo-randomness.
Error(s): None.
Description: Return a pseudo-random integer.
Example(s):

onyx:0> 0 srand
onyx:0> rand 1 sprint
9018578418316157091
onyx:0> rand 1 sprint
8979240987855095636
onyx:0>

file read integer boolean:

file string read substring boolean:
Input(s):

file: A file object.
string: A string object.

Output(s):
integer: An integer that represents the ascii value of a character that was read from file.
substring: A substring of string that contains data read from file.
boolean: If true, end of file reached during read.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Read from file.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile

2.11. DICTIONARY REFERENCE Jason Evans 167

onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hello\n’

file readline string boolean:
Input(s):

file: A file object.

Output(s):
string: A string that contains a line of text from file.
boolean: If true, end of file reached during read.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Read a line of text from file. Lines are separated by “\n” or “\r\n”, which is
removed. The last line in a file may not have a newline at the end.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup ‘Goodbye\n’ write
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1> dup readline 1 sprint 1 sprint
false
‘Goodbye’
onyx:1> dup readline 1 sprint 1 sprint
true
‘’
onyx:1>

linkname readlink string:
Input(s):

linkname: A string that represents the path of a symbolic link.

Output(s):
string: A string that represents the link data associated with linkname.

Error(s):
invalidaccess.
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Get the data for the symbolic link at linkname.

168 Onyx Manual Chapter 2

Example(s):
onyx:0> ‘bar’ ‘foo’ symlink
onyx:0> ‘foo’ readlink 1 sprint
‘bar’
onyx:0>

– realtime nsecs:
Input(s): None.
Output(s):

nsecs: Number of nanoseconds since the epoch (midnight on 1 January 1970).
Error(s): None.
Description: Get the number of nanoseconds since the epoch.
Example(s):

onyx:0> realtime 1 sprint
993539837806479000
onyx:0>

sock string flags recv substring:

sock string recv substring:
Input(s):

sock: A socket.
string: A string to use as a buffer for the message being received.
flags: An array of flag names. The following flags are supported:

$MSG OOB
$MSG PEEK
$MSG WAITALL

Output(s):
substring: A substring of string that contains message data.

Error(s):
argcheck.
neterror.
stackunderflow.
typecheck.
unregistered.

Description:
Example(s):

onyx:0> $AF_INET $SOCK_DGRAM socket
onyx:1> dup ‘localhost’ 7777 bindsocket
onyx:1> dup true setnonblocking
onyx:1> dup 10 string recv
onyx:2> 1 sprint
‘hello’
onyx:1>

string flags regex regex:

string regex regex:
Input(s):

2.11. DICTIONARY REFERENCE Jason Evans 169

string: A string that specifies a regular expression. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$c: Continue where previous match ended. Don’t update the offset to start the next
match from unless this match is successful. Defaults to false.

$g: Continue where previous match ended. If the match is unsuccessful, update the
offset to start the next match from to the beginning of input. Defaults to false.

$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.
Output(s):

regex: A regex object.
Error(s):

regexerror.
stackunderflow.
typecheck.

Description: Create a regex object, according to string and flags.
Example(s):

onyx:0> ‘pattern’ regex 1 sprint
-regex-
onyx:0> ‘pattern’ <$g true> regex 1 sprint
-regex-
onyx:0>

pattern template flags regsub regsub:

pattern template regsub regsub:
Input(s):

pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
template: A string that specifies a substitution template. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$g: Substitute all matches, if true, rather than just the first match. Defaults to false.
$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.
Output(s):

regsub: A regsub object.
Error(s):

regexerror.
stackunderflow.
typecheck.

Description: Create a regsub object, according to pattern, template, and flags.
Example(s):

onyx:0> ‘([a-z]+)’ ‘<\1>’ <$g true> regsub
onyx:1> 1 sprint
-regsub-
onyx:0>

170 Onyx Manual Chapter 2

old new rename –:
Input(s):

old: A string object that represents a file path.
new: A string object that represents a file path.

Output(s): None.
Error(s):

invalidfileaccess.
ioerror.
limitcheck.
stackunderflow.
typecheck.
undefinedfilename.

Description: Rename a file or directory from old to new.
Example(s):

onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ ‘/tmp/ndir’ rename
onyx:0> ‘/tmp/ndir’ {1 sprint} dirforeach
‘.’
‘..’
onyx:0>

count proc repeat –:
Input(s):

count: Number of times to evaluate proc (non-negative).
proc: An object to evaluate.

Output(s): None.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Evaluate proc count times. This operator supports the continue and exit opera-
tors.

Example(s):
onyx:0> 3 {‘hi’ 1 sprint} repeat
‘hi’
‘hi’
‘hi’
onyx:0>

file require –:
Input(s):

file: A string that represents a module filename.
Output(s): None.
Error(s):

invalidfileaccess.
stackunderflow.
typecheck.

2.11. DICTIONARY REFERENCE Jason Evans 171

undefined.
undefinedfilename.

Description: Search for and evaluate an Onyx source file. The file is searched for by catenating
a prefix, a “/”, and file to form a file path. Prefixes are tried in the following order:
1. The ordered elements of the rpath pre array, which is defined in onyxdict.
2. If defined, the ordered elements of the ONYX RPATH environment variable, which is a

colon-separated list.
3. The ordered elements of the rpath post array, which is defined in onyxdict.

Example(s):
onyx:0> ‘modgtk/modgtk_defs.nx’ require
onyx:0>

path rmdir –:
Input(s):

path: A string object that represents a directory path.
Output(s): None.
Error(s):

invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
unregistered.

Description: Remove an empty directory.
Example(s):

onyx:0> ‘/tmp/tdir’ 8@755 mkdir
onyx:0> ‘/tmp/tdir’ rmdir
onyx:0>

region count amount roll rolled:
Input(s):

region: 0 or more objects to be rolled.
count: Number of objects in region.
amount: Amount by which to roll. If positive, roll upward. If negative, roll downward.

Output(s):
rolled: Rolled version of region.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Roll the top count objects on ostack (not counting count and amount) by amount
positions. A positive amount indicates an upward roll, whereas a negative amount indicates
a downward roll.

Example(s):
onyx:0> 3 2 1 0
onyx:4> pstack
0
1

172 Onyx Manual Chapter 2

2
3
onyx:4> 3 1 roll
onyx:4> pstack
1
2
0
3
onyx:4> 3 -2 roll
onyx:4> pstack
2
0
1
3
onyx:4> 4 0 roll
onyx:4> pstack
2
0
1
3
onyx:4>

a round r:
Input(s):

a: An integer or real.

Output(s):
r: Integer round of a.

Error(s):
stackunderflow.
typecheck.

Description: Round a to the nearest integer and return the result.

Example(s):
onyx:0> -1.51 round 1 sprint
-2
onyx:0> -1.49 round 1 sprint
-1
onyx:0> 0 round 1 sprint
0
onyx:0> 1.49 round 1 sprint
1
onyx:0> 1.51 round 1 sprint
2
onyx:0>

. . . amount rot . . . :
Input(s):

. . . : One or more objects.
amount: Number of positions to rotate the stack upward. A negative value causes down-

ward rotation.

Output(s):

2.11. DICTIONARY REFERENCE Jason Evans 173

. . . : One or more objects.

Error(s):
stackunderflow.
typecheck.

Description: Rotate the stack contents up amount positions.

Example(s):
onyx:0> 1 2 3 4 5 2 rot pstack clear
3
2
1
5
4
onyx:0> 1 2 3 4 5 -2 rot pstack clear
2
1
5
4
3
onyx:0>

stack sadn –:
Input(s):

stack: A stack object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Rotate the contents of stack down one position.

Example(s):
onyx:0> (1 2 3 4) dup sadn 1 sprint
(2 3 4 1)
onyx:0>

stack saup –:
Input(s):

stack: A stack object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Rotate the contents of stack up one position.

Example(s):
onyx:0> (1 2 3 4) dup saup 1 sprint
(4 1 2 3)
onyx:0>

stack sbdup –:
Input(s):

174 Onyx Manual Chapter 2

stack: A stack object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Duplicate the bottom object on stack and push it onto stack.
Example(s):

onyx:0> (2 1 0) dup sbdup pstack
(2 1 0 2)
onyx:1>

stack sbpop obj:
Input(s):

stack: A stack object.
Output(s):

obj: An object.
Error(s):

stackunderflow.
typecheck.

Description: Pop obj off the bottom of stack.
Example(s):

onyx:0> (1 2 3) dup sbpop pstack
1
(2 3)
onyx:2>

stack obj sbpush –:
Input(s):

stack: A stack object.
obj: An object.

Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Push obj onto the bottom of stack.
Example(s):

onyx:0> (0) dup 1 sbpush
onyx:1> pstack
(1 0)
onyx:1>

stack sclear –:
Input(s):

stack: A stack object.
Output(s): None.
Error(s):

stackunderflow.

2.11. DICTIONARY REFERENCE Jason Evans 175

typecheck.
Description: Remove all objects on stack.

Example(s):
onyx:0> (1 2 3 4) dup sclear pstack
()
onyx:1>

stack scleartomark –:
Input(s):

stack: A stack object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.
unmatchedmark.

Description: Remove objects from stack down to and including the topmost mark.

Example(s):
onyx:0> (3 mark 1 0) dup scleartomark pstack
(3)
onyx:1>

stack scount count:
Input(s):

stack: A stack object.

Output(s):
count: The number of objects on stack.

Error(s):
stackunderflow.
typecheck.

Description: Get the number of objects on stack.

Example(s):
onyx:0> (1 2) scount 1 sprint
2
onyx:0>

stack scounttomark count:
Input(s):

stack: A stack object.

Output(s):
count: The depth of the topmost mark on stack.

Error(s):
stackunderflow.
typecheck.
unmatchedmark.

Description: Get the depth of the topmost mark on stack.

176 Onyx Manual Chapter 2

Example(s):
onyx:0> (3 mark 1 0) scounttomark 1 sprint
2
onyx:0>

stack sdn –:
Input(s):

stack: A stack object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Rotate the top three objects on stack down one position.
Example(s):

onyx:0> (3 2 1 0) dup sdn pstack
(3 1 0 2)
onyx:1>

stack sdup –:
Input(s):

stack: A stack object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Duplicate the top object on stack and push it onto stack.
Example(s):

onyx:0> (1) dup sdup 1 sprint
(1 1)
onyx:0>

file offset seek –:
Input(s):

file: A file object.
offset: Offset in bytes from the beginning of file to move the file position pointer to.

Output(s): None.
Error(s):

ioerror.
stackunderflow.
typecheck.

Description: Move the file position pointer for file to offset.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup 0 seek
onyx:1> readline pstack
false
‘Hello’
onyx:2>

2.11. DICTIONARY REFERENCE Jason Evans 177

– self thread:
Input(s): None.
Output(s):

thread: A thread object that corresponds to the running thread.
Error(s): None.
Description: Get a thread object for the running thread.
Example(s):

onyx:0> self 1 sprint
-thread-
onyx:0>

sock mesg flags send nsend:

sock mesg send nsend:
Input(s):

sock: A socket.
mesg: A message string.
flags: An array of flag names. The following flags are supported:

$MSG OOB
$MSG PEEK
$MSG WAITALL

Output(s):
nsend: Number of bytes of mesg actually sent.

Error(s):
argcheck.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Send a message.
Example(s):

onyx:0> $AF_INET $SOCK_DGRAM socket
onyx:1> dup ‘localhost’ 7777 connect
onyx:1> dup ‘hello’ send
onyx:2> 1 sprint
5
onyx:1>

service serviceport port:
Input(s):

service: A string that represents a network service name.
Output(s):

port: The port number corresponding to service, or 0 if the service is unknown.
Error(s):

stackunderflow.
typecheck.

Description:

178 Onyx Manual Chapter 2

Example(s):
onyx:0> ‘ftp’ serviceport 1 sprint
21
onyx:0>

class name/null setclassname –:
Input(s):

class: A class object.
name/null: A name or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set class’s name.

Example(s):
onyx:0> class dup $foo setclassname
onyx:1> classname 1 sprint
$foo
onyx:0>

class/instance dict/null setdata –:
Input(s):

class/instance: A class or instance object.
dict/null: A dict or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set the data associated with class or instance.

Example(s):
onyx:0> class dup <$foo ‘foo’> setdata
onyx:1> data 1 sprint
<$foo ‘foo’>
onyx:0>

gid setegid boolean:
Input(s):

gid: A group ID.

Output(s):
boolean: If false, success, otherwise failure.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s effective group ID to gid.

2.11. DICTIONARY REFERENCE Jason Evans 179

Example(s):
onyx:0> 1001 setegid 1 sprint
false
onyx:0> 0 setegid 1 sprint
true
onyx:0>

key val setenv –:
Input(s):

key: A name object.
val: A value to associate with key.

Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Set an environment variable named key and associate val with it. If val is not a
string, it is converted to a string using the cvs operator before the environment variable is
set. A corresponding entry is also created in the envdict dictionary.

Example(s):
onyx:0> $foo ‘foo’ setenv
onyx:0> envdict $foo known 1 sprint
true
onyx:0> envdict $foo get 1 sprint
‘foo’
onyx:0> $foo unsetenv
onyx:0> envdict $foo known 1 sprint
false
onyx:0>

uid seteuid boolean:
Input(s):

uid: A user ID.
Output(s):

boolean: If false, success, otherwise failure.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s effective user ID to uid.
Example(s):

onyx:0> 1001 seteuid 1 sprint
false
onyx:0> 0 seteuid 1 sprint
true
onyx:0>

gid setgid boolean:
Input(s):

gid: A group ID.

180 Onyx Manual Chapter 2

Output(s):
boolean: If false, success, otherwise failure.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s group ID to gid.
Example(s):

onyx:0> 1001 setgid 1 sprint
false
onyx:0> 0 setgid 1 sprint
true
onyx:0>

count setgmaxestack –:
Input(s):

count: Default maximum allowable estack depth.
Output(s): None.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Set the default maximum allowable estack depth to count. This value is used
when creating new threads.

Example(s):
onyx:0> 128 setgmaxestack
onyx:0>

file setgstderr –:
Input(s):

file: A file to set the global stderr to.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Set the global stderr to file. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> ‘/tmp/stderr’ ‘w’ open dup 0 setiobuf setgstderr
onyx:0> () {stderr ‘Some text\n’ write} thread join
onyx:0> ‘/tmp/stderr’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

file setgstdin –:
Input(s):

file: A file to set the global stdin to.
Output(s): None.

2.11. DICTIONARY REFERENCE Jason Evans 181

Error(s):
stackunderflow.
typecheck.

Description: Set the global stdin to file. See Section 2.4 for standard I/O details.

Example(s): Under normal interactive operation, stdin is pushed onto estack during inter-
preter initialization and evaluated until EOF is reached. Therefore, changing stdin has no
effect on the file descriptor already on estack. The following example recursively evaluates
stdin after redefining it.

lawine:˜> cat /tmp/stdin
1 2 3 pstack
lawine:˜> onyx
onyx:0> ‘/tmp/stdin’ ‘r’ open cvx setgstdin
onyx:0> () {stdin eval} thread join
3
2
1
onyx:0>

file setgstdout –:
Input(s):

file: A file to set the global stdout to.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set the global stdout to file. See Section 2.4 for standard I/O details.

Example(s): In the following example, the prompt continues to be printed, even though stdout
has been redefined, because the prompt module was initialized to print to file descriptor 1.
This demonstrates the only known exception in the stock Onyx interpreter where redefining
stdout will not redirect output.

onyx:0> ‘/tmp/stdout’ ‘w’ open dup 0 setiobuf setgstdout
onyx:0> () {‘Some text\n’ print} thread join
onyx:0> ‘/tmp/stdout’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

boolean setgtailopt –:
Input(s):

boolean: If true, enable tail call optimization by default for new threads. Otherwise, do
not enable tail call optimization by default for new threads.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set whether to enable tail call optimization for new threads.

182 Onyx Manual Chapter 2

Example(s):
onyx:0> false setgtailopt
onyx:0>

file count setiobuf –:
Input(s):

file: A file object.
count: The size in bytes to set the I/O buffer associated with file to.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set the size of the I/O buffer associated with file.

Example(s):
onyx:0> stdout iobuf 1 sprint
512
onyx:0> stdout 0 setiobuf
onyx:0> stdout iobuf 1 sprint
0
onyx:0>

instance class/null setisa –:
Input(s):

instance: An instance object.
class/null: A class or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set the class associated with instance.

Example(s):
onyx:0> instance dup vclass setisa
onyx:1> isa classname 1 sprint
$vclass
onyx:0>

boolean setlocking –:

Input(s):
boolean: A boolean to set the implicit locking mode to.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set the current implicit locking mode. See Section 2.7.1 for implicit synchroniza-
tion details.

2.11. DICTIONARY REFERENCE Jason Evans 183

Example(s):
onyx:0> currentlocking 1 sprint
false
onyx:0> true setlocking
onyx:0> currentlocking 1 sprint
true
onyx:0>

count setmaxestack –:
Input(s):

count: Maximum allowable estack depth.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the maximum allowable estack depth to count.

Example(s):
onyx:0> 128 setmaxestack
onyx:0>

class dict/null setmethods –:
Input(s):

class: A class object.
dict/null: A dict or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set the methods associated with class.

Example(s):
onyx:0> class dup <$foo ‘foo’> setmethods
onyx:1> methods 1 sprint
<$foo ‘foo’>
onyx:0>

file boolean setnonblocking –:
Input(s):

file: A file object.
boolean: Non-blocking mode to set file to.

Output(s): None.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Set non-blocking mode for file to boolean.

184 Onyx Manual Chapter 2

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup nonblocking 1 sprint
false
onyx:1> dup true setnonblocking
onyx:1> dup nonblocking 1 sprint
true
onyx:1>

pid pgid setpgid –:
Input(s):

pid: Process ID, or 0 (same as specifying the calling process’s ID).
pgid: Process group ID.

Output(s): None.

Error(s):
invalidaccess.
limitcheck.
rangecheck.
stackunderflow.
typecheck.

Description:
Example(s):

onyx:0> pid pid setpgid
onyx:0>

– setsid sid:
Input(s): None.

Output(s):
sid: Session ID.

Error(s):
invalidaccess.
stackunderflow.
typecheck.

Description: Create a new session.

Example(s):
onyx:0> setsid
Error $invalidaccess
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..2):
0: --setsid--
1: -file-
2: --start--
onyx:1>

sock level optname optval setsockopt –:

sock optname optval setsockopt –:

2.11. DICTIONARY REFERENCE Jason Evans 185

Input(s):
sock: A socket.
level: Level at which to set the socket option. If not specified, $SOL SOCKET is used.
optname: Name of option to set the value of. The following option names are supported:

$SO DEBUG
$SO REUSEADDR
$SO REUSEPORT
$SO KEEPALIVE
$SO DONTROUTE
$SO BROADCAST
$SO OOBINLINE
$SO SNDBUF
$SO RCVBUF
$SO SNDLOWAT
$SO RCVLOWAT
$SO TYPE
$SO ERROR: optval is an integer.
$SO LINGER: optval is a dictionary, and the following entries are defined:

$on: Boolean.
$time: Linger time in seconds.

$SO SNDTIMEO
$SO RCVTIMEO: optval is an integer, in nanoseconds.

optval: Value to associate with optname.

Output(s): None.

Error(s):
argcheck.
stackunderflow.
typecheck.
unregistered.

Description: Set a socket option.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup $SO_OOBINLINE sockopt 1 sprint
0
onyx:1> dup $SO_OOBINLINE 1 setsockopt
onyx:1> dup $SO_OOBINLINE sockopt 1 sprint
1
onyx:1>

file setstderr –:
Input(s):

file: A file to set the calling thread’s stderr to.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

186 Onyx Manual Chapter 2

Description: Set the thread’s stderr to file. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> ‘/tmp/stderr’ ‘w’ open dup 0 setiobuf setstderr
onyx:0> stderr ‘Some text\n’ write
onyx:0> ‘/tmp/stderr’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

file setstdin –:
Input(s):

file: A file to set the calling thread’s stdin to.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Set the thread’s stdin to file. See Section 2.4 for standard I/O details.
Example(s): Under normal interactive operation, stdin is pushed onto estack during inter-

preter initialization and evaluated until EOF is reached. Therefore, changing stdin has no
effect on the file descriptor already on estack. The following example recursively evaluates
stdin after redefining it.

lawine:˜> cat /tmp/stdin
1 2 3 pstack
lawine:˜> onyx
onyx:0> ‘/tmp/stdin’ ‘r’ open cvx setstdin
onyx:0> stdin eval
3
2
1
onyx:3>

file setstdout –:
Input(s):

file: A file to set the calling thread’s stdout to.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Set the thread’s stdout to file. See Section 2.4 for standard I/O details.
Example(s): In the following example, the prompt continues to be printed, even though stdout

has been redefined, because the prompt module was initialized to print to file descriptor 1.
This demonstrates the only known exception in the stock Onyx interpreter where redefining
stdout will not redirect output.

onyx:0> ‘/tmp/stdout’ ‘w’ open dup 0 setiobuf setstdout
onyx:0> ‘Some text\n’ print
onyx:0> gstdout setstdout
onyx:0> ‘/tmp/stdout’ ‘r’ open readline pop 1 sprint
‘Some text’
onyx:0>

2.11. DICTIONARY REFERENCE Jason Evans 187

class super/null setsuper –:

Input(s):
class: A class object.
super/null: A class or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Set class’s superclass.

Example(s):
onyx:0> class dup vclass setsuper
onyx:1> super classname 1 sprint
$vclass
onyx:0>

boolean settailopt –:

Input(s):
boolean: If true, enable tail call optimization for this thread. Otherwise, disable tail call

optimization for this thread.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description:

Example(s):
onyx:0> $bar {estack 2 sprint} def
onyx:0> $foo {bar} def
onyx:0> foo
(--start-- -file- {estack 2 sprint} --estack--)
onyx:0> false settailopt
onyx:0> foo
(--start-- -file- {bar} {estack 2 sprint} --estack--)
onyx:0>

uid setuid boolean:

Input(s):
uid: A user ID.

Output(s):
boolean: If false, success, otherwise failure.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Set the process’s user ID to uid.

188 Onyx Manual Chapter 2

Example(s):
onyx:0> 1001 setuid 1 sprint
false
onyx:0> 0 setuid 1 sprint
true
onyx:0>

stack sexch –:
Input(s):

stack: A stack object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Exchange the top two objects on stack.

Example(s):
onyx:0> (1 2 3) dup sexch pstack
(1 3 2)
onyx:1>

– shift –:
Input(s):

a: An integer.
shift: An integer that represents a bitwise shift amount. Negative means right shift, and

positive means left shift.

Output(s):
r: a shifted by shift bits.

Error(s):
stackunderflow.
typecheck.

Description: Shift an integer bitwise.

Example(s):
onyx:0> 4 1 shift 1 sprint
8
onyx:0> 4 -1 shift 1 sprint
2
onyx:0>

stack index sibdup –:
Input(s):

stack: A stack object.
index: Offset from bottom of stack, counting from 0, of the object to duplicate.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

2.11. DICTIONARY REFERENCE Jason Evans 189

Description: Create a duplicate of the object on stack that is at offset index from the bottom of
stack and push it onto stack.

Example(s):
onyx:0> (3 2 1 0) dup 2 sibdup pstack
(3 2 1 0 1)
onyx:1>

stack index sibpop obj:
Input(s):

stack: A stack object.
index: Offset from bottom of stack, counting from 0, of the object to remove from stack.

Output(s):
obj: An object removed from stack.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the obj from stack that is at offset index from the bottom of stack.

Example(s):
onyx:0> (0 1 2 3) dup 2 sibpop pstack
2
(0 1 3)
onyx:2>

stack index sidup –:
Input(s):

stack: A stack object.
index: Depth (count starts at 0) of the object to duplicate in stack.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Create a duplicate of the object on stack at depth index and push it onto stack.

Example(s):
onyx:0> (3 2 1 0) dup 2 sidup
onyx:1> 1 sprint
(3 2 1 0 2)
onyx:0>

$SIG GETMASK oset sigmask oset:

how set sigmask –:

how set oset sigmask oset:
Input(s):

how: A name object:

190 Onyx Manual Chapter 2

$SIG BLOCK: Mask the union of the old mask set and the signals in set whose values
are set to true.

$SIG UNBLOCK: Unmask the signals in set whose values are set to true.
$SIG GETMASK: Get the current signal mask.
$SIG SETMASK: Set the signal mask to the signals in set whose values are set to true.

set: A dictionary of signal name and/or integers keys, with associated true/false values. A
value of true indicates set membership. The recognized names are:
• $SIGABRT
• $SIGALRM
• $SIGBUS
• $SIGCHLD
• $SIGCONT
• $SIGFPE
• $SIGHUP
• $SIGILL
• $SIGINT
• $SIGKILL
• $SIGPIPE
• $SIGQUIT
• $SIGSEGV
• $SIGSTOP
• $SIGTERM
• $SIGTSTP
• $SIGTTIN
• $SIGTTOU
• $SIGUSR1
• $SIGUSR2
• $SIGPOLL (may not be present)
• $SIGPROF
• $SIGSYS
• $SIGTRAP
• $SIGURG
• $SIGVTALRM (may not be present)
• $SIGXCPU
• $SIGXFSZ

oset: A dictionary of signal name keys, with associated true/false values. This dictionary
contains the signal mask as it was prior to execution of this operator.

Output(s):
oset: The same dictionary as was passed in as oset.

Error(s):
argcheck.
stackunderflow.
typecheck.

Description: Get or set the calling thread’s current signal mask.

2.11. DICTIONARY REFERENCE Jason Evans 191

Example(s):
onyx:0> $SIG_GETMASK <> sigmask 1 sprint
<$SIGHUP true $SIGINT true $SIGQUIT true $SIGTERM true>
onyx:0> $SIG_BLOCK <$SIGPIPE true> <> sigmask 1 sprint
<$SIGHUP true $SIGINT true $SIGQUIT true $SIGTERM true>
onyx:0> $SIG_GETMASK <> sigmask 1 sprint
<$SIGHUP true $SIGINT true $SIGPIPE true $SIGQUIT true $SIGTERM true>
onyx:0> $SIG_UNBLOCK <$SIGPIPE true> <> sigmask 1 sprint
<$SIGHUP true $SIGINT true $SIGPIPE true $SIGQUIT true $SIGTERM true>
onyx:0> $SIG_GETMASK <> sigmask 1 sprint
<$SIGHUP true $SIGINT true $SIGQUIT true $SIGTERM true>
onyx:0>

condition signal –:
Input(s):

condition: A condition object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Signal a thread that is waiting on condition. If there are no waiters, this operator
has no effect.

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

set sigpending set:
Input(s):

set: A dictionary.
Output(s):

set: The same dictionary as the input set. A dictionary of signal name keys, with associated
true values. A value of true indicates set membership. The supported names are:
• $SIGABRT
• $SIGALRM
• $SIGBUS
• $SIGCHLD
• $SIGCONT
• $SIGFPE
• $SIGHUP
• $SIGILL
• $SIGINT
• $SIGKILL
• $SIGPIPE
• $SIGQUIT
• $SIGSEGV

192 Onyx Manual Chapter 2

• $SIGSTOP
• $SIGTERM
• $SIGTSTP
• $SIGTTIN
• $SIGTTOU
• $SIGUSR1
• $SIGUSR2
• $SIGPOLL (may not be present)
• $SIGPROF
• $SIGSYS
• $SIGTRAP
• $SIGURG
• $SIGVTALRM (may not be present)
• $SIGXCPU
• $SIGXFSZ

Error(s):
stackunderflow.
typecheck.

Description: Get pending signals.

Example(s):
onyx:0> <> sigpending 1 sprint
<>
onyx:0>

set sigsuspend –:
Input(s):

set: A dictionary of signal name and/or integers keys, with associated true/false values. A
value of true indicates set membership. The recognized names are:
• $SIGABRT
• $SIGALRM
• $SIGBUS
• $SIGCHLD
• $SIGCONT
• $SIGFPE
• $SIGHUP
• $SIGILL
• $SIGINT
• $SIGKILL
• $SIGPIPE
• $SIGQUIT
• $SIGSEGV
• $SIGSTOP
• $SIGTERM
• $SIGTSTP
• $SIGTTIN
• $SIGTTOU

2.11. DICTIONARY REFERENCE Jason Evans 193

• $SIGUSR1
• $SIGUSR2
• $SIGPOLL (may not be present)
• $SIGPROF
• $SIGSYS
• $SIGTRAP
• $SIGURG
• $SIGVTALRM (may not be present)
• $SIGXCPU
• $SIGXFSZ

Output(s): None.
Error(s):

argcheck.
stackunderflow.
typecheck.

Description: Suspend the calling thread until one of the signals in set is caught.
Example(s):

onyx:0> <> sigsuspend
onyx:0>

set sigwait sig:
Input(s):

set: A dictionary of signal name and/or integers keys, with associated true/false values. A
value of true indicates set membership. The recognized names are:
• $SIGABRT
• $SIGALRM
• $SIGBUS
• $SIGCHLD
• $SIGCONT
• $SIGFPE
• $SIGHUP
• $SIGILL
• $SIGINT
• $SIGKILL
• $SIGPIPE
• $SIGQUIT
• $SIGSEGV
• $SIGSTOP
• $SIGTERM
• $SIGTSTP
• $SIGTTIN
• $SIGTTOU
• $SIGUSR1
• $SIGUSR2
• $SIGPOLL (may not be present)
• $SIGPROF

194 Onyx Manual Chapter 2

• $SIGSYS
• $SIGTRAP
• $SIGURG
• $SIGVTALRM (may not be present)
• $SIGXCPU
• $SIGXFSZ

Output(s):
sig: One of the signal names that was specified in set.

Error(s):
argcheck.
stackunderflow.
typecheck.

Description: Wait for one of the signals in set, and return the name of the signal that was
caught.

Example(s):
onyx:0> $SIG_BLOCK <$SIGXCPU true> sigmask
onyx:0> <$SIGXCPU true> sigwait
onyx:1> 1 sprint
$SIGXCPU
onyx:0>

a sin r:
Input(s):

a: An integer or real.
Output(s):

r: Sine of a in radians.
Error(s):

stackunderflow.
typecheck.

Description: Return the sine of a in radians.
Example(s):

onyx:0> 0 sin 1 sprint
0.000000e+00
onyx:0> 1.570796 sin 1 sprint
1.000000e+00
onyx:0> 0.7853982 sin 1 sprint
7.071068e-01
onyx:0>

a sinh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic sine of a.
Error(s):

stackunderflow.
typecheck.

2.11. DICTIONARY REFERENCE Jason Evans 195

Description: Return the hyperbolic sine of a.
Example(s):

onyx:0> 3 sinh 1 sprint
1.001787e+01
onyx:0>

stack index sipop obj:
Input(s):

stack: A stack object.
index: Offset from top of stack, counting from 0, of the object to remove from stack.

Output(s):
obj: An object removed from stack.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Remove the obj at index from stack.
Example(s):

onyx:0> (3 2 1 0) dup 2 sipop pstack
2
(3 1 0)
onyx:2>

stack count snbpop array:
Input(s):

stack: A stack object.
count: Number of objects to pop off the bottom of stack.

Output(s):
array: An array of objects popped off the bottom of stack, with the same object ordering as

when on stack.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Pop count objects off the bottom of stack and put them into an array.
Example(s):

onyx:0> (1 2 3 4) dup 2 snbpop pstack
[1 2]
(3 4)
onyx:2>

stack count sndn –:
Input(s):

stack: A stack object.
count: Number of objects on stack to rotate down one position.

Output(s): None.
Error(s):

196 Onyx Manual Chapter 2

stackunderflow.
typecheck.

Description: Rotate count objects on stack down one position.
Example(s):

onyx:0> (5 4 3 2 1 0) dup 4 sndn pstack
(5 4 2 1 0 3)
onyx:1>

stack count sndup –:
Input(s):

stack: A stack object.
count: Number of objects on stack to duplicate.

Output(s): None.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Create duplicates of the top count objects on stack.
Example(s):

onyx:0> (3 2 1 0) dup 2 sndup pstack
(3 2 1 0 1 0)
onyx:1>

stack snip obj:
Input(s):

stack: A stack object.
Output(s):

obj: The object that was the second to top object on stack.
Error(s):

stackunderflow.
typecheck.

Description: Remove the second to top object from stack.
Example(s):

onyx:0> (2 1 0) dup snip pstack
1
(2 0)
onyx:2>

stack count snpop array:
Input(s):

stack: A stack object.
count: Number of objects to pop off of stack.

Output(s):
array: An array of objects popped off of stack, with the same object ordering as when on

stack.
Error(s):

rangecheck.

2.11. DICTIONARY REFERENCE Jason Evans 197

stackunderflow.
typecheck.

Description: Pop count objects off of stack and put them into an array.
Example(s):

onyx:0> (1 2 3 4) dup 2 snpop pstack
[3 4]
(1 2)
onyx:2>

stack count snup –:
Input(s):

stack: A stack object.
count: Number of objects on stack to rotate up one position.

Output(s): None.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Rotate count objects on stack up one position.
Example(s):

onyx:0> (5 4 3 2 1 0) dup 4 snup pstack
(5 4 0 3 2 1)
onyx:1>

family type proto socket sock:

family type socket sock:
Input(s):

family: The name of a socket address family, either $AF INET or $AF LOCAL.
type: The name of a socket type, either $SOCK STREAM or $SOCK DGRAM.
proto: The name of a socket protocol. This argument is not useful, given the current lim-

ited choice of address families.
Output(s):

sock: A socket.
Error(s):

argcheck.
invalidaccess.
stackunderflow.
typecheck.
unregistered.

Description: Create a socket.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> $AF_LOCAL $SOCK_DGRAM socket
onyx:2>

family type proto socketpair sock sock:

family type socketpair sock sock:

198 Onyx Manual Chapter 2

Input(s):
family: The name of a socket address family, either $AF INET or $AF LOCAL.
type: The name of a socket type, either $SOCK STREAM or $SOCK DGRAM.
proto: The name of a socket protocol. This argument is not useful, given the current lim-

ited choice of address families.
Output(s):

sock: A connected socket. There are no functional differences between the two sockets that
are returned.

Error(s):
argcheck.
invalidaccess.
stackunderflow.
typecheck.
unregistered.

Description: Create a pair of sockets that are connected to each other.
Example(s):

onyx:0> $AF_LOCAL $SOCK_STREAM socketpair
onyx:2> pstack
-file-
-file-
onyx:2>

sock sockname dict:
Input(s):

sock: A socket.
Output(s):

dict: A dictionary of information about sock. Depending on the socket family, the following
entries may exist:
family: Socket family.
address: IPv4 address.
port: IPv4 port.
path: Unix-domain socket path.

Error(s):
argcheck.
ioerror.
neterror.
stackunderflow.
typecheck.
unregistered.

Description: Get information about sock.
Example(s):

onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup ‘localhost’ bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_INET $address 2130706433 $port 33745>
onyx:1> close
onyx:0> $AF_LOCAL $SOCK_STREAM socket

2.11. DICTIONARY REFERENCE Jason Evans 199

onyx:1> dup ‘/tmp/socket’ bindsocket
onyx:1> dup sockname 1 sprint
<$family $AF_LOCAL $path ‘/tmp/socket’>
onyx:1>

sock level optname sockopt optval:

sock optname sockopt optval:
Input(s):

sock: A socket.
level: Level at which to get the socket option. If not specified, $SOL SOCKET is used.
optname: Name of option to get the value of. The following option names are supported:

$SO DEBUG
$SO REUSEADDR
$SO REUSEPORT
$SO KEEPALIVE
$SO DONTROUTE
$SO BROADCAST
$SO OOBINLINE
$SO SNDBUF
$SO RCVBUF
$SO SNDLOWAT
$SO RCVLOWAT
$SO TYPE
$SO ERROR: optval is an integer.
$SO LINGER: optval is a dictionary, and the following entries are defined:

$on: Boolean.
$time: Linger time in seconds.

$SO SNDTIMEO
$SO RCVTIMEO: optval is an integer, in nanoseconds.

Output(s):
optval: Value associated with optname.

Error(s):
argcheck.
stackunderflow.
typecheck.
unregistered.

Description: Get a socket option.

Example(s):
onyx:0> $AF_INET $SOCK_STREAM socket
onyx:1> dup $SO_SNDBUF sockopt 1 sprint
16384
onyx:1>

stack sover –:
Input(s):

stack: A stack object.

200 Onyx Manual Chapter 2

Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Create a duplicate of the second object on stack and push it onto stack.
Example(s):

onyx:0> (2 1 0) dup sover pstack
(2 1 0 1)
onyx:1>

input pattern flags limit split array:

input pattern flags split array:

input pattern limit split array:

input pattern split array:

input regex limit split array:

input regex split array:
Input(s):

input: An input string to find matches in.
pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.
regex: A regex object.
limit: Split input into no more than limit substrings. 0 is treated as infinity. Defaults to 0.

Output(s):
array: An array of substrings containing the text between pattern matches.

Error(s):
rangecheck.
regexerror.
stackunderflow.
typecheck.

Description: Create an array of substrings from input that are separated by portions of input
that match a regular expression.
If there are capturing subpatterns in the regular expression, also create substrings for those
capturing subpatterns and insert them into the substring array.
As a special case, if the regular expression matches the empty string, split a single character.
This avoids an infinite loop.

Example(s):
onyx:0> ‘a:b:c’ ‘:’ split 1 sprint
[‘a’ ‘b’ ‘c’]
onyx:0> ‘a:b:c’ ‘:’ 2 split 1 sprint
[‘a’ ‘b:c’]
onyx:0> ‘a:b:c’ ‘(:)’ split 1 sprint

2.11. DICTIONARY REFERENCE Jason Evans 201

[‘a’ ‘:’ ‘b’ ‘:’ ‘c’]
onyx:0> ‘a:b:c’ ‘’ split 1 sprint
[‘a’ ‘:’ ‘b’ ‘:’ ‘c’]
onyx:0>

stack spop obj:
Input(s):

stack: A stack object.
Output(s):

obj: The object that was popped off of stack.
Error(s):

stackunderflow.
typecheck.

Description: Pop an object off of stack and push it onto ostack.
Example(s):

onyx:0> (1 2) dup spop
onyx:2> pstack
2
(1)
onyx:2>

obj depth sprint –:
Input(s):

obj: An object to print syntactically.
depth: Maximum recursion depth.

Output(s): None.
Error(s):

ioerror.
stackunderflow.
typecheck.

Description: Syntactically print obj. See Section 2.11.8 for printing details.
Example(s):

onyx:0> [1 [2 3] 4]
onyx:1> dup 0 sprint
-array-
onyx:1> dup 1 sprint
[1 -array- 4]
onyx:1> dup 2 sprint
[1 [2 3] 4]
onyx:1>

obj depth sprints string:
Input(s):

obj: An object to print syntactically.
depth: Maximum recursion depth.

Output(s):
string: A syntactical string representation of obj. See Section 2.11.8 for printing details.

Error(s):

202 Onyx Manual Chapter 2

stackunderflow.
typecheck.

Description: Create a syntactical string representation of obj.

Example(s):
onyx:0> [1 [2 3] 4]
onyx:1> dup 0 sprints print ‘\n’ print flush
-array-
onyx:1> dup 1 sprints print ‘\n’ print flush
[1 -array- 4]
onyx:1> dup 2 sprints print ‘\n’ print flush
[1 [2 3] 4]
onyx:1>

– sprintsdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Error(s): None.

Description: Get sprintsdict. See Section 2.11.8 for details on sprintsdict.

Example(s):
onyx:0> sprintsdict 0 sprint
-dict-
onyx:0>

stack obj spush –:
Input(s):

stack: A stack object.
obj: An object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Push obj onto stack.

Example(s):
onyx:0> (0) dup 1 spush
onyx:1> pstack
(0 1)
onyx:1>

a sqrt r:
Input(s):

a: A non-negative integer or real.

Output(s):
r: Square root of a.

Error(s):
rangecheck.
stackunderflow.

2.11. DICTIONARY REFERENCE Jason Evans 203

typecheck.
Description: Return the square root of a.

Example(s):
onyx:0> 4 sqrt 1 sprint
2.000000e+00
onyx:0> 2.0 sqrt 1 sprint
1.414214e+00
onyx:0>

seed srand –:
Input(s):

seed: A non-negative integer.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Seed the pseudo-random number generator with seed.

Example(s):
onyx:0> 5 srand
onyx:0>

stack count amount sroll –:
Input(s):

stack: A stack object.
count: Number of objects to roll in stack.
amount: Amount by which to roll. If positive, roll upward. If negative, roll downward.

Output(s): None.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Roll the top count objects on stack by amount positions. A positive amount indi-
cates an upward roll, whereas a negative amount indicates a downward roll.

Example(s):
onyx:0> (3 2 1 0)
onyx:1> dup 3 1 sroll pstack
(3 0 2 1)
onyx:1> dup 3 -2 sroll pstack
(3 1 0 2)
onyx:1> dup 4 0 sroll pstack
(3 1 0 2)
onyx:1>

stack amount srot –:
Input(s):

stack: One or more objects.

204 Onyx Manual Chapter 2

amount: Number of positions to rotate stack upward. A negative value causes downward
rotation.

Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Rotate stack up count positions.
Example(s):

onyx:0> (1 2 3 4 5) dup 2 srot 1 sprint
(4 5 1 2 3)
onyx:0> (1 2 3 4 5) dup -2 srot 1 sprint
(3 4 5 1 2)
onyx:0>

– stack stack:
Input(s): None.
Output(s):

stack: An empty stack object.
Error(s): None.
Description: Create a new stack object and push it onto ostack.
Example(s):

onyx:0> stack
onyx:1> pstack
()

obj start –:
Input(s):

obj: An object.
Output(s): None.
Error(s):

stackunderflow.
Description: Evaluate obj. This operator provides a context that silently terminates execution

stack unwinding due to the exit, quit, and stop operators.
Example(s):

onyx:0> stdin cvx start
onyx:0> quit
onyx:0>

file/filename status dict:
Input(s):

file: A file object.
filename: A string that represents a filename.

Output(s):
dict: A dictionary that contains the following entries:

dev: Inode’s device.
ino: Inode’s number.
mode: Inode permissions.

2.11. DICTIONARY REFERENCE Jason Evans 205

nlink: Number of hard links.
uid: User ID of the file owner.
gid: Group ID of the file owner.
rdev: Device type.
size: File size in bytes.
atime: Time of last access, in nanoseconds since the epoch.
mtime: Time of last modification, in nanoseconds since the epoch.
ctime: Time of last file status change, in nanoseconds since the epoch.
blksize: Optimal block size for I/O.
blocks: Number of blocks allocated.

Error(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
unregistered.

Description: Get status information about a file.
Example(s):

onyx:0> ‘/tmp’ status 1 sprint
<$dev 134405 $ino 2 $mode 17407 $nlink 5 $uid 0 $gid 0 $rdev 952 $size 3584
$atime 994883041000000000 $mtime 994883041000000000 $ctime 994883041000000000
$blksize 0 $blocks 8>
onyx:0>

– stderr file:
Input(s): None.
Output(s):

file: A file object corresponding to the calling thread’s stderr.
Error(s): None.
Description: Get the thread’s stderr. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> stderr pstack
-file-
onyx:1>

– stdin file:
Input(s): None.
Output(s):

file: A file object corresponding to the calling thread’s stdin.
Error(s): None.
Description: Get the thread’s stdin. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> stdin pstack
-file-
onyx:1>

– stdout file:

206 Onyx Manual Chapter 2

Input(s): None.
Output(s):

file: A file object corresponding to the calling thread’s stdout.
Error(s): None.
Description: Get the thread’s stdout. See Section 2.4 for standard I/O details.
Example(s):

onyx:0> stdout pstack
-file-
onyx:1>

– stop –:
Input(s): None.
Output(s): None.
Error(s): None.
Description: Unwind the execution stack to the innermost stopped or start context.
Example(s):

onyx:0> {stop} stopped 1 sprint
true
onyx:0>

obj stopped boolean:
Input(s):

obj: An object to evaluate.
Output(s):

boolean: True if stop operator was executed, false otherwise.
Error(s):

invalidcontinue.
invalidexit.
stackunderflow.

Description: Evaluate obj. This operator provides a context that terminates execution stack
unwinding due to the stop operator. It will also terminate execution stack unwinding due
to the continue and exit operators, but will throw an invalidcontinue or invalidexit error,
respectively, then do the equivalent of calling quit.

Example(s):
onyx:0> {stop} stopped 1 sprint
true
onyx:0> {} stopped 1 sprint
false
onyx:0>

length string string:
Input(s):

length: Non-negative number of bytes.
Output(s):

string: A string of length bytes.
Error(s):

rangecheck.

2.11. DICTIONARY REFERENCE Jason Evans 207

stackunderflow.
typecheck.

Description: Create a string of length bytes. The bytes are initialized to 0.

Example(s):
onyx:0> 3 string 1 sprint
‘\x00\x00\x00’
onyx:0>
onyx:0> 0 string 1 sprint
‘’
onyx:0>

stack stuck –:
Input(s):

stack: A stack object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Tuck duplicate of top object on stack under second object on stack.

Example(s):
onyx:0> (2 1 0) dup stuck pstack
(2 0 1 0)
onyx:1>

a b sub r:
Input(s):

a: An integer or real.
b: An integer or real.

Output(s):
r: The value of b subtracted from a.

Error(s):
stackunderflow.
typecheck.

Description: Subtract b from a and return the result.

Example(s):
onyx:0> 5 3 sub 1 sprint
2
onyx:0> -3 4 sub 1 sprint
-7
onyx:0> 5.1 1.1 sub 1 sprint
4.000000e+00
onyx:0> 5 1.0 sub 1 sprint
4.000000e+00
onyx:0> -3.0 4.1 sub 1 sprint
-7.100000e+00
onyx:0>

integer submatch substring:

208 Onyx Manual Chapter 2

Input(s):
integer:

0: Get substring of text that matched the regular expression.
>0: Get substring of text that matched the specified capturing subpattern.

Output(s):
substring: A substring of the string that was most recently matched by the match, split,

or subst operators.
Error(s):

stackunderflow.
typecheck.

Description: Get a substring of the input string that was most recently matched against.
Example(s):

onyx:0> ‘input’ ‘n(p)u’ match {0 submatch 1 sprint 1 submatch 1 sprint} if
‘npu’
‘p’
onyx:0>

input pattern template flags subst output count:

input pattern template subst output count:

input regsub subst output count:
Input(s):

input: An input string.
pattern: A string that specifies a regular expression. See Section 2.9 for syntax.
template: A string that specifies a substitution template. See Section 2.9 for syntax.
flags: A dictionary of optional flags:

$g: Substitute all matches, if true, rather than just the first match. Defaults to false.
$i: Case insensitive. Defaults to false.
$m: Treat input as a multi-line string. Defaults to false.
$s: Treat input as a single line, so that the dot metacharacter matches any character,

including a newline. Defaults to false.
regsub: A regsub object.

Output(s):
output: A string that is created by substituting substrings within input that match a reg-

ular expression.
count: Number of substitutions made. If 0 substitutions were made, then output is a du-

plicate of input, rather than a copy.
Error(s):

regexerror.
stackunderflow.
typecheck.

Description: Create a string by substituting according to a template for each substring within
input that matches a regular expression.

Example(s):
onyx:0> ‘Input String’ ‘([a-r])’ ‘[\1]’ <$g true> subst pstack
6
‘I[n][p]ut St[r][i][n][g]’
onyx:2>

2.11. DICTIONARY REFERENCE Jason Evans 209

stack sunder –:
Input(s):

stack: A stack object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Create a duplicate of the second object on stack and put it under the top object on
stack.

Example(s):
onyx:0> (2 1 0) dup sunder pstack
(2 1 1 0)
onyx:1>

stack sup –:
Input(s):

stack: A stack object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Rotate the top three objects on stack up one position.
Example(s):

onyx:0> (3 2 1 0) dup sup pstack
(3 0 2 1)
onyx:1>

class super super/null:
Input(s):

class: A class object.
Output(s):

super/null: A class or null object.
Error(s):

stackunderflow.
typecheck.

Description: Get the superclass of class.
Example(s):

onyx:0> class super 1 sprint
null
onyx:0> class dup vclass setsuper
onyx:1> super classname 1 sprint
$vclass
onyx:0>

filename linkname symlink –:
Input(s):

filename: A string that represents a filename.

210 Onyx Manual Chapter 2

linkname: A string that represents a filename.
Output(s): None.
Error(s):

invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Create a symbolic link from linkname to filename.
Example(s):

onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ ‘/tmp/bar’ symlink
onyx:0> ‘/tmp/bar’ ‘r’ open
onyx:1> readline
onyx:2> pstack
false
‘Hello’
onyx:2>

– tailopt boolean:
Input(s): None.
Output(s):

boolean: True if tail call optimization is enabled for this thread; false otherwise.
Error(s): None.
Description: Get whether tail call optimization is enabled for this thread.
Example(s):

onyx:0> tailopt 1 sprint
true
onyx:0>

args system status:
Input(s):

args: An array of strings. The first string in args is the path of the program to invoke, and
any additional array elements are passed as command line arguments to the invoked
program.

Output(s):
status: Exit code of terminated process. A negative value indicates that the process was

terminated by a signal (use the neg operator to get the signal number), and a non-
negative value is the exit code of a program that terminated normally.

Error(s):
rangecheck.
stackunderflow.
typecheck.

Description: Execute a program as a child process and wait for it to terminate.

2.11. DICTIONARY REFERENCE Jason Evans 211

Example(s):
onyx:0> [‘/usr/bin/which’ ‘onyx’] system
/usr/local/bin/onyx
onyx:1> 1 sprint
0
onyx:0>

– systemdict dict:
Input(s): None.
Output(s):

dict: A dictionary.
Error(s): None.
Description: Get systemdict. See Section 2.11.9 for details on systemdict.
Example(s):

onyx:0> systemdict 0 sprint
-dict-
onyx:0>

a sinh r:
Input(s):

a: An integer or real.
Output(s):

r: Tangent of a in radians.
Error(s):

rangecheck.
stackunderflow.
typecheck.

Description: Return the tangent of a in radians.
Example(s):

onyx:0> 0.785 tan 1 sprint
9.992040e-01
onyx:0>

a tanh r:
Input(s):

a: An integer or real.
Output(s):

r: Hyperbolic tangent of a.
Error(s):

stackunderflow.
typecheck.

Description: Return the hyperbolic tangent of a.
Example(s):

onyx:0> 3 tanh 1 sprint
9.950548e-01
onyx:0>

file tell offset:

212 Onyx Manual Chapter 2

Input(s):
fil: A file object.

Output(s):
offset: Offset of the file position pointer for file.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Get the file position pointer offset for file.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup tell 1 sprint
0
onyx:1> dup ‘Hello\n’ write
onyx:1> dup tell 1 sprint
6
onyx:1>

file/filename flag test boolean:
Input(s):

file: A file object.
filename: A string that represents a filename.
flag: A single-character string that represents the test to do on file or filename:

‘b’: Block special device?
‘c’: Character special device?
‘d’: Directory?
‘e’: Exists?
‘f’: Regular file?
‘g’: Setgid?
‘k’: Sticky?
‘p’: Named pipe?
‘r’: Readable?
‘s’: Size greater than 0?
‘t’: tty?
‘u’: Setuid?
‘w’: Write bit set?
‘x’: Executable bit set?
‘L’: Symbolic link?
‘O’: Owner matches effective uid?
‘G’: Group matches effective gid?
‘S’: Socket?

Output(s):
boolean: If true, the test evaluated to true; false otherwise.

Error(s):
invalidfileaccess.
ioerror.

2.11. DICTIONARY REFERENCE Jason Evans 213

rangecheck.
stackunderflow.
typecheck.
unregistered.

Description: Test a file for an attribute.

Example(s):
onyx:0> ‘/blah’ ‘e’ test 1 sprint
false
onyx:0> ‘/tmp’ ‘e’ test 1 sprint
true
onyx:0>

– this class/instance:
Input(s): None.

Output(s):
class: A class object.
instance: An instance object.

Error(s):
stackunderflow.

Description: Get the topmost object on cstack, which provides the context for execution of
invokable and fetchable objects.

Example(s):
onyx:0> $fooclass vclass <> <$foomethod {this:classname 1 sprint}> cdef
onyx:0> fooclass:foomethod
$fooclass
onyx:0>

stack entry thread thread:
Input(s):

stack: A stack that contains the contents for the new thread’s ostack.
entry: An initial object to execute in the new thread.

Output(s):
thread: A thread object that corresponds to the new thread.

Error(s):
stackunderflow.
typecheck.

Description: Create and run a new thread.

Example(s):
onyx:0> (1 2) {add 1 sprint} thread join ‘Done\n’ print flush
3
Done
onyx:0>

thread threadcstack stack:
Input(s):

thread: A thread object.

Output(s):

214 Onyx Manual Chapter 2

stack: The context stack belonging to thread.

Error(s):
stackunderflow.
typecheck.

Description: Get a reference to the context stack belonging to thread.

Example(s):
onyx:0> self threacdstack 1 sprint
()
onyx:0>

thread threaddstack stack:
Input(s):

thread: A thread object.

Output(s):
stack: The dictionary stack belonging to thread.

Error(s):
stackunderflow.
typecheck.

Description: Get a reference to the dictionary stack belonging to thread.

Example(s):
onyx:0> self threaddstack 1 sprint
(-dict- -dict- -dict- -dict-)
onyx:0>

thread threadestack stack:
Input(s):

thread: A thread object.

Output(s):
stack: The execution stack belonging to thread.

Error(s):
stackunderflow.
typecheck.

Description: Get a reference to the execution stack belonging to thread.

Example(s):
onyx:0> self threadestack 1 sprint
(-file- -array- --eval-- --ifelse-- -array- --for-- -array-)
onyx:0>

thread threadistack stack:
Input(s):

thread: A thread object.

Output(s):
stack: The index stack belonging to thread.

Error(s):
stackunderflow.
typecheck.

2.11. DICTIONARY REFERENCE Jason Evans 215

Description: Get a reference to the index stack belonging to thread.
Example(s):

onyx:0> self threadistack 1 sprint
(0 0 0 0 7 0 3)
onyx:0>

thread threadostack stack:
Input(s):

thread: A thread object.
Output(s):

stack: The operand stack belonging to thread.
Error(s):

stackunderflow.
typecheck.

Description: Get a reference to the operand stack belonging to thread.
Example(s):

onyx:0> self threadostack 1 sprint
(-stack- -stack- -stack- -stack-)
onyx:0>

– threadsdict dict:
Input(s): None.
Output(s):

dict: A dictionary. Each key is a thread reference. By default, each value is null, but this
need not be so, and the value can be redefined for debugging purposes.

Error(s): None.
Description: Get a dictionary containing references to all threads.
Example(s):

onyx:0> threadsdict 1 sprint
<-thread- null>
onyx:0>

name throw obj:
Input(s):

name: The name of an error.
Output(s):

obj: The object that was being executed when the error was thrown.
Error(s):

stackunderflow.
typecheck.
undefined.

Description: Throw an error, using the following steps:
1. Set newerror in the currenterror dictionary to true.
2. Set errorname in the currenterror dictionary to name.
3. Set ostack, dstack, estack, and istack in the currenterror dictionary to be current stack

snapshots.
4. Push the object that was being executed before throw was called onto ostack.

216 Onyx Manual Chapter 2

5. If there is an error handler in the errordict dictionary that corresponds to name, evaluate
it. Otherwise, evaluate errordict’s handleerror and stop operators.

Example(s):
onyx:0> $unregistered throw
Error $unregistered
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()
estack/istack trace (0..1):
0: -file-
1: --start--
onyx:1> pstack
-file-
onyx:1>

condition mutex timeout timedwait boolean:
Input(s):

condition: A condition object.
mutex: A mutex object that this thread currently owns.
timeout: Minimum number of nanoseconds to wait for condition.

Output(s):
boolean: If false, success, otherwise timeout.

Error(s):
stackunderflow.
typecheck.

Description: Wait on condition for at least timeout nanoseconds. mutex is atomically released
when the current thread blocks, then acquired again before the current thread runs again.
Using a mutex that the current thread does not own will result in undefined behavior (likely
crash).

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> 1000000000 timedwait 1 sprint unlock join
false
onyx:0> mutex condition 1 idup dup lock 1000000000 timedwait 1 sprint unlock
true
onyx:0>

file/string token false:

file/string token file/substring obj true:
Input(s):

file: A file that is used as onyx source code to scan a token from.
string: A string that is used as onyx source code to scan a token from.

Output(s):
file: The same file object that was passed in.
substring: The remainder of string after scanning a token.
obj: An object that was constructed by scanning a token.

2.11. DICTIONARY REFERENCE Jason Evans 217

false/true: If true, a token was successfully scanned, false otherwise.

Error(s):
stackunderflow.
syntaxerror.
typecheck.
undefined.

Description: Scan a token from a file or string, using onyx syntax rules. If a token is followed
by whitespace, one character of whitespace is consumed when the token is scanned.

Example(s):
onyx:0> ‘1 2’ token pstack clear
true
1
‘2’
onyx:0> ‘foo’ token pstack clear
true
foo
‘’
onyx:0> ‘foo ’ token pstack clear
true
foo
‘’
onyx:0> ‘foo ’ token pstack clear
true
foo
‘ ’
onyx:0> ‘foo$bar’ token pstack clear
true
foo
‘$bar’
onyx:0> ‘foo{}’ token pstack clear
true
foo
‘{}’
onyx:0> ‘ ’ token pstack clear
false
onyx:0>

obj trapped false:

obj trapped arg true:
Input(s):

obj: An object to evaluate.

Output(s):
arg: The argument that was passed to the escape operator that caused unwinding to this

trapped context.
false: The escape operator was not executed.
true: The escape operator was executed.

Error(s):
invalidcontinue.
invalidexit.

218 Onyx Manual Chapter 2

stackunderflow.
Description: Evaluate obj. This operator provides a context that snapshots the state of ostack,

dstack, and cstack, then restores those snapshotted states if the escape operator causes
the execution stack to unwind to the point where trapped was called. It will also termi-
nate execution stack unwinding due to the continue and exit operators, but will throw an
invalidcontinue or invalidexit error, respectively, then do the equivalent of calling quit.

Example(s):
onyx:0> {1 2 3 $arg escape} trapped {1 sprint} if
$arg
onyx:0> {1 2 3} trapped {1 sprint}{pstack clear} ifelse
3
2
1
onyx:0>

a trunc r:
Input(s):

a: An integer or real.
Output(s):

r: Integer created from a by discarding the fractional portion.
Error(s):

stackunderflow.
typecheck.

Description: Discard the fractional portion of a to create an integer, and return the result.
Example(s):

onyx:0> -1.51 trunc 1 sprint
-1
onyx:0> -1.49 trunc 1 sprint
-1
onyx:0> 0 trunc 1 sprint
0
onyx:0> 1.49 trunc 1 sprint
1
onyx:0> 1.51 trunc 1 sprint
1
onyx:0>

file length truncate –:
Input(s):

file: A file object.
length: New length for file.

Output(s): None.
Error(s):

ioerror.
rangecheck.
stackunderflow.
typecheck.

Description: Set the length of file to length. If this causes the file to grow, the appended bytes
will have the value zero.

2.11. DICTIONARY REFERENCE Jason Evans 219

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hello\n’
onyx:1> dup 3 truncate
onyx:1> dup 0 seek
onyx:1> dup 10 string read
onyx:3> pop 1 sprint
‘Hel’
onyx:1>

– true true:
Input(s): None.
Output(s):

true: The boolean value true.
Error(s): None.
Description: Return true.
Example(s):

onyx:0> true 1 sprint
true
onyx:0>

mutex trylock boolean:
Input(s):

mutex: A mutex object.
Output(s):

boolean: If false, mutex was successfully acquired. Otherwise the mutex acquisition failed.
Error(s):

stackunderflow.
typecheck.

Description: Try to acquire mutex, but return a failure immediately if mutex cannot be ac-
quired, rather than blocking.

Example(s):
onyx:0> mutex dup
onyx:2> trylock 1 sprint
false
onyx:1> trylock 1 sprint
true
onyx:0>

a b tuck b a b:
Input(s):

a: An object.
b: An object.

Output(s):

220 Onyx Manual Chapter 2

:
Error(s):

stackunderflow.
typecheck.

Description: Create a duplicate of the top object on ostack and put it under the second object
on ostack.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’
oonyx:3> tuck pstack
‘c’
‘b’
‘c’
‘a’
onyx:4>

obj type name:
Input(s):

obj: An object.

Output(s):
name: An executable name that corresponds to the type of obj:

array: arraytype.
boolean: booleantype.
condition: conditiontype.
dict: dicttype.
file: filetype.
fino: finotype.
handle: handletype.
integer: integertype.
mark: marktype.
mutex: mutextype.
name: nametype.
null: nulltype.
operator: operatortype.
pmark: pmarktype.
stack: stacktype.
string: stringtype.
thread: threadtype.

Error(s):
stackunderflow.

Description: Get a name that represent the type of obj.
Example(s):

onyx:0> true type 1 sprint
booleantype
onyx:0>

– uid uid:
Input(s): None.

2.11. DICTIONARY REFERENCE Jason Evans 221

Output(s):
uid: Process’s user ID.

Error(s): None.
Description: Get the process’s user ID.
Example(s):

onyx:0> uid 1 sprint
1001
onyx:0>

nmask umask omask:
Input(s):

nmask: Value to set umask to.
Output(s):

omask: Old umask.
Error(s):

stackunderflow.
typecheck.

Description: Set the process’s umask to nmask and return the old umask.
Example(s):

onyx:0> 8@777 umask <$b 8 $w 3 $p ‘0’> output ‘\n’ print flush
022
onyx:0>

dict key undef –:
Input(s):

dict: A dictionary.
val: A key in dict to undefine.

Output(s): None
Error(s):

stackunderflow.
typecheck.

Description: If key is defined in dict, undefine it.
Example(s):

onyx:0> $foo ‘foo’ def
onyx:0> currentdict $foo undef
onyx:0> currentdict $foo undef
onyx:0>

a b under a a b:
Input(s):

a: An object.
b: An object.

Output(s):
a: An object.
b: An object.

Error(s):
stackunderflow.

222 Onyx Manual Chapter 2

Description: Create a duplicate of the second object on ostack and put it under the top object
on ostack.

Example(s):
onyx:0> 0 1 2 under pstack
2
1
1
0
onyx:4>

boolean obj unless –:
Input(s):

boolean: A boolean.
obj: An object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Evaluate obj unless boolean is true.

Example(s):
onyx:0> false {‘yes’ 1 sprint} unless
‘yes’
onyx:0> true {‘yes’ 1 sprint} unless
onyx:0>

filename unlink –:
Input(s):

filename: A string that represents a filename.

Output(s): None.

Error(s):
invalidfileaccess.
ioerror.
stackunderflow.
typecheck.
undefinedfilename.
unregistered.

Description: Unlink filename.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w’ open
onyx:1> dup ‘Hello\n’ write
onyx:1> dup flushfile
onyx:1> close
onyx:0> ‘/tmp/foo’ unlink
onyx:0> ‘/tmp/foo’ ‘r’ open
Error $invalidfileaccess
ostack: (‘/tmp/foo’ ‘r’)
dstack: (-dict- -dict- -dict- -dict-)
cstack: ()

2.11. DICTIONARY REFERENCE Jason Evans 223

estack/istack trace (0..2):
0: --open--
1: -file-
2: --start--
onyx:3>

mutex unlock –:
Input(s):

mutex: A mutex object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Unlock mutex. Unlocking a mutex that the running thread does not own will
result in undefined behavior (likely crash).

Example(s):
onyx:0> mutex dup lock unlock
onyx:0>

key unsetenv –:
Input(s):

key: A name object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Unset key in the environment and in the envdict dictionary, if key is defined.
Example(s):

onyx:0> $foo ‘foo’ setenv
onyx:0> envdict $foo known 1 sprint
true
onyx:0> envdict $foo get 1 sprint
‘foo’
onyx:0> $foo unsetenv
onyx:0> envdict $foo known 1 sprint
false
onyx:0>

proc cond until –:
Input(s):

proc: An object to be repeatedly evaluated.
cond: An object that, when evaluated, places a boolean on ostack.

Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Repeatedly evaluate proc and cond, terminating the first time that cond places
false on ostack. This operator supports the continue and exit operators.

224 Onyx Manual Chapter 2

Example(s):
onyx:0> 0 {inc dup 1 sprint}{dup 3 lt} until pop
1
2
3
onyx:0> 0 {inc dup 1 sprint exit}{dup 3 lt} until pop
1
onyx:0>

a b c up c a b:
Input(s):

a: An object.
b: An object.
c: An object.

Output(s):
c: An object.
a: An object.
b: An object.

Error(s):
stackunderflow.

Description: Rotate the top three objects on ostack up one position.

Example(s):
onyx:0> ‘a’ ‘b’ ‘c’ ‘d’ up pstack
‘c’
‘b’
‘d’
‘a’
onyx:4>

– userdict dict:
Input(s): None.

Output(s):
dict: A dictionary.

Error(s): None.

Description: Get userdict. See Section 2.11.12 for details on userdict.

Example(s):
onyx:0> userdict 1 sprint
<>
onyx:0>

– vclass class:
Input(s): None.

Output(s):
dict: A class.

Error(s): None.

Description: Get vclass. See Section 2.12.1 for details on vclass.

2.11. DICTIONARY REFERENCE Jason Evans 225

Example(s):
onyx:0> vclass 1 sprint
-class-
onyx:0>

– version string:
Input(s): None.

Output(s):
string: A string that contains the version name.

Error(s): None.

Description: Get the version string. The string returned is a reference to the original version
string.

Example(s):
onyx:0> version pstack
‘1.0.0’
onyx:1>

condition mutex wait –:
Input(s):

condition: A condition object.
mutex: A mutex object that this thread currently owns.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Wait on condition. mutex is atomically released when the current thread blocks,
then acquired again before the current thread runs again. Using a mutex that the current
thread does not own will result in undefined behavior (likely crash).

Example(s):
onyx:0> condition mutex dup lock ostack
onyx:3> {dup lock exch signal unlock}
onyx:4> thread 3 1 roll
onyx:3> dup 3 1 roll
onyx:4> wait unlock join
onyx:0>

pid waitpid status:
Input(s):

pid: Process identifier.

Output(s):
status: Exit code of terminated process. A negative value indicates that the process was

terminated by a signal (use the neg operator to get the signal number), and a non-
negative value is the exit code of a program that terminated normally.

Error(s):
stackunderflow.
typecheck.

Description: Wait for the process with process ID pid to exit.

226 Onyx Manual Chapter 2

Example(s):
onyx:0> [‘/bin/date’] forkexec dup 1 sprint waitpid 1 sprint
6516
Sat Jul 13 20:47:54 PDT 2002
0
onyx:0>

key where false:

key where dict true:
Input(s):

key: A key to search for in dstack.

Output(s):
dict: The topmost dictionary in dstack that contains a definition for key.
false/true: If false, no definition of key was found in dstack. Otherwise dict is the topmost

dictionary in dstack that contains a definition for key.

Error(s):
stackunderflow.

Description: Get the topmost dictionary in dstack that defines key.

Example(s):
onyx:0> $foo where pstack clear
false
onyx:0> $threaddict where pstack clear
true
<$threaddict -dict- $userdict -dict- $currenterror -dict- $errordict -dict-
$resume -array->
onyx:0>

cond proc while –:
Input(s):

cond: An object that, when evaluated, places a boolean on ostack.
proc: An object to be repeatedly evaluated.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Repeatedly evaluate cond and proc, terminating the first time that cond places
false on ostack. This operator supports the continue and exit operators.

Example(s):
onyx:0> 0 {dup 3 lt}{inc dup 1 sprint} while pop
1
2
3
onyx:0> 0 {dup 3 lt}{inc dup 1 sprint exit} while pop
1
onyx:0>

file integer/string write false:

file integer/string write integer/substring true:

2.11. DICTIONARY REFERENCE Jason Evans 227

Input(s):
file: A file object.
integer: An integer that represents an ascii character value.
string: A string object.

Output(s):
false: Successful complete write.
integer: The integer that was passed in.
substring: The substring of string that was not written.
true: Successful partial write.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Write integer or string to file. Partial writes can only happen for non-blocking
files.

Example(s):
onyx:0> ‘/tmp/foo’ ‘w+’ open
onyx:1> dup ‘Hello\n’ write pop
onyx:1> dup 0 seek
onyx:1> dup readline 1 sprint 1 sprint
false
‘Hello’
onyx:1>

obj xcheck boolean:
Input(s):

obj: An object.
Output(s):

boolean: True if obj has the executable attribute, false otherwise.
Error(s):

stackunderflow.
Description: Check obj for executable attribute.
Example(s):

onyx:0> {1 2 3} xcheck 1 sprint
true
onyx:0> [1 2 3] xcheck 1 sprint
false
onyx:0>

obj xecheck boolean:
Input(s):

obj: An object.
Output(s):

boolean: True if obj has the executable or evaluable attribute, false otherwise.
Error(s):

stackunderflow.
Description: Check obj for executable or evaluable attribute.

228 Onyx Manual Chapter 2

Example(s):
onyx:0> {1 2 3} xecheck 1 sprint
true
onyx:0> {1 2 3} cve xecheck 1 sprint
true
onyx:0> [1 2 3] xecheck 1 sprint
false
onyx:0>

a b xor r:
Input(s):

a: An integer or boolean.
b: The same type as a.

Output(s):
r: If a and b are integers, their bitwise exclusive or, otherwise their logical exclusive or.

Error(s):
stackunderflow.
typecheck.

Description: Return the bitwise exclusive or of two integers, or the logical exclusive or of two
booleans.

Example(s):
onyx:0> true false xor 1 sprint
true
onyx:0> true true xor 1 sprint
false
onyx:0> 5 3 xor 1 sprint
6
onyx:0>

– yield –:
Input(s): None.
Output(s): None.
Error(s): None.
Description: Vuluntarily yield the processor, so that another thread or process may be run.
Example(s):

onyx:0> 0 100000 {1 add yield} repeat 1 sprint
100000
onyx:0>

2.11.10 threaddict

Each thread has its own threaddict, which is not shared with any other threads. threaddict is meant
to be used for thread-specific definitions that would otherwise go in systemdict.

2.11. DICTIONARY REFERENCE Jason Evans 229

Table 2.11: threaddict summary

Input(s)
Op/Proc/Var

Output(s)

Description

–
threaddict

dict

Get threaddict.

–
userdict

dict

Get userdict.

–
currenterror

dict

Get currenterror.

–
errordict

dict

Get errordict.

– currenterror dict:
Input(s): None.

Output(s):
dict: The currenterror dictionary. See Section 2.11.1 for details on currenterror.

Error(s): None.

Description: Get currenterror.

Example(s):
onyx:0> currenterror 0 sprint
-dict-
onyx:0>

– errordict dict:
Input(s): None.

Output(s):
dict: The errordict dictionary. See Section 2.11.3 for details on errordict.

Error(s): None.

Description: Get errordict.

Example(s):
onyx:0> errordict 0 sprint
-dict-
onyx:0>

– threaddict dict:
Input(s): None.

Output(s):
dict: The threaddict dictionary.

Error(s): None.

Description: Get threaddict.

230 Onyx Manual Chapter 2

Example(s):
onyx:0> threaddict 0 sprint
-dict-
onyx:0>

– userdict dict:
Input(s): None.
Output(s):

dict: The userdict dictionary. See Section 2.11.12 for details on userdict.
Error(s): None.
Description: Get userdict.
Example(s):

onyx:0> userdict 1 sprint
<>
onyx:0>

2.11.11 threadsdict

There is one entry in threadsdict for each thread. The key is the thread, and the value is null by
default. The value can be safely changed, which can be useful when debugging. However, the key
must not be changed, or garbage collection will trigger a horrible death, since the root set will not be
complete.

2.11.12 userdict

Each thread has its own userdict, which is not shared with any other threads. userdict is meant to be
used for general storage of definitions that do not need to be shared among threads. userdict starts out
empty when a thread is created.

2.12 Class reference

The following documents the classes that are built into Onyx.

2.12.1 vclass

The vclass class serves as a base class from which a class hierarchy can be built. Although there are no
mechanisms that force the use of vclass when constructing a class hierarchy, it usually makes sense to
do so, since the operators that implement object-oriented programming support provide mechanisms,
but almost no policy. vclass provides what little policy is needed, such as the naming and invocation of
constructors.

2.12. CLASS REFERENCE Jason Evans 231

Table 2.12: vclass summary

Input(s)
Method

Output(s)

Description

Class-context methods
–

new
instance

Constructor.

–
rnew

instance

Construction helper.

name
implementor

class/null

Get class that implements name.

name
implements

boolean

Does class implement name?

name
method

method

Get class method by name.

–
classname

name/null

Get class’s name.

name/null
setclassname

–

Set class’s name.

–
super

super/null

Get class’s superclass.

super/null
setsuper

–

Set class’s superclass.

–
methods

dict/null

Get methods dict for class.

dict/null
setmethods

–

Set methods dict for class.

Class/instance-context methods
–

data
dict/null

Get data for class/instance.

dict/null
setdata

–

Set data for class/instance.

key val
def

–

Define key as val in class/instance data dict.

key
undef

–

Undefine key in class/instance data dict.

Continued on next page...

232 Onyx Manual Chapter 2

Table 2.12: continued

Input(s)
Method

Output(s)

Description

Instance-context methods
–

isa
class/null

Get class for instance.

class/null
setisa

–

Set class for instance

class
kind

boolean

Is class in instance’s inheritance hierarchy?

– classname name/null:
Input(s): None.
Output(s):

name/null: A name or null object.
Error(s):

typecheck.
Description: Class-context method.

Call the classname operator.
Example(s):

onyx:0> vclass:classname 1 sprint
$vclass
onyx:0>

– data dict/null:
Input(s): None.
Output(s):

dict/null: A dict or null object.
Error(s):

typecheck.
Description: Class/instance-context method.

Call the data operator.
Example(s):

onyx:0> vclass:data 1 sprint
<>
onyx:0>

key val def –:
Input(s):

key: An object.
val: An object.

Output(s): None.

2.12. CLASS REFERENCE Jason Evans 233

Error(s):
stackunderflow.

Description: Class/instance-context method.
Define key as val in the data dictionary of the current class or instance.

Example(s):
onyx:0> $fooclass vclass <><$foo_get {,foo}> cdef
onyx:0> $foo ‘foo’ fooclass:def
onyx:0> fooclass:foo_get
onyx:1> 1 sprint
‘foo’
onyx:0>

name implementor class/null:
Input(s):

name: An object of any type, usually a name object.
Output(s):

class/null: A class or null object.
Error(s):

stackunderflow.
typecheck.

Description: Class-context method.
Call the implementor operator.

Example(s):
onyx:0> class dup vclass setsuper
onyx:1> $new exch :implementor:classname 1 sprint
$vclass
onyx:0>

name implements boolean:
Input(s):

name: An object of any type, usually a name object.
Output(s):

boolean: True if name is implemented by class, false otherwise.
Error(s):

stackunderflow.
typecheck.

Description: Class-context method.
Call the implements operator.

Example(s):
onyx:0> $new vclass:implements 1 sprint
true
onyx:0> $foo vclass:implements 1 sprint
false
onyx:0>

– isa class:
Input(s): None.
Output(s):

234 Onyx Manual Chapter 2

class/null: A class or null object.
Error(s):

typecheck.
Description: Instance-context method.

Call the isa operator.
Example(s):

onyx:0> instance isa 1 sprint
null
onyx:0> vclass:new:isa:classname 1 sprint
$vclass
onyx:0>

class kind boolean:
Input(s):

class: A class object.
Output(s):

boolean: True if class is in instance’s inheritance hierarchy, false otherwise.
Error(s):

typecheck.
Description: Instance-context method.

Call the kind operator.
Example(s):

onyx:0> $fooclass class dup vclass setsuper def
onyx:1> fooclass over:kind 1 sprint
true
onyx:1> vclass exch:kind 1 sprint
true
onyx:0>

name method method:
Input(s):

name: An object of any type, usually a name object.
Output(s):

method: The bottommost method associated with name in class’s inheritance hierarchy.
Error(s):

stackunderflow.
typecheck.
undefined.

Description: Class-context method.
Call the method operator.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> $new fooclass:method 1 sprint
{--instance-- --dup-- --dn-- --setisa-- --dup-- --dict-- --setdata--}
onyx:0>

– methods dict/null:
Input(s): None.

2.12. CLASS REFERENCE Jason Evans 235

Output(s):
dict/null: A dict or null object.

Error(s):
typecheck.

Description: Class-context method.
Call the methods operator.

Example(s):
onyx:0> vclass:methods 0 sprint
-dict-
onyx:0>

– new instance:
Input(s): None.

Output(s):
instance: An instance of class.

Error(s):
typecheck.

Description: Class-context method.
Constructor.

Example(s):
onyx:0> vclass:new 1 sprint
-instance-
onyx:0>

– rnew instance:
Input(s): None.

Output(s):
instance: An instance of class for which the superclass’s constructor has been called.

Error(s):
typecheck.

Description: Class-context method.
Recursively call superclass’s constructor (new). This method is typically only used internally
by constructors.

Example(s):
onyx:0> $fooclass vclass <><$new {:rnew}> cdef
onyx:0> fooclass:new:isa:classname 1 sprint
$fooclass
onyx:0>

name/null setclassname –:
Input(s):

name/null: A name or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

236 Onyx Manual Chapter 2

Description: Class-context method.
Call the setclassname operator.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> $fooclass fooclass:setclassname
onyx:0> fooclass:classname 1 sprint
$fooclass
onyx:0>

dict/null setdata –:
Input(s):

dict/null: A dict or null object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Class/instance-context method.
Call the setdata operator.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> <$foo ‘foo’> fooclass:setdata
onyx:0> fooclass:data 1 sprint
<$foo ‘foo’>
onyx:0>

class/null setisa –:
Input(s):

class/null: A class or null object.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Instance-context method.
Call the setisa operator.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> fooclass:new
onyx:1> vclass over:setisa
onyx:1> :isa:classname 1 sprint
$vclass
onyx:0>

dict/null setmethods –:
Input(s):

dict/null: A dict or null object.
Output(s): None.
Error(s):

stackunderflow.

2.12. CLASS REFERENCE Jason Evans 237

typecheck.
Description: Class-context method.

Call the setmethods operator.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> <$foo ‘foo’> fooclass:setmethods
onyx:0> fooclass:methods 1 sprint
<$foo ‘foo’>
onyx:0>

super/null setsuper –:
Input(s):

super/null: A class or null object.

Output(s): None.

Error(s):
stackunderflow.
typecheck.

Description: Class-context method.
Call the setsuper operator.

Example(s):
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> fooclass:super:classname 1 sprint
$vclass
onyx:0>

– super super/null:
Input(s): None.

Output(s):
super/null: A class or null object.

Error(s):
typecheck.

Description: Class-context method.
Call the super operator.

Example(s):
onyx:0> vclass:super 1 sprint
null
onyx:0> $fooclass class dup vclass setsuper def
onyx:0> fooclass:super:classname 1 sprint
$vclass
onyx:0>

key undef –:
Input(s):

key: An object.

Output(s): None.

Error(s):
stackunderflow.

238 Onyx Manual Chapter 2

Description: Class/instance-context method.
Undefine key in the data dictionary of the current class or instance.

Example(s):
onyx:0> $fooclass vclass <><$foo_get {,foo}> cdef
onyx:0> $foo ‘foo’ fooclass:def
onyx:0> fooclass:foo_get
onyx:1> 1 sprint
‘foo’
onyx:0> $foo fooclass:undef
onyx:0> fooclass:foo_get
Error $undefined
ostack: ()
dstack: (-dict- -dict- -dict- -dict-)
cstack: (-class-)
estack/istack trace (0..3):
0: ,foo
1: :foo_get
2: -file-
3: --start--
onyx:1>

2.12.2 mclass

The mclass class uses the singleton pattern to provide an application-wide interface for loading mod-
ules. Additionally, the mclass:modules method makes it possible to find out what modules are currently
loaded.

Table 2.13: mclass summary

Input(s)
Method

Output(s)

Description

Class-context methods
–

new
instance

Constructor.

–
singleton

instance

Get an mclass singleton instance.

Instance-context methods
modname

load
–

Load a module.

modname
unload notify

–

Notify the mclass singleton of a module unload.

–
modules

modules

Get loaded modules.

2.12. CLASS REFERENCE Jason Evans 239

modname load –:
Input(s):

modname: The name of a module.
Output(s): None.
Error(s):

invalidfileaccess.
ioerror.
limitcheck.
rangecheck.
stackunderflow.
typecheck.
undefinedfilename.

Description: Load the module named modname, and define the module name as the module in
currentdict.

Example(s):
onyx:0> $modclopt mclass:singleton:load
onyx:0>

o

– modules modules:
Input(s): None.
Output(s):

modules: A dictionary of module names associated with module instances.
Error(s): None.
Description: Get a dictionary of loaded modules.
Example(s):

onyx:0> mclass:singleton:modules 1 sprint
<$modprompt -instance=$module- $modclopt -instance=$module->
onyx:0>

– new instance:
Input(s): None.
Output(s):

instance: An instance of class.
Error(s):

typecheck.
Description: Constructor.
Example(s):

onyx:0> mclass:new 1 sprint
-instance-
onyx:0>

– singleton instance:
Input(s): None.
Output(s):

instance: An mclass singleton instance.

240 Onyx Manual Chapter 2

Error(s): None.
Description: Get an mclass singleton instance.
Example(s):

onyx:0> mclass:singleton 1 sprint
-instance=$mclass-
onyx:0>

modname unload notify –:
Input(s):

modname: The name of a module.
Output(s): None.
Error(s):

stackunderflow.
typecheck.

Description: Notify the mclass singleton of a module unload. This method is called by the
module:unload method, and isn’t normally called directly by application code.

Example(s): Following is the implementation of module:unload:

Unload the module.
#
#instance#
#- unload -
$unload {

Evaluate the pre-unload hook.
,pre_unload_hook eval

Iteratively undefine the module definitions, as recorded in the mdefs
dict.
,mdefs {

exch 0 get
#defdict #defname
undef

} foreach

Evaluate the post-unload hook.
,post_unload_hook eval

Notify mclass_singleton of the unload.
,name ,mclass_singleton:unload_notify

} bind

2.12.3 module

The module class works in conjunction with the mclass class to encapsulate loaded modules. Each
loaded module has a corresponding module instance, which can be used to query, configure, or unload
modules.

2.12. CLASS REFERENCE Jason Evans 241

Table 2.14: module summary

Input(s)
Method

Output(s)

Description

Class-context methods
–

new
instance

Constructor.

Instance-context methods
–

version get
version

Get module version.

version
version set

–

Set module version.

–
deps get

deps

Get module dependencies.

–
mdefs get

mdefs

Get module definitions.

defname defval defdict
mdef

–

Create module definition defname as defval in defdict.

depname
dep load

–

Load a dependency module.

hook
pre unload hook set

–

Store pre-unload hook.

hook
post unload hook set

–

Store post-unload hook.

–
unload

–

Unload module.

depname dep load –:
Input(s):

depname: The name of a module that this module depends on.
Output(s): None.
Error(s):

invalidfileaccess.
ioerror.
limitcheck.
rangecheck.
stackunderflow.
typecheck.

242 Onyx Manual Chapter 2

undefinedfilename.
Description: Load the module named depname, and record that this module depends on it.
Example(s):

modfoo/modfoo.nx :

$modclopt ;dep_load

$foo ‘foo’ systemdict ;mdef

onyx:0> mclass:singleton:modules 1 sprint
<$modprompt -instance=$module- $modclopt -instance=$module->
onyx:0> $modfoo mclass:singleton:load
onyx:0> mclass:singleton:modules 1 sprint
<$modprompt -instance=$module- $modclopt -instance=$module-
$modfoo -instance=$module->
onyx:0>

– deps get deps:
Input(s): None.
Output(s):

deps: A dictionary of module names associated with module instances.
Error(s): None.
Description: Get a dictionary of modules that this module depends on.
Example(s):

onyx:0> $modclopt mclass:singleton:load
onyx:0> modclopt:deps_get 1 sprint
<>
onyx:0>

– mdefs get mdefs:
Input(s): None.
Output(s):

mdefs: A dictionary of array keys, associated with the dictionaries in which the definitions
reside. Each array key is a tuple; the first array element is the definition key, and the
second array element is the definition value.

Error(s): None.
Description: Get a dictionary of definitions associated with this module.
Example(s):

onyx:0> $modclopt mclass:singleton:load
onyx:0> modclopt:mdefs_get 2 sprint
<[$clopt -class=$clopt-] <$modprompt -instance=$module- $clopt -class=$clopt-
$modclopt -instance=$module-> [$modclopt -instance=$module-] <$modprompt
-instance=$module- $clopt -class=$clopt- $modclopt -instance=$module->>
onyx:0>

defname defval mdef –:
Input(s):

defname: A definition key.
defval: A value to be associated with defname.

2.12. CLASS REFERENCE Jason Evans 243

defdict: A dictionary in which to define defname as defval.
Output(s): None.
Error(s):

typecheck.
Description: Define defname as defval in defdict.
Example(s):

modfoo/modfoo.nx :

$modclopt ;dep_load

$foo ‘foo’ systemdict ;mdef

onyx:0> $modfoo mclass:singleton:load
onyx:0> foo 1 sprint
‘foo’
onyx:0>

– new instance:
Input(s): None.
Output(s):

instance: An instance of class.
Error(s):

typecheck.
Description: Constructor.
Example(s):

onyx:0> module:new 1 sprint
-instance-
onyx:0>

hook post unload hook set –:
Input(s):

hook: An object to evaluate after unloading this module.
Output(s): None.
Error(s):

stackunderflow.
Description: Register a post-unload hook, which is evaluated after this module is unloaded.
Example(s):

onyx:0> $modclopt mclass:singleton:load
onyx:0> {‘Post-unload’ 1 sprint} modclopt:post_unload_hook_set
onyx:0> modclopt:unload
‘Post-unload’
onyx:0>

hook pre unload hook set –:
Input(s):

hook: An object to evaluate before unloading this module.
Output(s): None.
Error(s):

244 Onyx Manual Chapter 2

stackunderflow.

Description: Register a pre-unload hook, which is evaluated before this module is unloaded.

Example(s):
onyx:0> {‘Pre-unload’ 1 sprint} modclopt:pre_unload_hook_set
onyx:0> modclopt:unload
‘Pre-unload’
onyx:0>

– unload –:

Input(s): None.

Output(s): None.

Error(s): None, except errors caused by the evaluation of the pre- and post-unload hooks.

Description: Unload this module.

Example(s):
onyx:0> $modclopt mclass:singleton:load
onyx:0> modclopt:unload
onyx:0>

– version get version:

Input(s): None.

Output(s):
version: The version of this module.

Error(s): None.

Description: Get the version of this module.

Example(s):
onyx:0> $modclopt mclass:singleton:load
onyx:0> modclopt:version_get 1 sprint
0
onyx:0>

version version set –:

Input(s):
version: The version of this module.

Output(s): None.

Error(s):
stackunderflow.

Description:

Example(s):
onyx:0> $modclopt mclass:singleton:load
onyx:0> modclopt:version_get 1 sprint
0
onyx:0> 1 modclopt:version_set
onyx:0> modclopt:version_get 1 sprint
1
onyx:0>

2.13. MODULE REFERENCE Jason Evans 245

2.13 Module reference

The following documents the modules that are provided with Onyx.

2.13.1 modclopt

The modclopt module implements command line option parsing via the clopt class. Both short- and
long-style arguments are supported. There are also methods that aid in validating and converting
arguments.

An application implements a command line parser by loading the modclopt module, subclassing the
clopt class, and defining option-handling methods. At a minimum, this looks something like:

$modclopt mclass:singleton:load

$myopts clopt <
><

‘--help’ {
‘Help yourself’ ;error_print
1 die

}
> cdef

argv myopts:new:parse

There are five option formats. Handler methods “names” must be strings. The absence or presence
of the “:”, “?”, and “=” characters at the ends of the handler method names determines whether the
options take arguments:

‘-s’ : Handle a short-style argument (-s) that has no arguments.

’-S:’ : Handle a short-style argument (-S) that must have an argument.

‘--long’ : Handle a long-style option (--long) that has no arguments.

‘--Long?’ : Handle a long-style option (--Long) that has an optional argument.

‘--LONG=’ : Handle a long-style option (--LONG) that must have an argument.

The -- command line argument terminates argument parsing, and any remaining arguments are
returned by the parse method.

clopt subclasses vclass.

Table 2.15: clopt summary

Input(s)
Method

Output(s)

Description

Class-context methods
Continued on next page...

246 Onyx Manual Chapter 2

Table 2.15: continued

Input(s)
Method

Output(s)

Description

–
new

instance

Constructor.

Instance-context methods
argv

parse
remainder false

Successfully parse argv.

argv
parse

true

Unsuccessfully parse argv.

errstr
error print

–

Print an error.

errstr
error escape

–

Handle an error, and unwind to the parse method.

–
progname get

progname

Return the program name.

–
argv get

argv

Return argv.

–
index get

index

Return the current argv index.

–
flag get

flag

Return the current option flag.

–
arg get

arg

Return the current option argument.

enum
arg enum get

value

Map the current option argument to a value.

–
arg int get

int

Return the current option argument as an integer.

–
arg uint get

uint

Return the current option argument as an unsigned integer.

enum arg enum get value:
Input(s):

enum: A dictionary of string keys with associated values, as well as an optional $default
key and associated value.

Output(s):

2.13. MODULE REFERENCE Jason Evans 247

value: One of the values in enum.

Error(s):
stackunderflow.
typecheck.

Description: Map the current option argument to a value in enum, and return that value. This
method is only to be called from within an option handler.

Example(s):
arg enum get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--verbose?’ -
‘--verbose?’ {

‘Verbosity: ’ print
<

$default true
‘yes’ true
‘no’ false

> ;arg_enum_get
1 sprint

} bind
> cdef

argv myopts:new:parse

$./arg_enum_get.nx --verbose
Verbosity: true
$./arg_enum_get.nx --verbose=yes
Verbosity: true
$./arg_enum_get.nx --verbose=no
Verbosity: false
$

– arg get arg:
Input(s): None.

Output(s):
arg: A string if an argument was specified, null otherwise.

248 Onyx Manual Chapter 2

Error(s): None.
Description: Get the argument string associated with the current flag, or null if no argument

was specified. This method is only to be called from within an option handler.
Example(s):

arg get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

;arg_get null ne {
‘--foo --> ’ print
;arg_get 1 sprint

}{
‘--foo\n’ print

} ifelse
} bind

> cdef

argv myopts:new:parse

$./arg_get.nx --foo --foo= --foo=arg --foo
--foo
--foo --> ‘’
--foo --> ‘arg’
--foo
$

– arg int get int:
Input(s): None.
Output(s):

int: An integer.
Error(s): None.
Description: Return the current option argument as an integer. Perform input validation, and

cause the parse method to return an error if the argument cannot be converted to an integer.
This method is only to be called from within an option handler.

Example(s):

2.13. MODULE REFERENCE Jason Evans 249

arg int get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

‘--foo --> ’ print
;arg_int_get 1 sprint

} bind
> cdef

argv myopts:new:parse

$./arg_int_get.nx --foo=42 --foo=+43 --foo=-44 --foo=hi
--foo --> 42
--foo --> 43
--foo --> -44
arg_int_get.nx: Error parsing value ‘hi’ for option --foo
$

– arg uint get uint:

Input(s): None.

Output(s):

uint: An unsigned integer.

Error(s): None.

Description: Return the current option argument as an unsigned integer. Perform input vali-
dation, and cause the parse method to return an error if the argument cannot be converted
to an unsigned integer. This method is only to be called from within an option handler.

Example(s):

250 Onyx Manual Chapter 2

arg uint get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

‘--foo --> ’ print
;arg_uint_get 1 sprint

} bind
> cdef

argv myopts:new:parse

$./arg_uint_get.nx --foo=0 --foo=42 --foo=+43 --foo=-5
--foo --> 0
--foo --> 42
--foo --> 43
arg_uint_get.nx: Integer must be non-negative for option --foo
$

– argv get argv:

Input(s): None.

Output(s):

argv: An array of strings.

Error(s): None.

Description: Get the argument array that was passed in to the parse method. This method is
only to be called from within an option handler.

Example(s):

2.13. MODULE REFERENCE Jason Evans 251

argv get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

‘argv: ’ print
;argv_get 1 sprint

} bind
> cdef

argv myopts:new:parse

$./argv_get.nx --foo -- unprocessed args
argv: [‘./argv_get.nx’ ‘--foo’ ‘--’ ‘unprocessed’ ‘args’]
$

errstr error escape –:

Input(s):

errstr: An error string.

Output(s): None (does not return).

Error(s):

ioerror.

stackunderflow.

typecheck.

Description: Call the error print method, then clean up from an error, such that the parse
method returns an error.

Example(s):

252 Onyx Manual Chapter 2

error escape.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--bang’ -
‘--bang’ {

‘This is an arror string’ ;error_escape
} bind

> cdef

argv myopts:new:parse {
‘Parse error\n’ print

}{
‘Parse success\n’ print

} ifelse

$./error_escape.nx
Parse success
$./error_escape.nx --bang
error_escape.nx: This is an arror string
Parse error
$

errstr error print –:

Input(s):
errstr: An error string.

Output(s): None.

Error(s):
ioerror.
stackunderflow.
typecheck.

Description: Print errstr to stderr. This method is only to be called from within an option
handler.

Example(s):

2.13. MODULE REFERENCE Jason Evans 253

error print.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--bang’ -
‘--bang’ {

‘This is an arror string’ ;error_print
} bind

> cdef

argv myopts:new:parse

$./error_print.nx
$./error_print.nx --bang
error_print.nx: This is an arror string
$

– flag get flag:

Input(s): None.

Output(s):

flag: A string that contains the argument, including any leading dashes, but excluding any
trailing argument characters.

Error(s): None.

Description: Get the current argument flag. This method is only to be called from within an
option handler.

Example(s):

254 Onyx Manual Chapter 2

flag get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

‘--foo --> ’ print
;flag_get 1 sprint

} bind
> cdef

argv myopts:new:parse

$./flag_get.nx --foo --foo= --foo=blah
--foo --> ‘--foo’
--foo --> ‘--foo’
--foo --> ‘--foo’
$

– index get index:

Input(s): None.

Output(s):

index: Array index of current argument, within the array passed in to the parse method.

Error(s): None.

Description: Get the array index of the current argument, within the array passed in ot the
parse method. This method is only to be called from within an option handler.

Example(s):

2.13. MODULE REFERENCE Jason Evans 255

index get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

‘index: ’ print
;index_get 1 sprint

} bind
> cdef

argv myopts:new:parse

$./index_get.nx --foo --foo=42 --foo=
index: 1
index: 2
index: 3
$

– new instance:
Input(s): None.
Output(s):

instance: An instance of clopt.
Error(s): None.
Description: Constructor.
Example(s):

onyx:0> $modclopt mclass:singleton:load
onyx:0> clopt:new
onyx:1> 1 sprint
-instance=$clopt-
onyx:0>

argv parse remainder false:

argv parse true:
Input(s):

argv: An array of strings. The first element in the array is the program path, and the rest
of the array is arguments.

256 Onyx Manual Chapter 2

Output(s):

remainder: A subarray of argv that contains any remaining unprocessed arguments.

false: Success.

true: An error occurred during parsing.

Error(s):

stackunderflow.

typecheck.

Description: Parse the arguments contained in argv and call the appropriate argument han-
dler methods. Stop processing when there is an error, the -- argument is processed, or the
entire input array has been processed.

Example(s):

2.13. MODULE REFERENCE Jason Evans 257

parse.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

;arg_get null ne {
‘--foo --> ’ print
;arg_get 1 sprint

}{
‘--foo\n’ print

} ifelse
} bind

> cdef

argv myopts:new:parse {
‘Error\n’ print

}{
‘Success. Remainder: ’ print
1 sprint

} ifelse

$./parse.nx --foo --foo=bar
--foo
--foo --> ‘bar’
Success. Remainder: []
$./parse.nx --foo --foo=bar -- unprocessed arguments
--foo
--foo --> ‘bar’
Success. Remainder: [‘unprocessed’ ‘arguments’]
$./parse.nx --foo bang
--foo
Success. Remainder: [‘bang’]
$./parse.nx --foo --bang
parse.nx: Error interpreting option --bang
--foo
Error
$

258 Onyx Manual Chapter 2

– progname get progname:
Input(s): None.
Output(s):

progname: A string that is the basename of the first string in the argument array passed
to the parse method.

Error(s): None.
Description: Get the program name, which is the basename of the first string in the argument

array passed to the parse method. This method is only to be called from within an option
handler.

Example(s):
progname get.nx :

#!/usr/bin/env onyx

Load the clopt module.
$modclopt mclass:singleton:load

Subclass clopt and add option handlers.
$myopts clopt <
><

#class#
#- new #instance
$new {

;rnew
#instance

} bind

#instance#
#- ‘--foo?’ -
‘--foo?’ {

‘progname: ’ print
;progname_get 1 sprint

} bind
> cdef

argv myopts:new:parse

$./progname_get.nx --foo
progname: ‘progname_get.nx’
$

Chapter 3

The onyx program

onyx is a stand-alone Onyx interpreter, with an integrated command line editor. The Onyx language is
documented in a separate chapter, so this chapter documents only the differences from the main Onyx
language documentation.

3.1 Usage

onyx -h

onyx -V

onyx -e <expr>

onyx [-i <expr>]* [-f <file>]* [-s <expr>]

onyx <file> [<args>]

Option descriptions:

-h: Display usage information and exit.

-V: Display the version number and exit.

-e <expr>: Evaluate <expr> as Onyx code.

-i <expr>: Evaluate initialization <expr>.

-f <file>: Evaluate initialization <file>.

-s <expr>: Call start with <expr>, rather than with the stdin file.

3.2 Environment variables

ONYX EDITOR: By default, the command line editor uses emacs key bindings. Use this variable to
explicitly set the key bindings to either “emacs” or “vi”.

ONYXRC: If this variable is set to the name of a file, that file will be evaluated as part of the initial-
ization of interactive onyx sessions. A typical setting for this would be “∼/.onyxrc ”.

259

260 Onyx Manual Chapter 3

3.3 Initialization for interactive sessions

When onyx is run interactively, there are several stages of initialization, some of which can be con-
trolled directly by the user.

1. The interpreter is booted.

2. Standard I/O is set up.

3. The initial thread is created and used by all subsequent steps.

4. The initial thread’s stdin is modified to support interactive command line editing.

5. Language changes specific to interactive invocation are made (see Section 3.4).

6. Initialization expressions and scripts (specified by the -i and -s flags) are evaluated in the order
they are specified on the command line.

7. If the ONYXRCenvironment variable is set, then the contents of the file it specifies are evaluated.

8. stdin is evaluated.

3.4 Language differences

If onyx is being run interactively:

• The name “stop” is redefined in the initial thread’s errordict to recursively evaluate the stdin file
in a stopped context in order to keep the interpreter from exiting on error. It is possible (though
generally unlikely, since the user must type a very long line of code) for buffering of stdin to cause
strange things to occur; any additional program execution after an error is a result of this.

• The name “resume” is defined in the initial thread’s threaddict to clear the state snapshot stored
in currenterror, then call the stop operator. Thus, when an error occurs, when the user is ready
to continue running after addressing any issues the error caused, this provides a convenient way
to resume.

• The name “promptstring” is defined in systemdict; it takes no arguments and returns a string.
The return string is used as the interactive prompt. For the duration of the call to promptstring,
a temporary definition called “promptdict” is stored in the top dictionary on dstack, as a side
effect of the machinery that makes the interpreter somewhat resilient to errors during the call to
promptstring.

If onyx is being run non-interactively:

• The name “stop” in errordict is redefined to call the die operator with an argument of 1.

Chapter 4

The libonyx library

The libonyx library implements an embeddable Onyx interpreter. libonyx is designed to allow multiple
interpreter instances in the same program, though since Onyx is a multi-threaded language, in most
cases it makes more sense to use a single interpreter instance with multiple threads.

The Onyx language is described elsewhere in this manual, so this chapter documents the C API with
as little information about the Onyx language as possible.

A minimal program that runs the Onyx interpreter interactively looks like:

#include <libonyx/libonyx.h>

int
main(int argc, char **argv, char **envp)
{

cw_nx_t nx;
cw_nxo_t thread, *nxo;

/* Initialize libonyx and the Onyx interpreter. */
libonyx_init(argc, argv, envp);
nx_new(&nx, NULL);

/* Create a thread. */
nxo_thread_new(&thread, &nx);

/* Set up stdin for evaluation. */
nxo = nxo_stack_push(nxo_thread_ostack_get(&thread));
nxo_dup(nxo, nxo_thread_stdin_get(&thread));
nxo_attr_set(nxo, NXOA_EXECUTABLE);

/* Start the thread. */
nxo_thread_start(&thread);

/* Clean up. */
nx_delete(&nx);
libonyx_shutdown();
return 0;

}

261

262 Onyx Manual Chapter 4

In many cases, an application will need to implement additional Onyx operators or handles (and
make them accessible from within the Onyx interpreter) in order to make the application accessi-
ble/controllable from the Onyx interpreter. If the application user interface is to be interaction with
the Onyx interpreter, then little else needs to be done. Note that Onyx supports loadable modules, so it
is usually possible to extend Onyx via modules, though embedding libonyx directly into the application
also works.

4.1 Compilation

Use the following compiler command line to compile applications with libonyx.

cc ‘onyx_config --cppflags‘ <file> ‘onyx_config --ldflags --libs‘

4.2 Global variables

libonyx defines the following global variables, which can be used by the application:

cw g mema: mema instance, wraps the generic global allocator (also accessible via the mem APIs).

cw g nxaa: mema instance, wraps the global allocator that is tied to the garbage collector (also ac-
cessible via the nxa APIs).

4.3 Multiple interpreters

libonyx supports running multiple interpreters (encapsulated by the nx class) in the same process,
though as already mentioned, it usually makes more sense to use threads. The values associated
with argv and envdict are shared among all interpreters, but otherwise, no state is shared between
interpreters by default. However, since all interpreters share a single garbage collector, C code can
create references to the same Onyx object in more than one interpreter, and no problems will result
(normal object synchronization issues not withstanding).

4.4 Threads

libonyx encapsulates each interpreter instance in an nx object. An nx object supports running multiple
concurrent threads. Each thread context is encapsulated by an nxo thread object.

In general, each process thread should execute in its own nxo thread object context, though the only
explicit restriction placed on nxo thread object operations is that only one thread can be executing in an
nxo thread object context at a time. In other words, the nxo thread class does not synchronize access to
its internals, since there is normally no reason for multiple threads to execute in the same nxo thread
object context.

4.5. GARBAGE COLLECTION Jason Evans 263

4.5 Garbage collection

Since there can be arbitrary threads executing in the interpreter concurrently, there are two ways to
implement safe garbage collection: concurrent or atomic. libonyx uses atomic garbage collection, which
means that during the mark phase, the thread doing garbage collection suspends all other threads
that are created via thd new(..., true). In order for this to work, the garbage collector must not do any
locking while the other threads are suspended, or else there is a high probability of eventual deadlock.
libonyx itself meets these criteria, as must any C extensions to the interpreter that are executed by
the garbage collector during the mark phase (reference iteration).

4.6 Exceptions

libonyx reserves xep exception numbers 0 to 127 and defines the following exceptions:

CW ONYXX OOM: Memory allocation error.

CW ONYXX CONTINUE: Internal use, for the continue operator.

CW ONYXX ESCAPE: Internal use, for the escape operator.

CW ONYXX EXIT: Internal use, for the exit operator.

CW ONYXX STOP: Internal use, for the stop operator.

CW ONYXX QUIT: Internal use, for the quit operator.

4.7 Integration issues

4.7.1 Thread creation

libonyx’s garbage collector uses the thd class to suspend and resume all other threads during the mark
phase of atomic collection. For this to work, all threads that have any contact with libonyx must be
created as suspensible threads using the thd class.

This can cause integration headaches for existing threaded applications, but there is no other portable
way to suspend and resume threads. The only alternative is to assure that only one thread is executing
in the interpreter and to disable timeout-based (asynchronous) collection.

4.7.2 Restarted interrupted system calls

As mentioned above, libonyx uses thread suspension and resumption to implement garbage collection.
This has the side-effect of making restarted interrupted system calls a real possibility. However, the
operating system will return with a partial result if the system call was partially complete when it
was interrupted. In practice, what this means is that short reads and writes are possible where they
otherwise wouldn’t happen, so the application should not make any assumptions about interruptible
system calls always completing with a full result. See the thd class documentation for more details.

264 Onyx Manual Chapter 4

4.7.3 Signals

Depending on how libonyx is built, SIGUSR1 and SIGUSR2 may be reserved by the thd class for
thread suspension and resumption. Additionally, the SIGPIPE signal is ignored by default, since
socket operations can cause SIGPIPE signals, for which the library has no use.

4.8 Guidelines for writing extensions

When embedding libonyx in an application, it is usually desirable to add some operators so that the
interpreter can interact with the rest of the application. The libonyx source code contains hundreds
of operators that can be used as examples when writing new operators. However, there are some very
important rules that operators must follow, some of which may not be obvious when reading the code.

• Manually managed (malloc()/free()) memory should not be allocated unless the code is very care-
ful. If a function recurses into the interpreter (this includes calls to functions such as nxo thread nerror()),
there is the very real possibility that control will never return to the operator due to an exception.
Code must either catch all exceptions and clean up allocations, or not recurse into the interpreter.

• Composite objects should never be allocated on the C stack. The garbage collector has no knowl-
edge of such objects, so if the only reference to an object is on the C stack, the object may be
collected, which will lead to unpredictable program behavior. Instead of allocating objects on the
C stack, use tstack, available via nxo thread tstack get(), which is a per-thread stack that the
garbage collector scans.

• For an object to be safe from garbage collection, there must always be at least one reference to it
inside the interpreter. So, if C code obtains a pointer to a composite object, then destroys the last
known internal Onyx reference (pops it off a stack, redefines it in a dict, replaces an element of
an array, etc.), the pointer is no longer safe to use. The libonyx API is structured such that it is
invalid to do such a thing, for this reason.

• tstack must be cleaned up before returning from a function. This constraint is placed on the
code in order to avoid leaking space on tstack. In debug versions of libonyx, this is enforced by
assertions. The one exception to this rule has to do with xep exceptions, in which case the catchers
of the exceptions are responsible for cleaning up tstack. Therefore, it is not necessary to catch
exceptions merely to avoid tstack leakage.

Since Onyx type checking is dynamic, it is the responsibility of the operators to assure objects are
the correct type before calling any of the type-specific nxo *() functions. Failure to do so will result in
unpredictable behavior and likely crashes.

4.9 API
void libonyx init(int a argc, char **a argv, char **a envp):

Input(s):
a argc: Number of command line arguments.
a argv: Pointer to an array of command line argument strings.
a envp: Pointer to an array of environment variable strings.

Output(s): None.

4.9. API Jason Evans 265

Exception(s):
CW ONYXX OOM.

Description: Initialize various global state.

void libonyx shutdown(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Clean up the global variables that are initialized by libonyx init().

cw nxo t * libonyx argv get(void):

Input(s): None.
Output(s):

retval: Pointer to the nxo corresponding to argv .
Exception(s): None.
Description: Return a pointer to the nxo corresponding to argv .

cw nxo t * libonyx envdict get(void):

Input(s): None.
Output(s):

retval: Pointer to the nxo corresponding to envdict .
Exception(s): None.
Description: Return a pointer to the nxo corresponding to envdict .

cw nxo t * libonyx gcdict get(void):

Input(s): None.
Output(s):

retval: Pointer to the nxo corresponding to gcdict .
Exception(s): None.
Description: Return a pointer to the nxo corresponding to gcdict .

void * cw opaque alloc t(void *a arg, size t a size, const char *a filename, uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a size of space and return a pointer to it.

void * cw opaque calloc t(void *a arg, size t a number, size t a size, const char *a filename,
uint32 t a line num):

266 Onyx Manual Chapter 4

Input(s):
a arg: Opaque pointer.
a number: Number of elements to allocate.
a size: Size of each element to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a zeroed memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a zeroed array of a number objects, each a size bytes long, and return a
pointer to the array.

void * cw opaque realloc t(void *a arg, void *a ptr, size t a size, size t a old size, const char
*a filename, uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Reallocate a size of space and return a pointer to it.

void cw opaque dealloc t(void *a mem, void *a ptr, size t a size, const char *a filename,
uint32 t a line num):

Input(s):
a arg: Opaque pointer.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.

Exception(s): None.

Description: Deallocate the memory pointed to by a ptr.

void * cw opaque alloc(cw opaque alloc t *a func, void *a arg, size t a size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a size: Size of memory range to allocate.

4.9. API Jason Evans 267

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a size of space and return a pointer to it.

void * cw opaque calloc(cw opaque calloc t *a func, void *a arg, size t a number, size t a size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a number: Number of elements to allocate.
a size: Size of each element to allocate.

Output(s):
retval: Pointer to a zeroed memory range.

Exception(s):
CW ONYXX OOM.

Description: Allocate a zeroed array of a number objects, each a size bytes long, and return a
pointer to the array.

void * cw opaque realloc(cw opaque realloc t *a func, void *a arg, void *a ptr, size t a size,
size t a old size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: Reallocate a size of space and return a pointer to it.

void cw opaque dealloc(cw opaque dealloc t *a func, void *a mem, void *a ptr, size t a size):

Input(s):
a func: Opaque allocator function pointer.
a arg: Opaque pointer.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.

Output(s): None.
Exception(s): None.
Description: Deallocate the memory pointed to by a ptr.

void cw onyx code(cw nxo t *a thread, const char *a code):

Input(s):

268 Onyx Manual Chapter 4

a thread: Pointer to a thread nxo.
a code: A ”-delimited string constant.

Output(s): None.
Exception(s): Depends on actions of a code.
Description: Convenience macro for static embedded Onyx code.

void cw assert(expression):

Input(s):
expression: C expression that evaluates to zero or non-zero.

Output(s): Possible error printed to stderr.
Exception(s): None.
Description: If the expression evaluates to zero, print an error message to stderr and abort().

Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw dassert(expression):

Input(s):
expression: C expression that evaluates to zero or non-zero.

Output(s): Possible error printed to stderr.
Exception(s): None.
Description: If the expression evaluates to zero, print an error message to stderr and abort().

Note: This macro is only active if the CW ASSERT and CW DBG cpp macros are defined.

void cw not reached(void):

Input(s): None.
Output(s): Error printed to stderr.
Exception(s): None.
Description: Abort with an error message.

Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw check ptr(a pointer):

Input(s):
a pointer: A pointer.

Output(s): Possible error printed to stderr.
Exception(s): None.
Description: If a pointer is NULL, print an error message to stderr and abort().

Note: This macro is only active if the CW ASSERT cpp macro is defined.

void cw error(const char *a str):

Input(s):
a str: Pointer to a NULL-terminated character array.

Output(s): Contents of a str, followed by a carriage return, printed to stderr.
Exception(s): None.
Description: Print the contents of a str, followed by a carriage return, to stderr.

uint64 t cw ntohq(uint64 t a val):

4.10. CLASSES Jason Evans 269

Input(s):
a val: 64 bit integer.

Output(s):
retval: 64 bit integer.

Exception(s): None.

Description: Convert a val from network byte order to host byte order and return the result.

uint64 t cw htonq(uint64 t a val):

Input(s):
a val: 64 bit integer.

Output(s):
retval: 64 bit integer.

Exception(s): None.

Description: Convert a val from host byte order to network byte order and return the result.

uint32 t cw offsetof(<type> a type, <field name> a field):

Input(s):
a type: C structure type name.
a field: Name of a field within a type.

Output(s):
retval: Offset of a field into a type.

Exception(s): None.

Description: Calculate the offset of a field into a type and return the result.

4.10 Classes

4.10.1 ch

The ch class implements chained hashing. It uses a simple bucket chaining hash table implementation.
Table size is set at creation time, and cannot be changed, so performance will suffer if a ch object is
over-filled. The main cw ch t data structure and the table are contiguously allocated, which means
that care must be taken when manually pre-allocating space for the structure. Each item that is
inserted into the ch object is encapsulated by a chi object, for which space can optionally be passed in
as a parameter to ch insert(). If no space for the chi object is passed in, an opaque allocator function is
used internally for allocation.

Multiple entries with the same key are allowed and are stored in LIFO order.

The ch class is meant to be small and simple without compromising performance. Note that it is not
well suited for situations where the number of items can vary wildly; the dch class is designed for such
situations.

API

uint32 t CW CH TABLE2SIZEOF(uint32 t a table size):

270 Onyx Manual Chapter 4

Input(s):
a table size: Number of slots in the hash table.

Output(s):
retval: Size of a ch object with a table size slots.

Exception(s): None.
Description: Calculate the size of a ch object with a table size slots.

ch new(cw ch t *a ch, cw mema t *a mema, uint32 t a table size, cw ch hash t *a hash, cw ch key comp t
*a key comp):

Input(s):
a ch: Pointer to space for a ch with a table size slots, or NULL. Use the

CW CH TABLE2SIZEOF() macro to calculate the total space needed for a given table
size.

a mema: Pointer to a memory allocator.
a table size: Number of slots in the hash table.
a hash: Pointer to a hashing function.
a key comp: Pointer to a key comparison function.

Output(s):
retval: Pointer to a ch.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void ch delete(cw ch t *a ch):

Input(s):
a ch: Pointer to a ch.

Output(s): None.
Exception(s): None.
Description: Destructor.

uint32 t ch count(cw ch t *a ch):

Input(s):
a ch: Pointer to a ch.

Output(s):
retval: Number of items in a ch.

Exception(s): None.
Description: Return the number of items in a ch.

void ch insert(cw ch t *a ch, const void *a key, const void *a data, cw chi t *a chi):

Input(s):
a ch: Pointer to a ch.
a key: Pointer to a key.
a data: Pointer to data associated with a key.
a chi: Pointer to space for a chi, or NULL.

Output(s): None.

4.10. CLASSES Jason Evans 271

Exception(s):
CW ONYXX OOM.

Description: Insert a data into a ch, using key a key. Use a chi for the internal chi container
if non-NULL.

bool ch remove(cw ch t *a ch, const void *a search key, void **r key, void **r data, cw chi t
**r chi):

Input(s):
a ch: Pointer to a ch.
a search key: Pointer to the key to search with.
r key: Pointer to a key pointer, or NULL.
r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

false: Success.
true: Item with key a search key not found.

*r key: If (r key != NULL) and (retval == false), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == false), pointer to data. Otherwise, undefined.
*r chi: If (r chi != NULL) and (retval == false), pointer to space for a chi, or NULL.

Otherwise, undefined.

Exception(s): None.

Description: Remove the item from a ch that was most recently inserted with key
a search key. If successful, set *r key and *r data to point to the key, data, and externally
allocated chi, respectively.

void ch chi remove(cw ch t *a ch, cw chi t *a chi):

Input(s):
a ch: Pointer to a ch.
a chi: Pointer to a chi.

Output(s): None.

Exception(s): None.

Description: Remove the item from a ch that was inserted using a chi.

bool ch search(cw ch t *a ch, const void *a key, void **r data):

Input(s):
a ch: Pointer to a ch.
a key: Pointer to a key.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

false: Success.
true: Item with key a key not found in a ch.

*r data: If (r data != NULL) and (retval == false), pointer to data.

Exception(s): None.

272 Onyx Manual Chapter 4

Description: Search for the most recently inserted item with key a key. If found, *r data to
point to the associated data.

uint32 t ch string hash(const void *a key):

Input(s):
a key: Pointer to a key.

Output(s):
retval: Hash result.

Exception(s): None.
Description: NULL-terminated string hashing function.

uint32 t ch direct hash(const void *a key):

Input(s):
a key: Pointer to a key.

Output(s):
retval: Hash result.

Exception(s): None.
Description: Direct (pointer) hashing function.

bool ch string key comp(const void *a k1, const void *a k2):

Input(s):
a k1: Pointer to a key.
a k2: Pointer to a key.

Output(s):
retval:

false: Not equal.
true: Equal.

Exception(s): None.
Description: Test two keys (NULL-terminated strings) for equality.

bool ch direct key comp(const void *a k1, const void *a k2):

Input(s):
a k1: Pointer to a key.
a k2: Pointer to a key.

Output(s):
retval:

false: Not equal.
true: Equal.

Exception(s): None.
Description: Test two keys (pointers) for equality.

4.10.2 cnd

The cnd class implements condition variables, which can be used in conjunction with the mtx class to
wait for a condition to occur.

4.10. CLASSES Jason Evans 273

API

void cnd new(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to space for a cnd.

Output(s): None.
Exception(s): None.
Description: Constructor.

void cnd delete(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Destructor.

void cnd signal(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Signal one thread waiting on a cnd, if there are any waiters.

void cnd broadcast(cw cnd t *a cnd):

Input(s):
a cnd: Pointer to a cnd.

Output(s): None.
Exception(s): None.
Description: Signal all threads waiting on a cnd.

bool cnd timedwait(cw cnd t *a cnd, cw mtx t *a mtx, const struct timespec *a timeout):

Input(s):
a cnd: Pointer to a cnd.
a mtx: Pointer to a mtx.
a timeout: Timeout, specified as an absolute time interval.

Output(s):
retval:

false: Success.
true: Timeout.

Exception(s): None.
Description: Wait for a cnd for at least a time.

void cnd wait(cw cnd t *a cnd, cw mtx t *a mtx):

Input(s):
a cnd: Pointer to a cnd.

274 Onyx Manual Chapter 4

a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Wait for a cnd.

4.10.3 dch

The dch class implements dynamic chained hashing. The dch class is a wrapper around the ch class
that enforces fullness/emptiness constraints and rebuilds the hash table when necessary. Other than
this added functionality, the dch class behaves almost exactly like the ch class. See the ch class docu-
mentation for additional information.

API

dch new(cw dch t *a dch, cw mema t *a mema, uint32 t a base table, uint32 t a base grow,
uint32 t a base shrink, cw ch hash t *a hash, cw ch key comp t *a key comp):

Input(s):
a dch: Pointer to space for a dch, or NULL.
a mema: Pointer to a memory allocator.
a base table: Number of slots in the initial hash table.
a base grow: Maximum number of items to allow in a dch before doubling the hash table

size. The same proportions (in relation to a base table) are used to decide when to
double the table additional times.

a base shrink: Minimum proportional (with respect to a base table) emptiness to allow
in the hash table before cutting the hash table size in half.

a hash: Pointer to a hashing function.
a key comp: Pointer to a key comparison function.

Output(s):
retval: Pointer to a dch.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void dch delete(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s): None.

Exception(s): None.

Description: Destructor.

uint32 t dch count(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s):

4.10. CLASSES Jason Evans 275

retval: Number of items in a dch.

Exception(s): None.

Description: Return the number of items in a dch.

bool dch shrinkable get(cw dch t *a dch):

Input(s):
a dch: Pointer to a dch.

Output(s):
retval:

true: a dch is currently shrinkable (initial default).
false: a dch is not currently shrinkable, so no attempt will be made to shrink the hash

table in dch remove() or dch remove iterate().

Exception(s): None.

Description: Return whether a dch is currently shrinkable.

void dch shrinkable set(cw dch t *a dch, bool a shrinkable):

Input(s):
a dch: Pointer to a dch.
a shrinkable:

true: Set a dch to be shrinkable.
false: Set a dch to not be shrinkable. No attempt will be made to shrink the hash

table in dch remove() or dch remove iterate() while in this state.

Output(s): None.

Exception(s): None.

Description: Set whether a dch should try to shrink the hash table in dch remove() and
dch remove iterate().

void dch insert(cw dch t *a dch, const void *a key, const void *a data, cw chi t *a chi):

Input(s):
a dch: Pointer to a dch.
a key: Pointer to a key.
a data: Pointer to data associated with a key.
a chi: Pointer to space for a chi, or NULL.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Insert a data into a dch, using key a key. Use a chi for the internal chi
container if non-NULL.

bool dch remove(cw dch t *a dch, const void *a search key, void **r key, void **r data, cw chi t
**r chi):

Input(s):
a dch: Pointer to a dch.
a search key: Pointer to the key to search with.
r key: Pointer to a key pointer, or NULL.

276 Onyx Manual Chapter 4

r data: Pointer to a data pointer, or NULL.
r chi: Pointer to a chi pointer, or NULL.

Output(s):
retval:

false: Success.
true: Item with key a search key not found.

*r key: If (r key != NULL) and (retval == false), pointer to a key. Otherwise, undefined.
*r data: If (r data != NULL) and (retval == false), pointer to data. Otherwise, undefined.
*r chi: If (r chi != NULL) and (retval == false), pointer to space for a chi, or NULL.

Otherwise, undefined.

Exception(s): None.

Description: Remove the item from a dch that was most recently inserted with key
a search key. If successful, set *r key and *r data to point to the key, data, and externally
allocated chi, respectively.

bool dch chi remove(cw dch t *a dch, cw chi t *a chi):

Input(s):
a dch: Pointer to a dch.
a chi: Pointer to a chi.

Output(s): None.

Exception(s): None.

Description: Remove the item from a dch that was inserted using a chi.

bool dch search(cw dch t *a dch, const void *a key, void **r data):

Input(s):
a dch: Pointer to a dch.
a key: Pointer to a key.
r data: Pointer to a data pointer, or NULL.

Output(s):
retval:

false: Success.
true: Item with key a key not found in a dch.

*r data: If (r data != NULL) and (retval == false), pointer to data.

Exception(s): None.

Description: Search for the most recently inserted item with key a key. If found, *r data to
point to the associated data.

4.10.4 mb

The mb class implements memory barriers. A memory barrier is a low level construct that is some-
times useful for guaranteeing the order in which memory operations take place, even when multiple
microprocessors are involved. In most cases, mutexes are the best choice for synchronizing data ac-
cess, but sometimes it is convenient (and critical to performance) to use memory barriers where weaker
access constraints are adequate.

4.10. CLASSES Jason Evans 277

API

void mb write(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Create a write barrier, so that any memory writes done before the memory
barrier are guaranteed to be visible by the time any memory writes after the memory
barrier become visible.

4.10.5 mem

The mem class implements a memory allocation (malloc) wrapper. For the debug version of libonyx,
extra information is hashed for each memory allocation that allows tracking of the following:

• File/line number of allocation.

• Double allocation/deallocation of the same address.

• Memory leaks (memory left allocated at mem destruction time).

If any memory leaks are detected, diagnostic output is printed to stderr.

Also, the debug version of libonyx sets all newly allocated bytes to 0xa5 , and all deallocated bytes to
0x5a (except in the case of mem calloc()). This tends to cause things to break sooner when uninitialized
or deallocated memory is referenced.

In general, the mem class doesn’t need to be used directly. Instead, there are several preprocessor
macros that can be used: cw malloc(), cw calloc(), cw realloc(), and cw free().

The mema class encapsulates a set of pointers to allocation functions. It is used by the ch and dch
classes.

API

cw mema t * mema new(cw mema t *a mema, cw opaque alloc t *a alloc, cw opaque calloc t
*a calloc, cw opaque realloc t *a realloc, cw opaque dealloc t *a dealloc, void *a arg):

Input(s):
a mema: Pointer to space for a mema, or NULL.
a alloc: Pointer to an allocation function.
a alloc: Pointer to a zero-ing allocation function.
a alloc: Pointer to a reallocation function.
a dealloc: Pointer to a deallocation function.
a arg: Opaque pointer to pass to a alloc(), a calloc(), a realloc(), and a dealloc().

Output(s):
retval: Pointer to a mema.

Exception(s):

278 Onyx Manual Chapter 4

CW ONYXX OOM.
Description: Constructor.

void mema delete(cw mema t *a mema):

Input(s):
a mema: Pointer to a mema.

Output(s): None.

Exception(s): None.

Description: Destructor.

cw opaque alloc t * mema alloc get(cw mema t *a mema):

Input(s):
a mema: Pointer to a mema.

Output(s):
retval: Pointer to an allocation function.

Exception(s): None.

Description: Return a pointer to an allocation function.

cw opaque calloc t * mema calloc get(cw mema t *a mema):

Input(s):
a mema: Pointer to a mema.

Output(s):
retval: Pointer to a zero-ing allocation function.

Exception(s): None.

Description: Return a pointer to a zero-ing allocation function.

cw opaque realloc t * mema realloc get(cw mema t *a mema):

Input(s):
a mema: Pointer to a mema.

Output(s):
retval: Pointer to a reallocation function.

Exception(s): None.

Description: Return a pointer to a reallocation function.

cw opaque dealloc t * mema dealloc get(cw mema t *a mema):

Input(s):
a mema: Pointer to a mema.

Output(s):
retval: Pointer to a deallocation function.

Exception(s): None.

Description: Return a pointer to a deallocation function.

cw opaque arg t * mema arg get(cw mema t *a mema):

Input(s):

4.10. CLASSES Jason Evans 279

a mema: Pointer to a mema.

Output(s):
retval: Opaque pointer to pass to a alloc(), a calloc(), a realloc(), and a dealloc().

Exception(s): None.

Description: Return an opaque pointer to pass to the allocation functions returned by
mema alloc get(a mema), mema calloc get(a mema), mema realloc get(a mema), and
mema dealloc get(a mema).

void * mem malloc e(cw mem t *a mem, size t a size, const char *a filename, uint32 t a line num):
void * mem malloc(cw mem t *a mem, size t a size):
void * cw malloc(size t a size):

Input(s):
a mem: Pointer to a mem, or NULL.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: malloc() wrapper.

void * mem calloc e(cw mem t *a mem, size t a number, size t a size, const char *a filename,
uint32 t a line num):
void * mem calloc(cw mem t *a mem, size t a number, size t a size):
void * cw calloc(size t a number, size t a size):

Input(s):
a mem: Pointer to a mem, or NULL.
a number: Number of elements to allocate.
a size: Size of each element to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a zeroed memory range.

Exception(s):
CW ONYXX OOM.

Description: calloc() wrapper.

void * mem realloc e(cw mem t *a mem, void *a ptr, size t a size, size t a old size, const char
*a filename, uint32 t a line num):
void * mem realloc(cw mem t *a mem, void *a ptr, size t a size):
void * cw realloc(void *a ptr, size t a size):

Input(s):
a mem: Pointer to a mem, or NULL.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.

280 Onyx Manual Chapter 4

a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: realloc() wrapper.

void mem free e(cw mem t *a mem, void *a ptr, size t a size, const char *a filename, uint32 t
a line num):
void mem free(cw mem t *a mem, void *a ptr, size t a size):
void cw free(void *a ptr):

Input(s):
a mem: Pointer to a mem, or NULL.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: free() wrapper.

4.10.6 mq

The mq class implements a simple unidirectional message queue. In addition to putting and getting
messages, there are methods that control the ability to get or put. This provides a simple out of band
state transition capability.

API

void mq new(cw mq t *a mq, cw mema t *a mema, uint32 t a msg size):

Input(s):
a mq: Pointer to space for a mq.
a mema: Pointer to a memory allocator to use internally.
a msg size: Size (in bytes) of messages used for all subsequent calls to mq *get() and

mq put().
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void mq delete(cw mq t *a mq):

Input(s):

4.10. CLASSES Jason Evans 281

a mq: Pointer to a mq.
Output(s): None.
Exception(s): None.
Description: Destructor.

bool mq tryget(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: Pointer to space to store a message.

Output(s):
retval:

false: Success.
true: No messages in the queue, or get is in the stop state.

*...: If retval is false, a message. Otherwise, undefined.
Exception(s): None.
Description: Try to get a message, but return true if none are available.

bool mq timedget(cw mq t *a mq, const struct timespec *a timeout, ...):

Input(s):
a mq: Pointer to a mq.
a timeout: Timeout, specified as an absolute time interval.
...: Pointer to space to store a message.

Output(s):
retval:

false: Success.
true: No messages in the queue, or get is in the stop state.

*...: If retval is false, a message. Otherwise, undefined.
Exception(s): None.
Description: Get a message. If none are available, block until a message is available, or until

timeout.

cw bol t mq get(cw mq t *a mq, ...):

Input(s):
a mq: Pointer to a mq.
...: Pointer to space to store a message.

Output(s):
retval:

false: Success.
true: Get is in the stop state.

*...: If retval is false, a message. Otherwise, undefined.
Exception(s): None.
Description: Get a message. If none are available, block until a message is available.

bool mq put(cw mq t *a mq, ...):

Input(s):

282 Onyx Manual Chapter 4

a mq: Pointer to a mq.
...: A message.

Output(s):
retval:

false: Success.
true: Failure due to put being in the stop state.

Exception(s):
CW ONYXX OOM.

Description: Put a message in a mq.

bool mq get start(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

false: Success.
true: Error (already in start state).

Exception(s): None.
Description: Change the get operation to the start state (mq get() will not return true).

bool mq get stop(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

false: Success.
true: Error (already in stop state).

Exception(s): None.
Description: Change the get operation to the stop state (mq get() will return true).

bool mq put start(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

false: Success.
true: Error (already in start state).

Exception(s): None.
Description: Change the put operation to the start state (mq put() will not return true).

bool mq put stop(cw mq t *a mq):

Input(s):
a mq: Pointer to a mq.

Output(s):
retval:

4.10. CLASSES Jason Evans 283

false: Success.
true: Error (already in stop state).

Exception(s): None.

Description: Change the put operation to the stop state (mq put() will return true).

4.10.7 mtx

The mtx class implements typical mutual exclusion locks. Only one thread can hold a lock at a time,
and attempting to attain the lock while already owning it has undefined results.

API

void mtx new(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to space for a mtx.

Output(s): None.

Exception(s): None.

Description: Constructor.

void mtx delete(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Destructor.

void mtx lock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Lock a mtx.

bool mtx trylock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s):
retval:

false: Success.
true: Failure.

Exception(s): None.

284 Onyx Manual Chapter 4

Description: Try to lock a mtx, but return immediately instead of blocking if a mtx is already
locked.

void mtx unlock(cw mtx t *a mtx):

Input(s):
a mtx: Pointer to a mtx.

Output(s): None.

Exception(s): None.

Description: Unlock a mtx.

4.10.8 nx

The nx class encapsulates an Onyx interpreter instance. It contains a number of interpreter-global
objects. The garbage collector is shared among all nx instances, so when an nx is destroyed, only the
objects which no other nx references are destroyed.

API

void cw thread start t(cw nxo t *a thread, cw op t *a start):

Input(s):
a thread: Pointer to a thread nxo.
a start: Pointer to a start function.

Output(s): None.

Exception(s): Application dependent.

Description: Type definition for a callback function that is called by nxo thread start(). This
function must call a start, which is the actual start function.
The main use for a start callback function is to create a top level xep exception handling
context for each thread.

cw nx t * nx new(cw nx t *a nx, cw op t *a thread init, cw thread start t *a thread start):

Input(s):
a nx: Pointer to space for an nx, or NULL.
a thread init: Pointer to an initialization function to be called during thread

initialization, or NULL.
a thread start: Pointer to a thread start callback function to be called by

nxo thread start(), or NULL. See the cw thread start t documentation for details.

Output(s):
retval: Pointer to an nx.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nx delete(cw nx t *a nx):

Input(s): Pointer to an nx.

4.10. CLASSES Jason Evans 285

Output(s): None.

Exception(s): None.

Description: Destructor.

cw nxoi t nx maxestack get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Default maximum estack depth.

Exception(s): None.

Description: Return the default maximum allowable estack depth. This value is used when
creating new threads.

void nx maxestack set(cw nx t *a nx, cw nxoi t a maxestack):

Input(s):
a nx: Pointer to an nx.
a maxestack: Default maximum estack depth.

Output(s): None.

Exception(s): None.

Description: Set a nx’s default maximum allowable estack depth to a maxestack.

bool nx tailopt get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Default tail optimization setting.

Exception(s): None.

Description: Return the default tail optimization setting. This value is used when creating
new threads.

void nx tailopt set(cw nx t *a nx, bool a tailopt):

Input(s):
a nx: Pointer to an nx.
a tailopt: Default tail optimization setting.

Output(s): None.

Exception(s): None.

Description: Set a nx’s default tail optimization setting to a tailopt.

cw nxo t * nx systemdict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to systemdict .

Exception(s): None.

286 Onyx Manual Chapter 4

Description: Return a pointer to the nxo corresponding to systemdict .

cw nxo t * nx globaldict get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to globaldict .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to globaldict .

cw nxo t * nx stdin get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stdin .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stdin .

void nx stdin set(cw nx t *a nx, cw nxo t *a stdin):

Input(s):
a nx: Pointer to an nx.
a stdin: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nx’s stdin to a stdin.

cw nxo t * nx stdout get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

Output(s):
retval: Pointer to the nxo corresponding to stdout .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stdout .

void nx stdout set(cw nx t *a nx, cw nxo t *a stdout):

Input(s):
a nx: Pointer to an nx.
a stdout: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nx’s stdout to a stdout.

cw nxo t * nx stderr get(cw nx t *a nx):

Input(s):
a nx: Pointer to an nx.

4.10. CLASSES Jason Evans 287

Output(s):
retval: Pointer to the nxo corresponding to stderr .

Exception(s): None.
Description: Return a pointer to the nxo corresponding to stderr .

void nx stderr set(cw nx t *a nx, cw nxo t *a stderr):

Input(s):
a nx: Pointer to an nx.
a stderr: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nx’s stderr to a stderr.

4.10.9 nxa

The nxa class implements garbage collection. The garbage collector runs a separate thread that is
controlled via an asynchronous message queue.

API

void * nxa malloc e(void *a arg, size t a size, const char *a filename, uint32 t a line num):
void * nxa malloc(size t a size):

Input(s):
a arg: Unused.
a size: Size of memory range to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: malloc() wrapper.

void * nxa calloc e(void *a arg, size t a number, size t a size, const char *a filename, uint32 t
a line num):
void * nxa calloc(size t a number, size t a size):

Input(s):
a arg: Unused.
a number: Number of elements to allocate.
a size: Size of each element to allocate.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a zeroed memory range.

288 Onyx Manual Chapter 4

Exception(s):
CW ONYXX OOM.

Description: calloc() wrapper.

void * nxa realloc e(void *a arg, void *a ptr, size t a size, size t a old size, const char *a filename,
uint32 t a line num):
void * nxa realloc(void *a ptr, size t a size, size t a old size):

Input(s):
a arg: Unused.
a ptr: Pointer to memory range to be reallocated.
a size: Size of memory range to allocate.
a old size: Size of memory range previously pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s):
retval: Pointer to a memory range.

Exception(s):
CW ONYXX OOM.

Description: realloc() wrapper.

void * nxa free e(void *a arg, void *a ptr, size t a size, const char *a filename, uint32 t a line num):
void * nxa free(void *a ptr, size t a size):

Input(s):
a arg: Unused.
a ptr: Pointer to to memory range to be freed.
a size: Sizef of memory range pointed to by a ptr.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s): None.
Description: free() wrapper.

void nxa collect(void):

Input(s): None.
Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Force an asynchronous garbage collection.

bool nxa active get(void):

Input(s): None.
Output(s):

retval:
false: Garbage collector deactivated.
true: Garbage collector active.

4.10. CLASSES Jason Evans 289

Exception(s): None.

Description: Return whether the garbage collector is active (runnable).

void nxa active set(bool a active):

Input(s):
a active:

false: Deactivate garbage collector.
true: Activate garbage collector.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Send a message to the garbage collector to activate or deactivate. The
asynchronous nature of the message means that it is possible for the garbage collector to
run after this function returns, even if a deactivation message has been sent.

cw nxoi t nxa period get(void):

Input(s): None.

Output(s):
retval: Current inactivity period in seconds that the garbage collector waits before doing

a collection.

Exception(s): None.

Description: Return the current inactivity period in seconds that the garbage collector waits
before doing a collection.

void nxa period set(cw nxoi t a period):

Input(s):
a period: Inactivity period in seconds that the garbage collector should wait before doing

a collection. If 0, the garbage collector will never run due to inactivity.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Set the inactivity period in seconds that the garbage collector should wait before
doing a collection.

cw nxoi t nxa threshold get(void):

Input(s): None.

Output(s):
retval: Number of bytes of memory allocated since the last garbage collection that will

trigger the garbage collector to run.

Exception(s): None.

Description: Return the number of bytes of memory allocated since the last garbage collection
that will trigger the garbage collector to run.

void nxa threshold set(cw nxoi t a threshold):

Input(s):

290 Onyx Manual Chapter 4

a threshold: The number of bytes of memory allocated since the last garbage collection
that will trigger the garbage collector to run.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Set the number of bytes of memory allocated since the last garbage collection
that will trigger the garbage collector to run.

void nxa stats get(cw nxoi t *r collections, cw nxoi t *r count, cw nxoi t *r ccount, cw nxoi t
*r cmark, cw nxoi t *r mcount, cw nxoi t *r mmark, cw nxoi t *r scount, cw nxoi t *r smark):

Input(s):
r collections: Pointer to an integer.
r count: Pointer to an integer.
r ccount: Pointer to an integer.
r cmark: Pointer to an integer.
r mcount: Pointer to an integer.
r mmark: Pointer to an integer.
r scount: Pointer to an integer.
r smark: Pointer to an integer.

Output(s):
*r collections: Number of times the garbage collector has run.
*r count: Current number of bytes of memory allocated.
*r ccount: Number of bytes of memory allocated as of the end of the most recent garbage

collection.
*r cmark: Number of microseconds spent in the mark phase of the most recent garbage

collection.
*r mcount: Largest number of bytes of memory ever allocated at any point in time.
*r mmark: Largest number of microseconds ever spent in the mark phase of a garbage

collection.
*r scount: Total number of bytes of memory ever allocated.
*r smark: Total number of microseconds spent in the mark phase of all garbage

collections.

Exception(s): None.

Description: Return garbage collector statistics.

4.10.10 nxm

The nxm class provides basic loadable module functionality.

API

cw nxn t nxm new(cw nxo t *a nxo, cw nxo t *a path, cw nxo t *a sym):

Input(s):
a nxo: Pointer to space for a handle nxo.

4.10. CLASSES Jason Evans 291

a path: Pointer to a string nxo that specifies the path to a module.
a sym: Pointer to a string nxo that specifies a symbol in the module at a path.

Output(s):
retval:NXN ZERO: Success.

NXN invalidfileaccess: Unable to open a module at a path.
NXN undefined: A symbol named a sym was not found in the module.

a nxo: A handle nxo, with its evaluation function set to the specified symbol.
Exception(s):

CW ONYXX OOM.
Description: Open the module at a path, and create a handle with its evaluation function set

to the symbol specified by a sym. The module will remain loaded until the handle nxo is
swept by the garbage collector.

uint32 t nxm iter get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a handle nxo that was constructed by nxm new().

Output(s):
retval: Garbage collector sweep iteration during which a nxo will be deleted.

Exception(s): None.
Description: Get the garbage collector sweep iteration during which a nxo will be deleted. By

default, this is 1, but it can be changed by nxm iter set().

void nxm iter set(cw nxo t *a nxo, uint32 t a iter):

Input(s):
a nxo: Pointer to a handle nxo that was constructed by nxm new().
a iter: Garbage collector sweep iteration during which a nxo will be deleted.

Output(s): None.
Exception(s): None.
Description: Set the garbage collector sweep iteration during which a nxo will be deleted.

void * nxm pre unload hook get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a handle nxo that was constructed by nxm new().

Output(s):
retval: A function pointer, or NULL. If non-NULL, the function will be called just before

the module is unloaded.
Exception(s): None.
Description: Get the pre-unload hook function associated with a nxo.

void nxm pre unload hook set(cw nxo t *a nxo, void (*a pre unload hook)(void)):

Input(s):
a nxo: Pointer to a handle nxo that was constructed by nxm new().
a pre unload hook: A function pointer, or NULL. If non-NULL, the function will be

called just before the module is unloaded.
Output(s): None.
Exception(s): None.
Description: Set the pre-unload hook function associated with a nxo.

292 Onyx Manual Chapter 4

4.10.11 nxn

The nxn class provides access to a table of string constants. The main reason for this class’s existence
is that often, multiple C files use identical string constants, and this saves memory by allowing all to
refer to a single string.

API

const char * nxn str(cw nxn t a nxn):

Input(s):
a nxn: A number that corresponds to an entry in the string table.

Output(s):
retval: Pointer to a string constant.

Exception(s): None.
Description: Return a pointer to the string constant associated with a nxn.

uint32 t nxn len(cw nxn t a nxn):

Input(s):
a nxn: A number that corresponds to an entry in the string table.

Output(s):
retval: String length of a string constant.

Exception(s): None.
Description: Return the string length of the string constant associated with a nxn.

4.10.12 nxo

The nxo class is the basis for the Onyx type system. nxo objects can be any of the following types, as
determined by the cw nxot t type:

NXOT NO: nxo no

NXOT ARRAY: nxo array

NXOT BOOLEAN: nxo boolean

NXOT CLASS: nxo class

NXOT CONDITION: nxo condition

NXOT DICT: nxo dict

NXOT FILE: nxo file

NXOT FINO: nxo fino

NXOT HANDLE: nxo handle

NXOT INSTANCE: nxo instance

NXOT INTEGER: nxo integer

4.10. CLASSES Jason Evans 293

NXOT MARK: nxo mark

NXOT MUTEX: nxo mutex

NXOT NAME: nxo name

NXOT NULL: nxo null

NXOT OPERATOR: nxo operator

NXOT PMARK: nxo pmark

NXOT REAL: nxo real

NXOT STACK: nxo stack

NXOT STRING: nxo string

NXOT THREAD: nxo thread

Due to limitations of the C programming language, it is the responsibility of the application to do
type checking to assure that an incompatible nxo object is not passed to a type-specific function. For
example, passing a file nxo to nxo string get() is prohibited, and will result in undefined behaviour
(including crashes).

Composite objects contain a reference to an nxoe object. For the most part, the application does not
need to be aware of this. The only exception is when writing extensions with the handle type. Handle
objects need to be able to iterate over the objects they reference internally, and return nxoe references
to the garbage collector.

The following functions are applicable to all types of nxo objects.

API

int32 t nxo compare(const cw nxo t *a a, const cw nxo t *a b):

Input(s):
a a: Pointer to an nxo.
a b: Pointer to an nxo.

Output(s):
retval:

-1: For types which it is meaningful (integer, string), a a is less than a b.
0: a a and a b are equal.
1: For types which it is meaningful (integer, string), a a is greater than a b.
2: Incompatible types, or not the same composite object.

Exception(s): None.
Description: Compare a a and a b.

void nxo dup(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to an nxo.
a from: Pointer to an nxo.

Output(s): None.

294 Onyx Manual Chapter 4

Exception(s): None.
Description: Duplicate a from to a to. This does not do a copy of composite objects; rather it

creates a new reference to the value of a composite object.

cw nxot t nxo type get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval:

NXOT NO: nxo no
NXOT ARRAY: nxo array
NXOT BOOLEAN: nxo boolean
NXOT CLASS: nxo class
NXOT CONDITION: nxo condition
NXOT DICT: nxo dict
NXOT FILE: nxo file
NXOT FINO: nxo fino
NXOT HANDLE: nxo handle
NXOT INSTANCE: nxo instance
NXOT INTEGER: nxo integer
NXOT MARK: nxo mark
NXOT MUTEX: nxo mutex
NXOT NAME: nxo name
NXOT NULL: nxo null
NXOT OPERATOR: nxo operator
NXOT PMARK: nxo pmark
NXOT REAL: nxo real
NXOT STACK: nxo stack
NXOT STRING: nxo string
NXOT THREAD: nxo thread

Exception(s): None.
Description: Return the type of a nxo.

cw nxoe t * nxo nxoe get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval: Pointer to the nxoe associated with a nxo, or NULL if a nxo is not composite.

Exception(s): None.
Description: Return a pointer to the nxoe associated with a nxo.

bool nxo ilocked():

Input(s):
a nxo: Pointer to an array, dict, file, stack, or string nxo.

Output(s):

4.10. CLASSES Jason Evans 295

retval:
false: a nxo is not implicitly locked.
true: a nxo is implicitly locked.

Exception(s): None.
Description: For array, dict, file, stack, or string nxos, return whether a nxo is implicitly

locked.

cw nxoa t nxo attr get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s):
retval:

NXOA LITERAL: a nxo is literal.
NXOA EXECUTABLE: a nxo is executable.

Exception(s): None.
Description: Return the attribute for a nxo.

void nxo attr set(cw nxo t *a nxo, cw nxoa t a attr):

Input(s):
a nxo: Pointer to an nxo.
a attr: Value of attribute to set for a nxo.

Output(s): None.
Exception(s): None.
Description: Set the attribute for a nxo to a attr.

4.10.13 nxo array

The nxo array class is a subclass of the nxo class.

API

void nxo array new(cw nxo t *a nxo, bool a locking, uint32 t a len):

Input(s):
a nxo: Pointer to an array nxo.
a locking: Implicit locking mode.
a len: Number of array elements.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo array subarray new(cw nxo t *a nxo, cw nxo t *a array, uint32 t a offset, uint32 t
a len):

Input(s):

296 Onyx Manual Chapter 4

a nxo: Pointer to an array nxo.
a array: Pointer to an array nxo to create a subarray of.
a offset: Offset into a array.
a len: Number of array elements.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Subarray constructor.

void nxo array copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to an array nxo.
a from: Pointer to an array nxo.

Output(s): None.

Exception(s): None.

Description: Copy the contents of a from to a to. The length of a to must be at least that of
a from.

uint32 t nxo array len get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an array nxo.

Output(s):
retval: Number of elements in a nxo.

Exception(s): None.

Description: Return the number of elements in a nxo.

void nxo array el get(const cw nxo t *a nxo, cw nxoi t a offset, cw nxo t *r el):

Input(s):
a nxo: Pointer to an array nxo.
a offset: Offset of element to get.
r el: Pointer to space to dup an object to.

Output(s):
*r el: A dup of the element of a nxo at offset a offset.

Exception(s): None.

Description: Get a dup of the element of a nxo at offset a offset.

void nxo array el set(cw nxo t *a nxo, cw nxo t *a el, cw nxoi t a offset):

Input(s):
a nxo: Pointer to an array nxo.
a el: Pointer to an nxo.
a offset: Offset of element in a nxo to replace with a el.

Output(s): None.

Exception(s): None.

4.10. CLASSES Jason Evans 297

Description: Dup a el into the element of a nxo at offset a offset.

bool nxo array origin get(cw nxo t *a nxo, const char **r origin, uint32 t *r olen, uint32 t
*r line num):

Input(s):
a nxo: Pointer to an array nxo.
r origin: Pointer to a string pointer.
r olen: Pointer to an unsigned integer.
r line num: Pointer to an unsigned integer.

Output(s):
retval: If false, success, otherwise no origin found.
*r origin: If retval is false, a pointer to a string that represents the origin of a nxo.
*r olen: If retval is false, the length of the string pointed to by *r origin.
*r line num: If retval is false, the line within *r origin that a nxo started at.

Exception(s): None.
Description: Get the origin of a nxo, if known.

void nxo array origin set(cw nxo t *a nxo, const char *a origin, uint32 t a olen, uint32 t
a line num):

Input(s):
a nxo: Pointer to an array nxo.
a origin: Pointer to a string that represents the origin of a nxo.
a olen: The length of the string pointed to bya origin.
a line num: The line within a origin that a nxo started at.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Set the origin of a nxo. A copy of a origin is made and managed internally.

4.10.14 nxo boolean

The nxo boolean class is a subclass of the nxo class.

API

void nxo boolean new(cw nxo t *a nxo, bool a val):

Input(s):
a nxo: Pointer to a boolean nxo.
a val: Initial value.

Output(s): None.
Exception(s): None.
Description: Constructor.

bool nxo boolean get(const cw nxo t *a nxo):

298 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to a boolean nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.

Description: Return the value of a nxo.

void nxo boolean set(cw nxo t *a nxo, bool a val):

Input(s):
a nxo: Pointer to a boolean nxo.
a val: Value to set a nxo to.

Output(s): None.

Exception(s): None.

Description: Set the value of a nxo to a val.

4.10.15 nxo class

The nxo class class is a subclass of the nxo class.

API

cw nxoe t * cw nxo class ref iter t(void *a opaque, bool a reset):

Input(s):
a opaque: Opaque data pointer.
a reset:

false: At least one iteration has already occurred.
true: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.

Description: Reference iterator function typedef.

bool cw nxo class delete t(void *a opaque, uint32 t a iter):

Input(s):
a opaque: Opaque data pointer.
a iter: Garbage collector sweep iteration count (starts at 0). This value can be used to

impose ordering of dependent object deletions.

Output(s):
retval:

false: Success.
true: Defer deletion until a later garbage collector sweep iteration.

4.10. CLASSES Jason Evans 299

Exception(s): None.
Description: Destructor function typedef.

void nxo class new(cw nxo t *a nxo, void *a opaque, cw nxo class ref iter t *a ref iter f, cw nxo class delete t
*a delete f):

Input(s):
a nxo: Pointer to a class nxo.
a opaque: Opaque data pointer to be passed to a ref iter f and a delete f.
a ref iter f: Pointer to a reference iterator function.
a delete f: Pointer to a destructor function.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

cw nxo t * nxo class name get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a class nxo.

Output(s):
retval: Pointer to the name object associated with a nxo (may be of any type).

Exception(s): None.
Description: Return a pointer to the name object associated with a nxo. This object pointer

can safely be used for modifying the name object.

cw nxo t * nxo class super get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a class nxo.

Output(s):
retval: Pointer to the superclass object associated with a nxo.

Exception(s): None.
Description: Return a pointer to the super object associated with a nxo. This object pointer

can safely be used for modifying the super object.

cw nxo t * nxo class methods get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a class nxo.

Output(s):
retval: Pointer to the methods object associated with a nxo.

Exception(s): None.
Description: Return a pointer to the methods object associated with a nxo. This object pointer

can safely be used for modifying the methods object.

cw nxo t * nxo class data get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a class nxo.

300 Onyx Manual Chapter 4

Output(s):
retval: Pointer to the data object associated with a nxo.

Exception(s): None.
Description: Return a pointer to the data object associated with a nxo. This object pointer can

safely be used for modifying the data object.

void * nxo class opaque get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a class nxo.

Output(s):
retval: Opaque data pointer.

Exception(s): None.
Description: Return the opaque data pointer associated with a nxo.

void nxo class opaque set(cw nxo t *a nxo, void *a opaque):

Input(s):
a nxo: Pointer to a class nxo.
a opaque: Opaque data pointer.

Output(s): None.
Exception(s): None.
Description: Set the opaque data pointer associated with a nxo.

void nxo class eval(cw nxo t *a nxo, cw nxo t *a thread):

Input(s):
a nxo: Pointer to a class nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Class-specific.
Description: Evaluate the a nxo. If there is no evaluation function associated with a nxo, it is

pushed onto ostack.

4.10.16 nxo condition

The nxo condition class is a subclass of the nxo class.

API

void nxo condition new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.

4.10. CLASSES Jason Evans 301

Description: Constructor.

void nxo condition signal(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.

Exception(s): None.

Description: Signal one thread waiting on a nxo, if there are any waiters.

void nxo condition broadcast(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a condition nxo.

Output(s): None.

Exception(s): None.

Description: Signal all threads waiting on a nxo.

void nxo condition wait(cw nxo t *a nxo, cw nxo t *a mutex):

Input(s):
a nxo: Pointer to a condition nxo.
a mutex: Pointer to a mutex nxo.

Output(s): None.

Exception(s): None.

Description: Wait for a nxo.

bool nxo condition timedwait(cw nxo t *a nxo, cw nxo t *a mutex, const struct timespec
*a timeout):

Input(s):
a nxo: Pointer to a condition nxo.
a mutex: Pointer to a mutex nxo.
a timeout: Timeout, specified as an absolute time interval.

Output(s):
retval:

false: Success.
true: Timeout.

Exception(s): None.

Description: Wait for a nxo for at least a timeout.

4.10.17 nxo dict

The nxo dict class is a subclass of the nxo class.

302 Onyx Manual Chapter 4

API

void nxo dict new(cw nxo t *a nxo, bool a locking, uint32 t a dict size):

Input(s):
a nxo: Pointer to a dict nxo.
a locking: Implicit locking mode.
a dict size: Initial number of slots. Dictionaries dynamically grow and shrink as needed,

but if the maximum size of a nxo is known, it should be specified here to save space.
Output(s): None
Exception(s):

CW ONYXX OOM.
Description: Constructor.

nxo dict copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a dict nxo.
a from: Pointer to a dict nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Do a deep copy (actual contents are copied) of a from to a to.

void nxo dict def(cw nxo t *a nxo, cw nxo t *a key, cw nxo t *a val):

Input(s):
a nxo: Pointer to a dict nxo.
a key: Pointer to an nxo.
a val: Pointer to an nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Define a key with value a val in a nxo.

void nxo dict undef(cw nxo t *a nxo, cw nxo t *a key):

Input(s):
a nxo: Pointer to a dict nxo.
a key: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Undefine a key in a nxo, if defined.

bool nxo dict lookup(const cw nxo t *a nxo, const cw nxo t *a key, cw nxo t *r nxo):

Input(s):
a nxo: Pointer to a dict nxo.
a key: Pointer to an nxo.
r nxo: Pointer to an nxo.

4.10. CLASSES Jason Evans 303

Output(s):
retval:

false: Success.
true: a key not found.

r nxo: If retval is false, value associated with a key in a nxo, otherwise unmodified.

Exception(s): None.

Description: Find a key in a nxo and dup its associated value to r nxo.

uint32 t nxo dict count(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a dict nxo.

Output(s):
retval: The number of key/value pairs in a nxo.

Exception(s): None.

Description: Return the number of key/value pairs in a nxo.

void nxo dict iterate(cw nxo t *a nxo, cw nxo t *r nxo):

Input(s):
a nxo: Pointer to a dict nxo.
r nxo: Pointer to an nxo.

Output(s):
false: Success.
true: a nxo is empty.

r nxo: If retval is false, A key in a nxo, otherwise unmodified.

Exception(s): None.

Description: Iteratively get a key in a nxo. Each successive call to this function will get the
next key, and wrap back around to the first key when all keys have been returned.

4.10.18 nxo file

The nxo file class is a subclass of the nxo class.

API

int32 t cw nxo file read t(void *a arg, cw nxo t *a file, uint32 t a len, char *r str):

Input(s):
a arg: Opaque data pointer.
a file: Pointer to a file nxo.
a len: Length of r str.
r str: Pointer to space to put read data.

Output(s):
retval:

-1: Read error.

304 Onyx Manual Chapter 4

>= 0: Number of bytes stored in r str.
r str: If retval is non-negative, retval bytes of read data, otherwise undefined.

Exception(s): Application specific.
Description: Read up to a len bytes of data from a file and store the result in r str.

bool cw nxo file write t(void *a arg, cw nxo t *a file, const char *a str, uint32 t a len):

Input(s):
a arg: Opaque data pointer.
a file: Pointer to a file nxo.
a str: Pointer to data to write.
a len: Length of a str.

Output(s):
retval:

false: Success.
true: Write error.

Exception(s): Application specific.
Description: Write a len bytes of data from a str to a file.

cw nxoe t * cw nxo file ref iter t(void *a arg, bool a reset):

Input(s):
a arg: Opaque data pointer.
a reset:

false: At least one iteration has already occurred.
true: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.
Description: Reference iterator function typedef.

void cw nxo file delete t(void *a arg):

Input(s):
a arg: Opaque data pointer.

Output(s): None.
Exception(s): None.
Description: Destructor function typedef.

void nxo file new(cw nxo t *a nxo, bool a locking):

Input(s):
a nxo: Pointer to a file nxo.
a locking: Implicit locking mode.

Output(s): None.
Exception(s):

CW ONYXX OOM.

4.10. CLASSES Jason Evans 305

Description: Constructor.

void nxo file fd wrap(cw nxo t *a nxo, uint32 t a fd, bool a close):

Input(s):
a nxo: Pointer to a file nxo.
a fd: File descriptor number.
a close: If true, close a fd when a nxo is finalized by the garbage collector, otherwise, do

not automatically close a fd. This should typically be set to true.
Output(s): None.
Exception(s): None.
Description: Wrap file descriptor a fd so that operations on a nxo will be backed by the file

descriptor.

void nxo file synthetic(cw nxo t *a nxo, cw nxo file read t *a read, cw nxo file write t *a write,
cw nxo file ref iter t *a ref iter, cw nxo file delet t *a delete, void *a arg):

Input(s):
a nxo: Pointer to a file nxo.
a read: Pointer to a read function.
a write: Pointer to a write function.
a ref iter: Pointer to a reference iterator function.
a delete: Pointer to a destructor function.
a arg: Opaque pointer to be passed to the read and write functions.

Output(s): None.
Exception(s): None.
Description: Set up a nxo to call the specified read and write functions to satisfy file

operations.

cw nxn t nxo file open(cw nxo t *a nxo, const char *a filename, uint32 t a nlen, const char
*a flags, uint32 t a flen):

Input(s):
a nxo: Pointer to a file nxo.
a filename: Pointer to a string (not required to be ’\0’ terminated) that represents a

filename.
a nlen: Length in bytes of a filename.
a flags: Pointer to a string (not required to be ’\0’ terminated) that represents a file mode:

“r”: Read only.
“r+”: Read/write, starting at offset 0.
“w”: Write only. Create file if necessary. Truncate file if non-zero length.
“w+”: Read/write, starting at offset 0. Create file if necessary.
“a”: Write only, starting at end of file.
“a+”: Read/write, starting at end of file.

a flen: Length in bytes of a flags.
Output(s):

retval:
NXN ZERO.

306 Onyx Manual Chapter 4

NXN ioerror.
NXN invalidfileaccess.
NXN limitcheck.

Exception(s): None.
Description: Open a file.

cw nxn t nxo file close(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Close a file.

void nxo file origin get(cw nxo t *a nxo, const char **r origin, uint32 t *r olen):

Input(s):
a nxo: Pointer to a file nxo.
r origin: Pointer to a string pointer.
r olen: Pointer to an unsigned integer.

Output(s):
*r origin: A pointer to a string that represents the origin of a nxo.
*r olen: The length of the string pointed to by *r origin.

Exception(s): None.
Description: Get the origin of a nxo.

bool nxo file origin set(cw nxo t *a nxo, const char *a origin, uint32 t a olen):

Input(s):
a nxo: Pointer to a file nxo.
a origin: Pointer to a string that represents the origin of a nxo.
a olen: The length of the string pointed to bya origin.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Set the origin of a nxo. A copy of a origin is made and managed internally.

int32 t nxo file fd get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

-1: Invalid or synthetic file.
>= 0: File descriptor number.

Exception(s): None.

4.10. CLASSES Jason Evans 307

Description: Return the file descriptor associated with a nxo.

bool nxo file nonblocking get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

false: Blocking file.
true: Non-blocking file.

Exception(s): None.
Description: Return the non-blocking mode for a nxo.

bool nxo file nonblocking set(cw nxo t *a nxo, bool a nonblocking):

Input(s):
a nxo: Pointer to a file nxo.
a nonblocking: Non-blocking mode to set nxo to.

Output(s):
retval:

false: Success.
true: I/O error or non-POSIX file.

Exception(s): None.
Description: Set the non-blocking mode for a nxo to a nonblocking.

int32 t nxo file read(cw nxo t *a nxo, uint32 t a len, char *r str):

Input(s):
a nxo: Pointer to a file nxo.
a len: Length in bytes of r str.
r str: Pointer to a string to store read data into.

Output(s):
retval:

-1: NXN ioerror.
>= 0: Number of bytes of data read into r str.

r str: If retval is non-negative, retval bytes of read data.
Exception(s): None.
Description: Read data.

cw nxn t nxo file readline(cw nxo t *a nxo, cw nx t *a nx, bool a locking, cw nxo t *r string,
bool *r eof):

Input(s):
a nxo: Pointer to a file nxo.
a nx: Pointer to an nx.
a locking: Implicit locking mode.
r string: Pointer to an nxo.
r eof: Pointer to a bool.

308 Onyx Manual Chapter 4

Output(s):
retval:

NXN ZERO.
NXN ioerror.

r string: If retval is NXN ZERO, a string object, otherwise unmodified.
*r eof:

false: End of file not reached.
true: End of file reached.

Exception(s):
CW ONYXX OOM.

Description: Read a line, terminated by “\r”, “\r\n”, or EOF.

cw nxn t nxo file write(cw nxo t *a nxo, const char *a str, uint32 t a len, uint32 t *r count):

Input(s):
a nxo: Pointer to a file nxo.
a str: Pointer to data to write.
a len: Length of a str.
r count: Pointer to a location to store the number of bytes written, or NULL.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

*r count: If r count is non-NULL, and retval is NXN ZERO, number of bytes written,
otherwise undefined.

Exception(s): None.
Description: Write the a len bytes of data pointed to a str. If the file is in non-blocking mode,

it is possible for *r count to be as small as 0 for a successful write.

cw nxn t nxo file truncate(cw nxo t *a nxo, off t a length):

Input(s):
a nxo: Pointer to a file nxo.
a length: Length to set file to.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Truncate or extend the file associated with a nxo so that it is a length bytes long.

cw nxoi t nxo file position get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval:

-1: NXN ioerror.

4.10. CLASSES Jason Evans 309

>= 0: Current file position.

Exception(s): None.

Description: Get the current file position.

cw nxn t nxo file position set(cw nxo t *a nxo, cw nxoi t a position):

Input(s):
a nxo: Pointer to a file nxo.
a position: File position.

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.

Description: Move the current file position to a position.

uint32 t nxo file buffer size get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval: Size in bytes of the internal data buffer.

Exception(s): None.

Description: Return the size of the internal data buffer.

void nxo file buffer size set(cw nxo t *a nxo, uint32 t a size):

Input(s):
a nxo: Pointer to a file nxo.
a size: Size in bytes of internal buffer to use.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Use an internal buffer of a size bytes.

cw nxoi t nxo file buffer count(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

Output(s):
retval: Current number of buffered bytes available for reading.

Exception(s): None.

Description: Return the current number of buffered bytes available for reading.

cw nxn t nxo file buffer flush(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a file nxo.

310 Onyx Manual Chapter 4

Output(s):
retval:

NXN ZERO.
NXN ioerror.

Exception(s): None.
Description: Flush any buffered write data to disk, and discard any buffered read data.

4.10.19 nxo fino

The nxo fino class is a subclass of the nxo class.

API

void nxo fino new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

4.10.20 nxo handle

The nxo handle class is a subclass of the nxo class.

API

void cw nxo handle eval t(void *a opaque, cw nxo t *a thread):

Input(s):
a opaque: Opaque data pointer.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Handle-dependent.
Description: Evaluation function typedef.

cw nxoe t * cw nxo handle ref iter t(void *a opaque, bool a reset):

Input(s):
a opaque: Opaque data pointer.
a reset:

false: At least one iteration has already occurred.
true: First iteration.

Output(s):
retval:

4.10. CLASSES Jason Evans 311

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.
Description: Reference iterator function typedef.

bool cw nxo handle delete t(void *a opaque, uint32 t a iter):

Input(s):
a opaque: Opaque data pointer.
a iter: Garbage collector sweep iteration count (starts at 0). This value can be used to

impose ordering of dependent object deletions.
Output(s):

retval:
false: Success.
true: Defer deletion until a later garbage collector sweep iteration.

Exception(s): None.
Description: Destructor function typedef.

void nxo handle new(cw nxo t *a nxo, void *a opaque, cw nxo handle eval t *a eval f, cw nxo handle ref iter t
*a ref iter f, cw nxo handle delete t *a delete f):

Input(s):
a nxo: Pointer to a handle nxo.
a opaque: Opaque data pointer to be passed to a eval f, a ref iter f, and a delete f.
a eval f: Pointer to an evaluation function.
a ref iter f: Pointer to a reference iterator function.
a delete f: Pointer to a destructor function.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

cw nxo t * nxo handle tag get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a handle nxo.

Output(s):
retval: Pointer to the tag object associated with a nxo.

Exception(s): None.
Description: Return a pointer to the tag object associated with a nxo. This object pointer can

safely be used for modifying the tag object.

void * nxo handle opaque get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a handle nxo.

Output(s):
retval: Opaque data pointer.

Exception(s): None.

312 Onyx Manual Chapter 4

Description: Return the opaque data pointer associated with a nxo.

void nxo handle opaque set(cw nxo t *a nxo, void *a opaque):

Input(s):
a nxo: Pointer to a handle nxo.
a opaque: Opaque data pointer.

Output(s): None.
Exception(s): None.
Description: Set the opaque data pointer associated with a nxo.

void nxo handle eval(cw nxo t *a nxo, cw nxo t *a thread):

Input(s):
a nxo: Pointer to a handle nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Handle-specific.
Description: Evaluate the a nxo. If there is no evaluation function associated with a nxo, it is

pushed onto ostack.

4.10.21 nxo instance

The nxo instance class is a subclass of the nxo class.

API

cw nxoe t * cw nxo instance ref iter t(void *a opaque, bool a reset):

Input(s):
a opaque: Opaque data pointer.
a reset:

false: At least one iteration has already occurred.
true: First iteration.

Output(s):
retval:

non-NULL: Pointer to an nxoe.
NULL: No more references.

Exception(s): None.
Description: Reference iterator function typedef.

bool cw nxo instance delete t(void *a opaque, uint32 t a iter):

Input(s):
a opaque: Opaque data pointer.
a iter: Garbage collector sweep iteration count (starts at 0). This value can be used to

impose ordering of dependent object deletions.
Output(s):

4.10. CLASSES Jason Evans 313

retval:
false: Success.
true: Defer deletion until a later garbage collector sweep iteration.

Exception(s): None.

Description: Destructor function typedef.

void nxo instance new(cw nxo t *a nxo, void *a opaque, cw nxo instance ref iter t *a ref iter f,
cw nxo instance delete t *a delete f):

Input(s):
a nxo: Pointer to an instance nxo.
a opaque: Opaque data pointer to be passed to a eval f, a ref iter f, and a delete f.
a ref iter f: Pointer to a reference iterator function.
a delete f: Pointer to a destructor function.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

cw nxo t * nxo instance isa get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an instance nxo.

Output(s):
retval: Pointer to the isa object associated with a nxo.

Exception(s): None.

Description: Return a pointer to the isa object associated with a nxo. This object pointer can
safely be used for modifying the isa object.

cw nxo t * nxo instance data get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an instance nxo.

Output(s):
retval: Pointer to the data object associated with a nxo.

Exception(s): None.

Description: Return a pointer to the data object associated with a nxo. This object pointer can
safely be used for modifying the data object.

void * nxo instance opaque get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an instance nxo.

Output(s):
retval: Opaque data pointer.

Exception(s): None.

Description: Return the opaque data pointer associated with a nxo.

void nxo instance opaque set(cw nxo t *a nxo, void *a opaque):

314 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to an instance nxo.
a opaque: Opaque data pointer.

Output(s): None.
Exception(s): None.
Description: Set the opaque data pointer associated with a nxo.

void nxo instance eval(cw nxo t *a nxo, cw nxo t *a thread):

Input(s):
a nxo: Pointer to an instance nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s): Instance-specific.
Description: Evaluate the a nxo. If there is no evaluation function associated with a nxo, it is

pushed onto ostack.

4.10.22 nxo integer

The nxo integer class is a subclass of the nxo class.

API

void nxo integer new(cw nxo t *a nxo, cw nxoi t a val):

Input(s):
a nxo: Pointer to an integer nxo.
a val: Initial value.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw nxoi t nxo integer get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an integer nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.
Description: Return the value of a nxo.

void nxo integer set(cw nxo t *a nxo, cw nxoi t a val):

Input(s):
a nxo: Pointer to an integer nxo.
a val: Integer value.

Output(s): None.
Exception(s): None.
Description: Set the value of a nxo to a val.

4.10. CLASSES Jason Evans 315

4.10.23 nxo mark

The nxo mark class is a subclass of the nxo class.

API

void nxo mark new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

4.10.24 nxo mutex

The nxo mutex class is a subclass of the nxo class.

API

void nxo mutex new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo mutex lock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.

Exception(s): None.

Description: Lock a nxo.

bool nxo mutex trylock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s):
retval:

false: Success.
true: Failure.

Exception(s): None.

316 Onyx Manual Chapter 4

Description: Try to lock a nxo, but return immediately with an error if unable to do so.

void nxo mutex unlock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a mutex nxo.

Output(s): None.
Exception(s): None.
Description: Unlock a nxo.

4.10.25 nxo name

The nxo name class is a subclass of the nxo class.

API

void nxo name new(cw nxo t *a nxo, const char *a str, uint32 t a len, bool a is static):

Input(s):
a nxo: Pointer to a name nxo.
a str: Pointer to a character string (not required to be ’\0’ terminated).
a len: Length in bytes of a str.
a is static:

false: a str may be modified or deallocated during the lifetime of the program.
true: a str will not be modified for the lifetime of the program.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

const char * nxo name str get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a name nxo.

Output(s):
retval: Pointer to a string that represents a nxo.

Exception(s): None.
Description: Return a pointer to a string that represents a nxo.

uint32 t nxo name len get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a name nxo.

Output(s):
retval: Length in bytes of the name associated with a nxo.

Exception(s): None.
Description: Return the length in bytes of the name associated with a nxo.

4.10. CLASSES Jason Evans 317

4.10.26 nxo no

The nxo no class is a subclass of the nxo class.

API

void nxo no new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

4.10.27 nxo null

The nxo null class is a subclass of the nxo class.

API

void nxo null new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.
Exception(s): None.
Description: Constructor.

4.10.28 nxo operator

The nxo operator class is a subclass of the nxo class.

API

void nxo operator new(cw nxo t *a nxo, cw op t *a op, cw nxn t a nxn):

Input(s):
a nxo: Pointer to an operator nxo.
a op: Pointer to an operator function.
a nxn: NXN ZERO, or an nxn.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw op t * nxo operator f(const cw nxo t *a nxo):

318 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to an operator nxo.

Output(s):
retval: Pointer to an operator function.

Exception(s): None.

Description: Return the operator function associated with a nxo.

4.10.29 nxo pmark

The nxo pmark class is a subclass of the nxo class.

API

void nxo pmark new(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to an nxo.

Output(s): None.

Exception(s): None.

Description: Constructor.

uint32 t nxo pmark line get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a pmark nxo.

Output(s):
retval: Line number.

Exception(s): None.

Description: Return the line number associated with a nxo.

void nxo pmark line set(cw nxo t *a nxo, uint32 t a line):

Input(s):
a nxo: Pointer to a pmark nxo.
a line: Value to set the line number associated with a nxo to.

Output(s): None.

Exception(s): None.

Description: Set the line number associated a nxo to a val.

4.10.30 nxo real

The nxo real class is a subclass of the nxo class.

4.10. CLASSES Jason Evans 319

API

void nxo real new(cw nxo t *a nxo, cw nxor t a val):

Input(s):
a nxo: Pointer to a real nxo.
a val: Initial value.

Output(s): None.
Exception(s): None.
Description: Constructor.

cw nxor t nxo real get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a real nxo.

Output(s):
retval: Value of a nxo.

Exception(s): None.
Description: Return the value of a nxo.

void nxo real set(cw nxo t *a nxo, cw nxor t a val):

Input(s):
a nxo: Pointer to a real nxo.
a val: Real value.

Output(s): None.
Exception(s): None.
Description: Set the value of a nxo to a val.

4.10.31 nxo regex

The nxo regex class is a subclass of the nxo class.

API

cw nxn t nxo regex new(cw nxo t *a nxo, const char *a pattern, uint32 t a len, bool a cont,
bool a global, bool a insensitive, bool a multiline, bool a singleline):

Input(s):
a nxo: Pointer to a regex nxo.
a pattern: Pointer to a string that specifies a regular expression.
a len: Length of a pattern.
a cont: Continue where last successful match ended if true.
a global: Continue where last match ended if true.
a insensitive: Match with case insensitivity if true.
a multiline: Treat input as a multi-line string if true.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.

320 Onyx Manual Chapter 4

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo regex match(cw nxo t *a nxo, cw nxo t *a thread, cw nxo t *a input, bool *r match):

Input(s):
a nxo: Pointer to a regex nxo.
a thread: Pointer to a thread nxo.
a input: Pointer to a string nxo.
r match: Pointer to a bool.

Output(s):
*r match:

true: Match successful.
false: No match found.

Exception(s):
CW ONYXX OOM.

Description: Look in a input for a match to the regex pointed to by a nxo. As a side effect, set
the thread’s match cache, which can be queried via nxo regex submatch().

cw nxn t nxo regex nonew match(cw nxo t *a thread, const char *a pattern, uint32 t a len,
bool a cont, bool a global, bool a insensitive, bool a multiline, bool a singleline, cw nxo t
*a input, bool *r match):

Input(s):
a thread: Pointer to a thread nxo.
a pattern: Pointer to a string that specifies a regular expression.
a len: Length of a pattern.
a cont: Continue where last successful match ended if true.
a global: Continue where last match ended if true.
a insensitive: Match with case insensitivity if true.
a multiline: Treat input as a multi-line string if true.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a input: Pointer to a string nxo.
r match: Pointer to a bool.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

*r match:
true: Match successful.
false: No match found.

Exception(s):

4.10. CLASSES Jason Evans 321

CW ONYXX OOM.
Description: Look in a input for a match to the regular expression specified by a pattern,

a len, a cont, a global, a insensitive, a multiline, and a singleline. As a side effect, set the
thread’s match cache, which can be queried via nxo regex submatch().
This function combines nxo regex new() and nxo regex match() in such a way that no Onyx
regex object is created, thus providing a more efficient way of doing a one-off match.

void nxo regex split(cw nxo t *a nxo, cw nxo t *a thread, uint32 t a limit, cw nxo t *a input,
cw nxo t *r array):

Input(s):
a nxo: Pointer to a regex nxo.
a thread: Pointer to a thread nxo.
a limit: Maximum number of substrings to split a input into. 0 is treated as infinity.
a input: Pointer to a string nxo.
r array: Pointer to an nxo to dup an array of substrings to.

Output(s):
*r array: An array of substrings.

Exception(s):
CW ONYXX OOM.

Description: Use the regex pointed to by a nxo to find matches in a input and create an array
of substrings that contain the data between those matches.
If there are capturing subpatterns in the regular expression, also create substrings for
those capturing subpatterns and insert them into the substring array.
As a special case, if the regular expression matches the empty string, split a single
character. This avoids an infinite loop.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch(). Keep in mind that this function can match multiple times in a single
invocation, so only the last match is available in this way.

cw nxn t nxo regex nonew split(cw nxo t *a thread, const char *a pattern, uint32 t a len,
bool a insensitive, bool a multiline, bool a singleline, uint32 t a limit, cw nxo t *a input,
cw nxo t *r array):

Input(s):
a thread: Pointer to a thread nxo.
a pattern: Pointer to a string that specifies a regular expression.
a len: Length of a pattern.
a insensitive: Match with case insensitivity if true.
a multiline: Treat input as a multi-line string if true.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a limit: Maximum number of substrings to split a input into. 0 is treated as infinity.
a input: Pointer to a string nxo.
r array: Pointer to an nxo to dup an array of substrings to.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

322 Onyx Manual Chapter 4

*r array: An array of substrings.

Exception(s):
CW ONYXX OOM.

Description: Use the regex specified by a pattern, a len, a insensitive, a multiline, and
a singleline to find matches in a input and create an array of substrings that contain the
data between those matches.
If there are capturing subpatterns in the regular expression, also create substrings for
those capturing subpatterns and insert them into the substring array.
As a special case, if the regular expression matches the empty string, split a single
character. This avoids an infinite loop.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch(). Keep in mind that this function can match multiple times in a single
invocation, so only the last match is available in this way.
This function combines nxo regex nex() and nxo regex split() in such a way that no Onyx
regex object is created, thus providing a more efficient way of doing a one-off split.

void nxo regex submatch(cw nxo t *a thread, uint32 t a capture, cw nxo t *r match):

Input(s):
a thread: Pointer to a thread nxo.
a capture: Index of captured subpattern to create a substring for:

0: Get substring of input text that matched the regular expression.
>0: Get substring of input text that matched the specified capturing subpattern.

r match: Pointer to an nxo to dup a substring reference to.

Output(s):
*r match: An nxo:

null: Subpattern not matched.
string: A substring of text that corresponds to the captured subpattern specified by

a capture.

Exception(s):
CW ONYXX OOM.

Description: Create a substring using the calling thread’s match cache that corresponds to
capturing subpattern a capture.
Each thread has a match cache that is used by various regex and regsub functions. That
cache stores a reference to the string that was most recently matched against, as well as
offsets and lengths of the match and capturing subpatterns. Since creating substrings puts
pressure on the garbage collector, substring creation is done lazily (i.e. when this function
is called). Normally, a program has little need to ask for the same substring twice, so the
created substrings are not cached. That means that if this function is called twice in
succession with the same arguments, two different (but equivalent) substrings will be
returned.

4.10.32 nxo regsub

The nxo regsub class is a subclass of the nxo class.

4.10. CLASSES Jason Evans 323

API

cw nxn t nxo regsub new(cw nxo t *a nxo, const char *a pattern, uint32 t a plen, bool a global,
bool a insensitive, bool a multiline, bool a singleline, const char *a template, uint32 t a tlen):

Input(s):
a nxo: Pointer to a regsub nxo.
a pattern: Pointer to a string that specifies a regular expression.
a plen: Length of a pattern.
a global: Substitute as many times as possible if true.
a insensitive: Match with case insensitivity if true.
a multiline: Treat input as a multi-line string if true.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a template: Pointer to a string that specifies a substitution template.
a tlen: Length of a template.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

Exception(s):
CW ONYXX OOM.

Description: Constructor.

void nxo regsub subst(cw nxo t *a nxo, cw nxo t *a thread, cw nxo t *a input, cw nxo t *r output,
uint32 t *r count):

Input(s):
a nxo: Pointer to a regsub nxo.
a thread: Pointer to a thread nxo.
a input: Pointer to a string nxo.
r output: Pointer to an nxo to dup a string reference to.
r count: Pointer to a uint32 t.

Output(s):
*r output: A string that was created by substituting regular expression matches

according to a substitution template.
*r count: Number of substitutions made. If 0 substitutions were made, *r output is a

duplicate of a input, rather than a copy.
Exception(s):

CW ONYXX OOM.
Description: Create a string by substituting according to a template for each substring within

input that matches a regular expression.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch().

cw nxn t nxo regsub nonew subst(cw nxo t *a thread, const char *a pattern, uint32 t a plen,
bool a global, bool a insensitive, bool a multiline, bool a singleline, const char *a template,
uint32 t a tlen, cw nxo t *a input, cw nxo t *r output, uint32 t *r count):

Input(s):

324 Onyx Manual Chapter 4

a thread: Pointer to a thread nxo.
a pattern: Pointer to a string that specifies a regular expression.
a plen: Length of a pattern.
a global: Substitute as many times as possible if true.
a insensitive: Match with case insensitivity if true.
a multiline: Treat input as a multi-line string if true.
a singleline: Treat input as a single line, so that the dot metacharacter matches any

character, including a newline.
a template: Pointer to a string that specifies a substitution template.
a tlen: Length of a template.
a input: Pointer to a string nxo.
r output: Pointer to an nxo to dup a string reference to.
r count: Pointer to a uint32 t.

Output(s):
retval:

NXN ZERO: Success.
NXN regexerror: Regular expression error.

*r output: A string that was created by substituting regular expression matches
(specified by a pattern) according to a template.

*r count: Number of substitutions made. If 0 substitutions were made, *r output is a
duplicate of a input, rather than a copy.

Exception(s):
CW ONYXX OOM.

Description: Create a string by substituting according to a template for each substring within
input that matches a regular expression.
As a side effect, set the thread’s match cache, which can be queried via
nxo regex submatch().
This function combines nxo regsub new() and nxo regsub subst() in such a way that no
Onyx regsub object is created, thus providing a more efficient way of doing a one-off subst.

4.10.33 nxo stack

The nxo stack class is a subclass of the nxo class.

API

void nxo stack new(cw nxo t *a nxo, bool a locking, uint32 t a mincount):

Input(s):
a nxo: Pointer to a stack nxo.
a locking: Implicit locking mode.
a mincount: Minimum size to allow the internal array to shrink to.

Output(s): None.

Exception(s):
CW ONYXX OOM.

4.10. CLASSES Jason Evans 325

Description: Constructor.

void nxo stack copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a stack nxo.
a from: Pointer to a stack nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Copy the objects in a from onto a to.

uint32 t nxo stack count(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Number of objects on a nxo.

Exception(s): None.
Description: Return the number of objects on a nxo.

cw nxo t * nxo stack push(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed onto a nxo.

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo onto a nxo and return a pointer to it.

cw nxo t * nxo stack bpush(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval: Pointer to a no nxo that has been pushed onto the bottom of a nxo.

Exception(s):
CW ONYXX OOM.

Description: Push a no nxo onto the bottom of a nxo and return a pointer to it.

bool nxo stack pop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

false: Success.
true: Stack underflow.

Exception(s): None.

326 Onyx Manual Chapter 4

Description: Pop an object off of a nxo.

bool nxo stack bpop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

false: Success.
true: Stack underflow.

Exception(s): None.
Description: Pop an object off the bottom of a nxo.

bool nxo stack npop(cw nxo t *a nxo, uint32 t a count):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects to pop off of a nxo.

Output(s):
retval:

false: Success.
true: Stack underflow.

Exception(s): None.
Description: Pop a count objects off of a nxo.

bool nxo stack nbpop(cw nxo t *a nxo, uint32 t a count):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects to pop off the bottom of a nxo.

Output(s):
retval:

false: Success.
true: Stack underflow.

Exception(s): None.
Description: Pop a count objects off the bottom of a nxo.

cw nxo t * nxo stack get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

non-NULL: Pointer to the top nxo on a nxo.
NULL: Stack underflow.

Exception(s): None.
Description: Return a pointer to the top nxo on a nxo.

cw nxo t * nxo stack bget(const cw nxo t *a nxo):

4.10. CLASSES Jason Evans 327

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

non-NULL: Pointer to the bottom nxo on a nxo.
NULL: Stack underflow.

Exception(s): None.
Description: Return a pointer to the bottom nxo on a nxo.

cw nxo t * nxo stack nget(const cw nxo t *a nxo, uint32 t a index):

Input(s):
a nxo: Pointer to a stack nxo.
a index: Index of object in a nxo to return a pointer to.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo at index a index.
NULL: Stack underflow.

Exception(s): None.
Description: Return a pointer to the nxo on a nxo at index a index.

cw nxo t * nxo stack nbget(const cw nxo t *a nxo, uint32 t a index):

Input(s):
a nxo: Pointer to a stack nxo.
a index: Index, counting from the bottom, of object in a nxo to return a pointer to.

Output(s):
retval:

non-NULL: Pointer to the nxo on a nxo at index a index, counting from the bottom.
NULL: Stack underflow.

Exception(s): None.
Description: Return a pointer to the nxo on a nxo at index a index, counting from the bottom.

bool nxo stack exch(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a stack nxo.

Output(s):
retval:

false: Success.
true: Stack underflow.

Exception(s): None.
Description: Exchange the top two objects on a nxo.

void nxo stack rot(cw nxo t *a nxo, int32 t a amount):

Input(s):
a nxo: Pointer to a stack nxo.
a amount: Amount to rotate upward. A negative value rotates downward.

328 Onyx Manual Chapter 4

Output(s): None.
Exception(s): None.
Description: Rotate a nxo up by a amount.

bool nxo stack roll(cw nxo t *a nxo, uint32 t a count, int32 t a amount):

Input(s):
a nxo: Pointer to a stack nxo.
a count: Number of objects in roll region.
a amount: Amount to roll upward. A negative value rolls downward.

Output(s):
retval:

false: Success.
true: Stack underflow.

Exception(s): None.
Description: Roll the top a count objects on a nxo up by a amount.

4.10.34 nxo string

The nxo string class is a subclass of the nxo class. Strings are not ‘\0’-terminated, mainly since sub-
strings are references to other strings, and the termination character wouldn’t be consistently useful.
nxo string cstring() is useful for creating ‘\0’-terminated copies of strings for situations where other C
functions expect terminated strings.

API

void nxo string new(cw nxo t *a nxo, bool a locking, uint32 t a len):

Input(s):
a nxo: Pointer to a string nxo.
a locking: Implicit locking mode.
a len: Length in bytes of string to create.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo string substring new(cw nxo t *a nxo, cw nxo t *a string, uint32 t a offset, uint32 t
a len):

Input(s):
a nxo: Pointer to a string nxo.
a string: Pointer to a string nxo to create a substring of.
a offset: Offset into a string.
a len: Length in bytes of substring to create.

Output(s): None.
Exception(s):

4.10. CLASSES Jason Evans 329

CW ONYXX OOM.
Description: Substring constructor.

void nxo string copy(cw nxo t *a to, cw nxo t *a from):

Input(s):
a to: Pointer to a string nxo.
a from: Pointer to a string nxo.

Output(s): None.
Exception(s): None.
Description: Copy the contents of a from to a to. The length of a to must be at least that of

a from.

void nxo string cstring(cw nxo t *a to, cw nxo t *a from, cw nxo t *a thread):

Input(s):
a to: Pointer to an nxo.
a from: Pointer to a string or name nxo.
a thread: Pointer to a thread nxo.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Create a copy of a from, but append a ‘\0’ character to make it usable in calls to

typical C functions that expect a terminated string.

uint32 t nxo string len get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s):
retval: Length of a nxo.

Exception(s): None.
Description: Return the length of a nxo.

void nxo string el get(const cw nxo t *a nxo, cw nxoi t a offset, char *r el):

Input(s):
a nxo: Pointer to a string nxo.
a offset: Offset of character to get.
r el: Pointer to space to copy a character to.

Output(s):
*r el: A copy of the character of a nxo at offset a offset.

Exception(s): None.
Description: Get a copy of the character of a nxo at offset a offset.

void nxo string el set(cw nxo t *a nxo, char a el, cw nxoi t a offset):

Input(s):
a nxo: Pointer to a string nxo.
a el: A character.

330 Onyx Manual Chapter 4

a offset: Offset of character in a nxo to replace with a el.

Output(s): None.

Exception(s): None.

Description: Copy a el into the element of a nxo at offset a offset.

void nxo string lock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s): None.

Exception(s): None.

Description: If implicit locking is activated for a nxo, lock it.

void nxo string unlock(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s): None.

Exception(s): None.

Description: If implicit locking is activated for a nxo, unlock it.

char * nxo string get(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a string nxo.

Output(s):
retval: Pointer to the string internal to a nxo.

Exception(s): None.

Description: Return a pointer to the string internal to a nxo.

void nxo string set(cw nxo t *a nxo, uint32 t a offset, const char *a str, uint32 t a len):

Input(s):
a nxo: Pointer to a string nxo.
a offset: Offset into a nxo to replace.
a str: String to replace a range of a nxo with.
a len: Length in bytes of a str.

Output(s): None.

Exception(s): None.

Description: Replace a len bytes of a nxo at offset a offset with a str.

4.10.35 nxo thread

The nxo thread class is a subclass of the nxo class.

The threadp class is a helper class that contains scanner position information. The threadp state is
used when recording syntax errors.

4.10. CLASSES Jason Evans 331

API

void nxo threadp new(cw nxo threadp t *a threadp):

Input(s):
a threadp: Pointer to space for a threadp.

Output(s): None.

Exception(s): None.

Description: Constructor.

void nxo threadp delete(cw nxo threadp t *a threadp, cw nxo t *a thread):

Input(s):
a threadp: Pointer to a threadp.
a thread: Pointer to a thread nxo.

Output(s): None.

Exception(s): None.

Description: Destructor.

void nxo threadp origin get(const cw nxo threadp t *a threadp, const char **r origin, uint32 t
*r olen):

Input(s):
a threadp: Pointer to space for a threadp.
r origin: Pointer to a string pointer.
r olen: Pointer to an unsigned integer.

Output(s):
*r origin: A pointer to a string that represents the origin of a nxo.
*r olen: The length of the string pointed to by *r origin.

Exception(s): None.

Description: Retrieve the origin.

void nxo threadp origin set(cw nxo threadp t *a threadp, const char *a origin, uint32 t a olen):

Input(s):
a threadp: Pointer to space for a threadp.
a origin: Pointer to a string that represents the origin of a nxo.
a olen: The length of the string pointed to bya origin.

Output(s): None.

Exception(s): None.

Description: Set the origin. This function does not make a copy of a origin, so the string must
exist for the entire time that a threadp retains a reference to the string.

void nxo threadp position get(const cw nxo threadp t *a threadp, uint32 t *r line, uint32 t
*r column):

Input(s):
a threadp: Pointer to space for a threadp.
r line: Pointer to a location to store a line number.
r column: Pointer to a location to store a column number.

332 Onyx Manual Chapter 4

Output(s):
*r line: Line number.
*r column: Column number.

Exception(s): None.
Description: Retrieve the line number and column number.

void nxo threadp position set(cw nxo threadp t *a threadp, uint32 t a line, uint32 t a column):

Input(s):
a threadp: Pointer to space for a threadp.
a line: Line number.
a column: Column number.

Output(s): None.
Exception(s): None.
Description: Set the line number and column number.

void nxo thread new(cw nxo t *a nxo, cw nx t *a nx):

Input(s):
a nxo: Pointer to a thread nxo.
a nx: Pointer to an nx.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: Constructor.

void nxo thread start(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): Application dependent.
Description: Start a thread running by calling the start operator such that the top object on

ostack will be executed.

void nxo thread exit(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Terminate the thread. This has the same effect as a detached thread exiting.

Calling this function may is necessary (depending on the application) to allow the thread to
be garbage collected, much the same way as the detach and join operators do.

void nxo thread thread(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.

4.10. CLASSES Jason Evans 333

Exception(s):
CW ONYXX OOM.

Description: Create a new thread. The new thread calls nxo thread start().

void nxo thread detach(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Detach a nxo so that when it exits it can be garbage collected.

void nxo thread join(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Wait for a nxo to exit.

cw nxo threadts t nxo thread state(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: The current scanner state of a nxo.

THREADTS START: Start state.
THREADTS COMMENT: ’%’ seen, but no line break yet.
THREADTS INTEGER: Scanning an integer.
THREADTS INTEGER RADIX: Scanning a radix integer.
THREADTS REAL FRAC: Scanning the fractional portion of a real.
THREADTS REAL EXP: Scanning the exponent porttion of a real.
THREADTS STRING: Scanning a string.
THREADTS STRING NEWLINE CONT: ’\r’ seen in a string.
THREADTS STRING PROT CONT: ’\\’ seen in a string.
THREADTS STRING CRLF CONT: ’\’ ’\r’ seen in a string.
THREADTS STRING CTRL CONT: ’\’ ’c’ seen in a string.
THREADTS STRING HEX CONT: ’\’ ’x’ seen in a string.
THREADTS STRING HEX FINISH: First hex digit of a “\xDD” string escape

sequence seen.
THREADTS NAME START: ’!’, ’$’, or ’∼’ seen.
THREADTS NAME: Scanning a name.

Exception(s): None.
Description: Return the current scanner state. In general this is only useful when

implementing an interactive environment for which the prompt behaves differently
depending on what state the scanner is in. For example the interactive onyx shell needs
only to know whether the scanner is in the start state.

bool nxo thread deferred(cw nxo t *a nxo):

334 Onyx Manual Chapter 4

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval:

false: Execution is not deferred.
true: Execution is deferred.

Exception(s): None.
Description: Return whether the scanner is currently in deferred execution mode. See

Section 2.2 for information on deferred execution. In general this is only useful when
implementing an interactive environment for which the prompt behaves differently
depending on what state the scanner is in.

void nxo thread reset(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): None.
Description: Reset the scanner to the start state, and turn deferral off. This is a dangerous

feature that should be used with great care. nxo no objects should never be visible from
inside the interpreter, so the caller must assure that any nxo no objects are removed before
further processing is done in the context of a nxo.

void nxo thread loop(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s): None.
Exception(s): Application specific.
Description: Execute the top object on estack. The caller is responsible for placing the object

on estack, but it is removed before this function returns.

void nxo thread interpret(cw nxo t *a nxo, cw nxo threadp t *a threadp, const char *a str,
uint32 t a len):

Input(s):
a nxo: Pointer to a thread nxo.
a threadp: A threadp.
a str: Pointer to a string to interpret.
a len: Length in bytes of a str.

Output(s): None.
Exception(s): Application specific.
Description: Interpret the string pointed to by a str.

void nxo thread flush(cw nxo t *a nxo, cw nxo threadp t *a threadp):

Input(s):
a nxo: Pointer to a thread nxo.
a threadp: A threadp.

Output(s): None.

4.10. CLASSES Jason Evans 335

Exception(s): Application specific.
Description: Do the equivalent of interpreting a carriage return in order to force acceptance

of the previous token if no whitespace has yet followed.

void nxo thread nerror(cw nxo t *a nxo, cw nxn t a nxn):

Input(s):
a nxo: Pointer to a thread nxo.
a nxn: An nxn corresponding to the name of an error.

Output(s): None.
Exception(s): Application dependent.
Description: Throw an error.

void nxo thread serror(cw nxo t *a nxo, const char a str, uint32 t a len):

Input(s):
a nxo: Pointer to a thread nxo.
a str: Pointer to a string that represents the name of an error.
a len: The length of a str.

Output(s): None.
Exception(s): Application dependent.
Description: Throw an error.

bool nxo thread dstack search(cw nxo t *a nxo, cw nxo t *a key, cw nxo t *r value):

Input(s):
a nxo: Pointer to a thread nxo.
a key: Pointer to an nxo.
r value: Pointer to an nxo.

Output(s):
retval:

false: Success.
true: a key not found on dstack.

r value: Top value in dstack associated with a key.
Exception(s): None.
Description: Search dstack for the topmost definition of a key and dup its value to r value.

bool nxo thread class hier search(cw nxo t *a nxo, cw nxo t *a class, cw nxo t *a key, cw nxo t
*r value):

Input(s):
a nxo: Pointer to a thread nxo.
a class: Pointer to a class nxo.
a key: Pointer to an nxo.
r value: Pointer to an nxo.

Output(s):
retval:

false: Success.
true: a key not found on in a class’s class hierarchy.

336 Onyx Manual Chapter 4

r value: Value in a class’s class hierarchy farthest from the base class that is associated
with a key.

Exception(s): None.
Description: Search a class’s class hierarchy for the definition of a key that is farthest from

the base class.

bool nxo thread currentlocking(const cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval:

false: Implicit locking deactivated for new objects.
true: Implicit locking activated for new objects.

Exception(s): None.
Description: Return whether implicit locking is activated for new objects.

void nxo thread setlocking(cw nxo t *a nxo, bool a locking):

Input(s):
a nxo: Pointer to a thread nxo.
a locking:

false: Do not implicitly lock new objects.
true: Implicitly lock new objects.

Output(s): None.
Exception(s): None.
Description: Activate or deactivate implicit locking for new objects.

cw nxoi t nxo thread maxestack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Maximum allowable estack depth.

Exception(s): None.
Description: Return a nxo’s maximum allowable estack depth.

void nxo thread maxestack set(cw nxo t *a nxo, cw nxoi t a maxestack):

Input(s):
a nxo: Pointer to a thread nxo.
a maxestack: Maximum estack depth.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s maximum allowable estack depth to a maxestack.

bool nxo thread tailopt get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

4.10. CLASSES Jason Evans 337

Output(s):
retval: Tail optimization setting.

Exception(s): None.

Description: Return a nxo’s tail optimization setting.

void nxo thread tailopt set(cw nxo t *a nxo, bool a tailopt):

Input(s):
a nxo: Pointer to a thread nxo.
a tailopt: Tail optimization setting.

Output(s): None.

Exception(s): None.

Description: Set a nxo’s tail optimization setting to a tailopt.

cw nx t * nxo thread nx get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nx.

Exception(s): None.

Description: Return the nx associated with a nxo.

cw nxo t * nxo thread userdict get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the userdict associated with a nxo.

cw nxo t * nxo thread errordict get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

Description: Return a pointer to the errordict associated with a nxo.

cw nxo t * nxo thread currenterror get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.

338 Onyx Manual Chapter 4

Description: Return a pointer to the currenterror associated with a nxo.

cw nxo t * nxo thread ostack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the ostack associated with a nxo.

cw nxo t * nxo thread dstack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the dstack associated with a nxo.

cw nxo t * nxo thread estack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the estack associated with a nxo.

cw nxo t * nxo thread istack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the istack associated with a nxo.

cw nxo t * nxo thread tstack get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the tstack associated with a nxo.

cw nxo t * nxo thread stdin get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

4.10. CLASSES Jason Evans 339

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stdin associated with a nxo.

void nxo thread stdin set(cw nxo t *a nxo, cw nxo t *a stdin):

Input(s):
a nxo: Pointer to a thread nxo.
a stdin: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s stdin to a stdin.

cw nxo t * nxo thread stdout get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stdout associated with a nxo.

void nxo thread stdout set(cw nxo t *a nxo, cw nxo t *a stdout):

Input(s):
a nxo: Pointer to a thread nxo.
a stdout: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s stdout to a stdout.

cw nxo t * nxo thread stderr get(cw nxo t *a nxo):

Input(s):
a nxo: Pointer to a thread nxo.

Output(s):
retval: Pointer to an nxo that can safely be used without risk of being garbage collected.

Exception(s): None.
Description: Return a pointer to the stderr associated with a nxo.

void nxo thread stderr set(cw nxo t *a nxo, cw nxo t *a stderr):

Input(s):
a nxo: Pointer to a thread nxo.
a stderr: Pointer to a file nxo.

Output(s): None.
Exception(s): None.
Description: Set a nxo’s stderr to a stderr.

340 Onyx Manual Chapter 4

4.10.36 ql

The ql macros implement operations on a list. The type of the list elements and which field of the ele-
ments to use are determined by arguments that are passed into the macros. The macros are optimized
for speed and code size, which means that there is minimal error checking built in. As a result, care
must be taken to assure that these macros are used as intended, or strange things can happen.

Internally, the list is represented as a ring, so with some care, the ql and qr interfaces can be used in
conjunction with each other.

Since a ql is actually a ring, it is possible to have multiple ql heads that share the same ring. This
works just fine, with the caveat that operations on one ql can have side-effects on another.

API

ql head(<ql type> a type):

Input(s):
a type: Data type for the ql elements.

Output(s): A data structure that can be used as a ql head.
Exception(s): None.
Description: Generate code for a ql head data structure.

ql head initializer(<ql type> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s): None.
Exception(s): None.
Description: Statically initialize a ql head.

ql elm(<ql type> a type):

Input(s):
a type: Data type for the ql elements.

Output(s): A data structure that can be used as a ql element.
Exception(s): None.
Description: Generate code for a ql element data structure.

void ql new(<ql head> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s): None.
Exception(s): None.
Description: Constructor.

void ql elm new(<ql type> *a elm, <field name> a field):

Input(s):
a elm: Pointer to an element.

4.10. CLASSES Jason Evans 341

a field: Field within the ql elements to use.
Output(s): None.
Exception(s): None.
Description: Constructor.

<ql type> * ql first(<ql head> *a head):

Input(s):
a head: Pointer to a ql head.

Output(s):
retval:

non-NULL: Pointer to the first element in a head.
NULL: a head is empty.

Exception(s): None.
Description: Return a pointer to the first element in the ql.

<ql type> * ql last(<ql head> *a head, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the last element in a head.
NULL: a head is empty.

Exception(s): None.
Description: Return a pointer to the last element in the ql.

<ql type> * ql next(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s):
retval:

non-NULL: Pointer to the element after a elm.
NULL: a elm is the last element in a head.

Exception(s): None.
Description: Return a pointer to the element in a head after a elm.

<ql type> * ql prev(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s):
retval:

342 Onyx Manual Chapter 4

non-NULL: Pointer to the element before a elm.
NULL: a elm is the first element in a head.

Exception(s): None.
Description: Return a pointer to the element in a head before a elm.

void ql before insert(<ql head> *a head, <ql type> *a qlelm, <ql type> *a elm, <field name>
a field):

Input(s):
a head: Pointer to a ql head.
a qlelm: Pointer to an element within a head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm into a head before a qlelm.

void ql after insert(<ql type> *a qlelm, <ql type> *a elm, <field name> a field):

Input(s):
a qlelm: Pointer to an element within a head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm into a head after a qlelm.

void ql head insert(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm at the head of a head.

void ql tail insert(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.
Exception(s): None.
Description: Insert a elm at the tail of a head.

void ql remove(<ql head> *a head, <ql type> *a elm, <field name> a field):

Input(s):

4.10. CLASSES Jason Evans 343

a head: Pointer to a ql head.
a elm: Pointer to an element.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Remove a elm from a head.

void ql head remove(<ql head> *a head, <ql type> a type, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a type: Data type for the ql elements.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Remove the head element of a head.

void ql tail remove(<ql head> *a head, <ql type> a type, <field name> a field):

Input(s):
a head: Pointer to a ql head.
a type: Data type for the ql elements.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Remove the tail element of a head.

ql foreach(<ql type> *a var, <ql type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the ql, storing a pointer to each element in a var along the way.

ql reverse foreach(<ql type> *a var, <ql type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a head: Pointer to a ql head.
a field: Field within the ql elements to use.

Output(s): None.

Exception(s): None.

Description: Iterate through the ql in the reverse direction, storing a pointer to each element
in a var along the way.

344 Onyx Manual Chapter 4

4.10.37 qr

The qr macros implement operations on a ring. The type of the ring elements and which field of
the elements to use are determined by arguments that are passed into the macros. The macros are
optimized for speed and code size, which means that there is minimal error checking built in. As a
result, care must be taken to assure that these are used as intended, or strange things can happen.

API

qr(<qr type> a type):

Input(s):
a type: Data type for the qr.

Output(s): A data structure that can be used for a qr.
Exception(s): None.
Description: Generate code for a qr data structure.

void qr new(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Constructor.

<qr type> * qr next(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s):
retval: Pointer to the next element in the qr.

Exception(s): None.
Description: Return a pointer to the next element in the qr.

<qr type> * qr prev(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s):
retval: Pointer to the previous element in the qr.

Exception(s): None.
Description: Return a pointer to the previous element in the qr.

void qr before insert(<qr type> *a qrelm, <qr type> *a qr, <field name> a field):

Input(s):
a qrelm: Pointer to an element in a qr.

4.10. CLASSES Jason Evans 345

a qr: Pointer to an element that is the only element in its ring.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a qr before a qrelm.

void qr after insert(<qr type> *a qrelm, <qr type> *a qr, <field name> a field):

Input(s):
a qrelm: Pointer to an element in a qr.
a qr: Pointer to an element that is the only element in its ring.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Insert a qr after a qrelm.

void qr meld(<qr type> *a qr a, <qr type> *a qr b, <qr type> a type, <field name> a field):

Input(s):
a qr a: Pointer to a qr.
a qr b: Pointer to a qr.
a type: Data type for the qr elements.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Meld a qr a and a qr b into one ring.

void qr split(<qr type> *a qr a, <qr type> *a qr b, <qr type> a type, <field name> a field):

Input(s):
a qr a: Pointer to a qr.
a qr b: Pointer to a qr.
a type: Data type for the qr elements.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Split a ring at a qr a and a qr b.

void qr remove(<qr type> *a qr, <field name> a field):

Input(s):
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.

Exception(s): None.

Description: Remove a qr from the ring.

qr foreach(<qr type> *a var, <qr type> *a qr, <field name> a field):

346 Onyx Manual Chapter 4

Input(s):
a var: The name of a temporary variable to use for iteration.
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate through the qr, storing a pointer to each element in a var along the way.

qr reverse foreach(<qr type> *a var, <qr type> *a qr, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a qr: Pointer to a qr.
a field: Field within the qr elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate through the qr in the reverse direction, storing a pointer to each element

in a var along the way.

4.10.38 qs

The qs macros implement operations on a stack. The type of the stack elements and which field of
the elements to use are determined by arguments that are passed into the macros. The macros are
optimized for speed and code size, which means that there is minimal error checking built in. As a
result, care must be taken to assure that these macros are used as intended, or strange things can
happen.

API

qs head(<qs type> a type):

Input(s):
a type: Data type for the qs.

Output(s): A data structure that can be used as a qs head.
Exception(s): None.
Description: Generate code for a qs head data structure.

qs head initializer(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s): None.
Exception(s): None.
Description: Statically initialize a qs head.

qs elm(<qs elm type> a type):

Input(s):

4.10. CLASSES Jason Evans 347

a type: Data type for the qs elements.

Output(s): A data structure that can be used as a qs element.

Exception(s): None.

Description: Generate code for a qs element data structure.

void qs new(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s): None.

Exception(s): None.

Description: Constructor.

void qs elm new(<qs elm type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a qs element.
a field: Field within the qs elements to use.

Output(s): None.

Exception(s): None.

Description: Constructor.

<qs type> * qs top(<qs type> *a head):

Input(s):
a head: Pointer to a qs head.

Output(s):
retval: Pointer to the top element in the qs.

Exception(s): None.

Description: Return a pointer to the top element in the qs.

<qs type> * qs down(<qs elm type> *a elm, <field name> a field):

Input(s):
a elm: Pointer to a qs element.
a field: Field within the qs elements to use.

Output(s):
retval:

non-NULL: Pointer to the next element in the qs.
NULL: a elm is the bottom element in the qs.

Exception(s): None.

Description: Return a pointer to the next element in the qs below a elm.

void qs push(<qs type> *a head, <qs elm type> *a elm, <field name> a field):

Input(s):
a head: Pointer to a qs head.
a elm: Pointer to an element.
a field: Field within the qs elements to use.

348 Onyx Manual Chapter 4

Output(s): None.
Exception(s): None.
Description: Push a elm onto the qs.

void qs under push(<qs elm type> *a qselm, <qs elm type> *a elm, <field name> a field):

Input(s):
a qselm: Pointer to a qs element.
a elm: Pointer to an element.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Push a elm under a qselm.

void qs pop(<qs type> *a head, <field name> a field):

Input(s):
a head: Pointer to a qs head.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Pop an element off of a head.

qs foreach(<qs elm type> *a var, <qs type> *a head, <field name> a field):

Input(s):
a var: The name of a temporary variable to use for iteration.
a head: Pointer to a qs head.
a field: Field within the qs elements to use.

Output(s): None.
Exception(s): None.
Description: Iterate down the qs, storing a pointer to each element in a var along the way.

4.10.39 thd

The thd class implements a wrapper around the system POSIX threads library or GNU pth library.
In most regards, this is a thin wrapper around the normal threading functionality, but some extra in-
formation is kept in order to allow implmentation of thread suspension/resumption, “critical sections”,
and “single sections”.

The suspendibility of each thread is determined by the arguments passed to thd new(). The initial
thread is always suspensible. Other threads that are created via some mechanism other than thd new()
are not suspensible.

Depending on how libonyx is built, the additional functionality is implemented with the aid of the
SIGUSR1 and SIGUSR2 signals. As a result, system calls may be interrupted by signals. The system
calls will be automatically restarted if they have made no progress at the time of interruption, but
will return a partial result otherwise. Therefore, if any of the additional functionality is utilized, the
application must be careful to handle partial system call results. At least the following system calls
can be interrupted: read(), write(), sendto(), recvfrom(), sendmsg(), recvmsg(), ioctl(), and wait(). See
the system documentation for additional information.

4.10. CLASSES Jason Evans 349

API

cw thd t * thd new(void *(*a start func)(void *), void *a arg, bool a suspensible):

Input(s):
a start func: Pointer to a start function.
a arg: Argument passed to a start func().
a suspensible:

false: Not suspensible.
true: Suspensible.

Output(s):
retval: Pointer to a thd.

Exception(s):
CW ONYXX OOM.

Description: Constructor (creates a new thread).

void thd delete(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.
Exception(s): None.
Description: Destructor.

void * thd join(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s):
retval: Return value from thread entry function.

Exception(s): None.
Description: Join (wait for) the thread associated with a thd.

cw thd t * thd self(void):

Input(s): None.
Output(s):

retval: Pointer to the calling thread’s thd structure.
Exception(s): None.
Description: Return a pointer to the thd structure that corresponds to the calling thread.

void thd yield(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Give up the rest of the calling thread’s time slice.

int thd sigmask(int a how, const sigset t *a set, sigset t *r oset):

Input(s):

350 Onyx Manual Chapter 4

a how:
SIG BLOCK: Block signals in a set.
SIG UNBLOCK: Unblock signals in a set.
SIG SETMASK: Set signal mask to a set.

a set: Pointer to a signal set.
r oset:

non-NULL: Pointer space to store the old signal mask.
NULL: Ignored.

Output(s):
retval: Always zero, unless the arguments are invalid.
*r oset: Old signal set.

Exception(s): None.

Description: Set the calling thread’s signal mask.

void thd crit enter(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Enter a critical region where the calling thread may not be suspended by
thd suspend(), thd trysuspend(), or thd single enter().

void thd crit leave(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Leave a critical section; the calling thread may once again be suspended.

void thd single enter(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Enter a critical region where all other suspensible threads must be suspended.

void thd single leave(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Leave a critical section where all other threads must be suspended. All threads
that were suspended in thd single enter() are resumed.

void thd suspend(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.

4.10. CLASSES Jason Evans 351

Exception(s): None.

Description: Suspend a thd.

bool thd trysuspend(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s):
retval:

false: Success.
true: Failure.

Exception(s): None.

Description: Try to suspend a thd, but fail if it is in a critical section.

void thd resume(cw thd t *a thd):

Input(s):
a thd: Pointer to a thd.

Output(s): None.

Exception(s): None.

Description: Resume (make runnable) a thd.

4.10.40 tsd

The tsd class implements thread-specific data. A tsd instance can be created, then any number of
threads can use that same instance to store and retrieve a thread-specific pointer to data.

API

void tsd new(cw tsd t *a tsd, void (*a func)(void *)):

Input(s):
a tsd: Pointer to space for a tsd.
a func: Pointer to a cleanup function, or NULL.

Output(s): None.

Exception(s): None.

Description: Constructor.

void tsd delete(cw tsd t *a tsd):

Input(s):
a tsd: Pointer to a tsd.

Output(s): None.

Exception(s): None.

Description: Destructor.

void * tsd get(cw tsd t *a tsd):

352 Onyx Manual Chapter 4

Input(s):
a tsd: Pointer to a tsd.

Output(s):
retval: Pointer to thread-specific data.

Exception(s): None.

Description: Get thread-specific data pointer.

void tsd set(cw tsd t *a tsd, void *a val):

Input(s):
a tsd: Pointer to a tsd.
a val: Pointer to thread-specific data.

Output(s): None.

Exception(s): None.

Description: Set thread-specific data pointer.

4.10.41 xep

The xep class implements exception handling, with support for xep try and xep catch() blocks. Minimal
use must include at least:

xep_begin();
xep_try
{

/* Code that might throw an exception. */
}
xep_end();

A more complete skeleton looks like:

xep_begin();
xep_try
{

/* Code that might throw an exception. */
}
xep_catch(SOME_EXCEPTION)
{

/* Handle exception... */
xep_handled();

}
xep_catch(ANOTHER_EXCEPTION)
xep_mcatch(YET_ANOTHER)
{

/* React to exception, but propagate... */
}
xep_acatch
{

/* Handle all exceptions not explicitly handled above... */

4.10. CLASSES Jason Evans 353

xep_handled();
}
xep_end();

Note that there is some serious cpp macro magic behind the xep interface, and as such, if usage deviates
significantly from the above templates, compiler errors may result.

Exception values are of type cw xepv t. CW ONYXX MIN to CW ONYXX MAX are reserved by li-
bonyx, and other ranges may be reserved by other libraries. See their documentation for details.

An exception is not implicitly handled if an exception handler is executed for that exception. Instead,
xep handled() must be manually called to avoid propagating the exception up the handler chain.

It is not legal to return from a function within an exception handling code block, nor is it legal to jump
out of an exception handling block; doing so will corrupt the exception handler chain.

API

void xep begin(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Begin an exception handling code block.

void xep end(void):

Input(s): None.

Output(s): None.

Exception(s): None.

Description: End an exception handling block.

xep try . . . :

Input(s): None.

Output(s): None.

Exception(s): None.

Description: Begin a block of code that is to be executed, with the possibility that an
exception might be thrown.

xep catch(cw xepv t a xepv) . . . :

Input(s):
a xepv: Exception number.

Output(s): None.

Exception(s): None.

Description: Begin a block of code that catches an exception. The exception is not considered
handled unless xep handled() is called.

xep mcatch(cw xepv t a xepv) . . . :

Input(s):

354 Onyx Manual Chapter 4

a xepv: Exception number.
Output(s): None.
Exception(s): None.
Description: Begin a block of code that catches an exception. Must immediately follow a

xep catch() call. This interface is used for the case where more than one exception type is to
be handled by the same code block. The exception is not considered handled unless
xep handled() is called.

xep acatch . . . :

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Begin a block of code that catches all exceptions not explicitly caught by

xep catch() and xep mcatch() blocks. There may only be one xep acatch block within a
try/catch block. The exception is not considered handled unless xep handled() is called.

cw xepv t xep value(void):

Input(s): None.
Output(s):

retval: Value of the current exception being handled.
Exception(s): None.
Description: Return the value of the current exception being handled.

const char * xep filename(void):

Input(s): None.
Output(s):

retval: Filename where the current exception being handled was thrown.
Exception(s): None.
Description: Return the filename where the current exception being handled was thrown.

uint32 t xep line num(void):

Input(s): None.
Output(s):

retval: Line number where the current exception being handled was thrown.
Exception(s): None.
Description: Return the line number where the current exception being handled was thrown.

void xep throw e(cw xepv t a xepv, const char *a filename, uint32 t a line num):
void xep throw(cw xepv t a xepv):

Input(s):
a xepv: Exception number to throw.
a filename: Should be FILE .
a line num: Should be LINE .

Output(s): None.
Exception(s):

4.11. DICTIONARIES Jason Evans 355

a xepv.
Description: Throw an exception.

void xep retry(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Implicitly handle the current exception and retry the xep try code block.

void xep handled(void):

Input(s): None.
Output(s): None.
Exception(s): None.
Description: Mark the current exception as handled.

4.11 Dictionaries

4.11.1 gcdict

The gcdict functions implement the operators contained in gcdict. Only the C API is documented
here; see Section 2.11.4 for operator semantics.

API

void gcdict active(cw nxo t *a thread):
void gcdict collect(cw nxo t *a thread):
void gcdict period(cw nxo t *a thread):
void gcdict setactive(cw nxo t *a thread):
void gcdict setperiod(cw nxo t *a thread):
void gcdict setthreshold(cw nxo t *a thread):
void gcdict stats(cw nxo t *a thread):
void gcdict threshold(cw nxo t *a thread):

Input(s):
a thread: Pointer to a thread.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: C interfaces to Onyx operators that control garbage collection.

4.11.2 systemdict

The systemdict functions implement the operators contained in systemdict. Only the C API is docu-
mented here; see Section 2.11.9 for operator semantics.

356 Onyx Manual Chapter 4

API

void systemdict abs(cw nxo t *a thread):
void systemdict accept(cw nxo t *a thread):
void systemdict acos(cw nxo t *a thread):
void systemdict acosh(cw nxo t *a thread):
void systemdict add(cw nxo t *a thread):
void systemdict adn(cw nxo t *a thread):
void systemdict and(cw nxo t *a thread):
void systemdict array(cw nxo t *a thread):
void systemdict asin(cw nxo t *a thread):
void systemdict asinh(cw nxo t *a thread):
void systemdict atan(cw nxo t *a thread):
void systemdict atan2(cw nxo t *a thread):
void systemdict atanh(cw nxo t *a thread):
void systemdict aup(cw nxo t *a thread):
void systemdict bdup(cw nxo t *a thread):
void systemdict begin(cw nxo t *a thread):
void systemdict bind(cw nxo t *a thread):
void systemdict bindsocket(cw nxo t *a thread):
void systemdict bpop(cw nxo t *a thread):
void systemdict broadcast(cw nxo t *a thread):
void systemdict bytesavailable(cw nxo t *a thread):
void systemdict cat(cw nxo t *a thread):
void systemdict ccheck(cw nxo t *a thread):
void systemdict cd(cw nxo t *a thread):
void systemdict cdef(cw nxo t *a thread):
void systemdict ceiling(cw nxo t *a thread):
void systemdict chmod(cw nxo t *a thread):
void systemdict chown(cw nxo t *a thread):
void systemdict chroot(cw nxo t *a thread):
void systemdict class(cw nxo t *a thread):
void systemdict classname(cw nxo t *a thread):
void systemdict clear(cw nxo t *a thread):
void systemdict cleartomark(cw nxo t *a thread):
void systemdict close(cw nxo t *a thread):
void systemdict condition(cw nxo t *a thread):
void systemdict connect(cw nxo t *a thread):
void systemdict continue(cw nxo t *a thread):
void systemdict copy(cw nxo t *a thread):
void systemdict cos(cw nxo t *a thread):
void systemdict cosh(cw nxo t *a thread):
void systemdict count(cw nxo t *a thread):
void systemdict countdstack(cw nxo t *a thread):
void systemdict countestack(cw nxo t *a thread):
void systemdict counttomark(cw nxo t *a thread):
void systemdict cstack(cw nxo t *a thread):
void systemdict currentdict(cw nxo t *a thread):
void systemdict currentlocking(cw nxo t *a thread):
void systemdict cvc(cw nxo t *a thread):
void systemdict cvds(cw nxo t *a thread):
void systemdict cve(cw nxo t *a thread):
void systemdict cves(cw nxo t *a thread):

4.11. DICTIONARIES Jason Evans 357

void systemdict cvf(cw nxo t *a thread):
void systemdict cvi(cw nxo t *a thread):
void systemdict cvl(cw nxo t *a thread):
void systemdict cvn(cw nxo t *a thread):
void systemdict cvrs(cw nxo t *a thread):
void systemdict cvs(cw nxo t *a thread):
void systemdict cvx(cw nxo t *a thread):
void systemdict data(cw nxo t *a thread):
void systemdict dec(cw nxo t *a thread):
void systemdict def(cw nxo t *a thread):
void systemdict detach(cw nxo t *a thread):
void systemdict dict(cw nxo t *a thread):
void systemdict die(cw nxo t *a thread):
void systemdict dirforeach(cw nxo t *a thread):
void systemdict div(cw nxo t *a thread):
void systemdict dn(cw nxo t *a thread):
void systemdict dstack(cw nxo t *a thread):
void systemdict dup(cw nxo t *a thread):
void systemdict echeck(cw nxo t *a thread):
void systemdict egid(cw nxo t *a thread):
void systemdict end(cw nxo t *a thread):
void systemdict eq(cw nxo t *a thread):
void systemdict escape(cw nxo t *a thread):
void systemdict estack(cw nxo t *a thread):
void systemdict euid(cw nxo t *a thread):
void systemdict eval(cw nxo t *a thread):
void systemdict exch(cw nxo t *a thread):
void systemdict exec(cw nxo t *a thread):
void systemdict exit(cw nxo t *a thread):
void systemdict exp(cw nxo t *a thread):
void systemdict fcheck(cw nxo t *a thread):
void systemdict floor(cw nxo t *a thread):
void systemdict flush(cw nxo t *a thread):
void systemdict flushfile(cw nxo t *a thread):
void systemdict for(cw nxo t *a thread):
void systemdict foreach(cw nxo t *a thread):
void systemdict forkexec(cw nxo t *a thread):
void systemdict ge(cw nxo t *a thread):
void systemdict get(cw nxo t *a thread):
void systemdict getinterval(cw nxo t *a thread):
void systemdict getpgid(cw nxo t *a thread):
void systemdict getsid(cw nxo t *a thread):
void systemdict gid(cw nxo t *a thread):
void systemdict gmaxestack(cw nxo t *a thread):
void systemdict gstderr(cw nxo t *a thread):
void systemdict gstdin(cw nxo t *a thread):
void systemdict gstdout(cw nxo t *a thread):
void systemdict gt(cw nxo t *a thread):
void systemdict gtailopt(cw nxo t *a thread):
void systemdict handletag(cw nxo t *a thread):
void systemdict ibdup(cw nxo t *a thread):
void systemdict ibpop(cw nxo t *a thread):
void systemdict icheck(cw nxo t *a thread):

358 Onyx Manual Chapter 4

void systemdict idiv(cw nxo t *a thread):
void systemdict idup(cw nxo t *a thread):
void systemdict if(cw nxo t *a thread):
void systemdict ifelse(cw nxo t *a thread):
void systemdict ilocked(cw nxo t *a thread):
void systemdict implementor(cw nxo t *a thread):
void systemdict implements(cw nxo t *a thread):
void systemdict inc(cw nxo t *a thread):
void systemdict instance(cw nxo t *a thread):
void systemdict iobuf(cw nxo t *a thread):
void systemdict ipop(cw nxo t *a thread):
void systemdict isa(cw nxo t *a thread):
void systemdict istack(cw nxo t *a thread):
void systemdict join(cw nxo t *a thread):
void systemdict kill(cw nxo t *a thread):
void systemdict kind(cw nxo t *a thread):
void systemdict known(cw nxo t *a thread):
void systemdict lcheck(cw nxo t *a thread):
void systemdict le(cw nxo t *a thread):
void systemdict length(cw nxo t *a thread):
void systemdict link(cw nxo t *a thread):
void systemdict listen(cw nxo t *a thread):
void systemdict ln(cw nxo t *a thread):
void systemdict load(cw nxo t *a thread):
void systemdict localtime(cw nxo t *a thread):
void systemdict lock(cw nxo t *a thread):
void systemdict log(cw nxo t *a thread):
void systemdict loop(cw nxo t *a thread):
void systemdict lt(cw nxo t *a thread):
void systemdict match(cw nxo t *a thread):
void systemdict maxestack(cw nxo t *a thread):
void systemdict method(cw nxo t *a thread):
void systemdict methods(cw nxo t *a thread):
void systemdict mkdir(cw nxo t *a thread):
void systemdict mkfifo(cw nxo t *a thread):
void systemdict mod(cw nxo t *a thread):
void systemdict modload(cw nxo t *a thread):
void systemdict monitor(cw nxo t *a thread):
void systemdict mul(cw nxo t *a thread):
void systemdict mutex(cw nxo t *a thread):
void systemdict nbpop(cw nxo t *a thread):
void systemdict ncat(cw nxo t *a thread):
void systemdict ndn(cw nxo t *a thread):
void systemdict ndup(cw nxo t *a thread):
void systemdict ne(cw nxo t *a thread):
void systemdict neg(cw nxo t *a thread):
void systemdict nip(cw nxo t *a thread):
void systemdict nonblocking(cw nxo t *a thread):
void systemdict not(cw nxo t *a thread):
void systemdict npop(cw nxo t *a thread):
void systemdict nsleep(cw nxo t *a thread):
void systemdict nup(cw nxo t *a thread):
void systemdict offset(cw nxo t *a thread):

4.11. DICTIONARIES Jason Evans 359

void systemdict open(cw nxo t *a thread):
void systemdict or(cw nxo t *a thread):
void systemdict origin(cw nxo t *a thread):
void systemdict ostack(cw nxo t *a thread):
void systemdict over(cw nxo t *a thread):
void systemdict path(cw nxo t *a thread):
void systemdict peername(cw nxo t *a thread):
void systemdict pid(cw nxo t *a thread):
void systemdict pipe(cw nxo t *a thread):
void systemdict poll(cw nxo t *a thread):
void systemdict pop(cw nxo t *a thread):
void systemdict pow(cw nxo t *a thread):
void systemdict ppid(cw nxo t *a thread):
void systemdict print(cw nxo t *a thread):
void systemdict put(cw nxo t *a thread):
void systemdict putinterval(cw nxo t *a thread):
void systemdict pwd(cw nxo t *a thread):
void systemdict quit(cw nxo t *a thread):
void systemdict rand(cw nxo t *a thread):
void systemdict read(cw nxo t *a thread):
void systemdict readline(cw nxo t *a thread):
void systemdict readlink(cw nxo t *a thread):
void systemdict realtime(cw nxo t *a thread):
void systemdict recv(cw nxo t *a thread):
void systemdict regex(cw nxo t *a thread):
void systemdict regsub(cw nxo t *a thread):
void systemdict rename(cw nxo t *a thread):
void systemdict repeat(cw nxo t *a thread):
void systemdict rmdir(cw nxo t *a thread):
void systemdict roll(cw nxo t *a thread):
void systemdict rot(cw nxo t *a thread):
void systemdict round(cw nxo t *a thread):
void systemdict sadn(cw nxo t *a thread):
void systemdict saup(cw nxo t *a thread):
void systemdict sbdup(cw nxo t *a thread):
void systemdict sbpop(cw nxo t *a thread):
void systemdict sbpush(cw nxo t *a thread):
void systemdict sclear(cw nxo t *a thread):
void systemdict scleartomark(cw nxo t *a thread):
void systemdict scount(cw nxo t *a thread):
void systemdict scounttomark(cw nxo t *a thread):
void systemdict sdn(cw nxo t *a thread):
void systemdict sdup(cw nxo t *a thread):
void systemdict seek(cw nxo t *a thread):
void systemdict self(cw nxo t *a thread):
void systemdict send(cw nxo t *a thread):
void systemdict serviceport(cw nxo t *a thread):
void systemdict setclassname(cw nxo t *a thread):
void systemdict setdata(cw nxo t *a thread):
void systemdict setegid(cw nxo t *a thread):
void systemdict setenv(cw nxo t *a thread):
void systemdict seteuid(cw nxo t *a thread):
void systemdict setgid(cw nxo t *a thread):

360 Onyx Manual Chapter 4

void systemdict setgmaxestack(cw nxo t *a thread):
void systemdict setgstderr(cw nxo t *a thread):
void systemdict setgstdin(cw nxo t *a thread):
void systemdict setgstdout(cw nxo t *a thread):
void systemdict setgtailopt(cw nxo t *a thread):
void systemdict setiobuf(cw nxo t *a thread):
void systemdict setisa(cw nxo t *a thread):
void systemdict setlocking(cw nxo t *a thread):
void systemdict setmaxestack(cw nxo t *a thread):
void systemdict setmethods(cw nxo t *a thread):
void systemdict setnonblocking(cw nxo t *a thread):
void systemdict setpgid(cw nxo t *a thread):
void systemdict setsid(cw nxo t *a thread):
void systemdict setsockopt(cw nxo t *a thread):
void systemdict setstderr(cw nxo t *a thread):
void systemdict setstdin(cw nxo t *a thread):
void systemdict setstdout(cw nxo t *a thread):
void systemdict setsuper(cw nxo t *a thread):
void systemdict settailopt(cw nxo t *a thread):
void systemdict setuid(cw nxo t *a thread):
void systemdict sexch(cw nxo t *a thread):
void systemdict shift(cw nxo t *a thread):
void systemdict sibdup(cw nxo t *a thread):
void systemdict sibpop(cw nxo t *a thread):
void systemdict sidup(cw nxo t *a thread):
void systemdict sigmask(cw nxo t *a thread):
void systemdict signal(cw nxo t *a thread):
void systemdict sigpending(cw nxo t *a thread):
void systemdict sigsuspend(cw nxo t *a thread):
void systemdict sigwait(cw nxo t *a thread):
void systemdict sin(cw nxo t *a thread):
void systemdict sinh(cw nxo t *a thread):
void systemdict sipop(cw nxo t *a thread):
void systemdict snbpop(cw nxo t *a thread):
void systemdict sndn(cw nxo t *a thread):
void systemdict sndup(cw nxo t *a thread):
void systemdict snip(cw nxo t *a thread):
void systemdict snpop(cw nxo t *a thread):
void systemdict snup(cw nxo t *a thread):
void systemdict socket(cw nxo t *a thread):
void systemdict socketpair(cw nxo t *a thread):
void systemdict sockname(cw nxo t *a thread):
void systemdict sockopt(cw nxo t *a thread):
void systemdict sover(cw nxo t *a thread):
void systemdict split(cw nxo t *a thread):
void systemdict spop(cw nxo t *a thread):
void systemdict spush(cw nxo t *a thread):
void systemdict sqrt(cw nxo t *a thread):
void systemdict srand(cw nxo t *a thread):
void systemdict sroll(cw nxo t *a thread):
void systemdict srot(cw nxo t *a thread):
void systemdict stack(cw nxo t *a thread):
void systemdict start(cw nxo t *a thread):

4.11. DICTIONARIES Jason Evans 361

void systemdict status(cw nxo t *a thread):
void systemdict stderr(cw nxo t *a thread):
void systemdict stdin(cw nxo t *a thread):
void systemdict stdout(cw nxo t *a thread):
void systemdict stop(cw nxo t *a thread):
void systemdict stopped(cw nxo t *a thread):
void systemdict string(cw nxo t *a thread):
void systemdict stuck(cw nxo t *a thread):
void systemdict sub(cw nxo t *a thread):
void systemdict submatch(cw nxo t *a thread):
void systemdict subst(cw nxo t *a thread):
void systemdict sunder(cw nxo t *a thread):
void systemdict sup(cw nxo t *a thread):
void systemdict super(cw nxo t *a thread):
void systemdict sym lp(cw nxo t *a thread) (“(”):
void systemdict sym rp(cw nxo t *a thread) (“)”):
void systemdict sym gt(cw nxo t *a thread) (“>”):
void systemdict sym rb(cw nxo t *a thread) (“]”):
void systemdict symlink(cw nxo t *a thread):
void systemdict tailopt(cw nxo t *a thread):
void systemdict tan(cw nxo t *a thread):
void systemdict tanh(cw nxo t *a thread):
void systemdict tell(cw nxo t *a thread):
void systemdict test(cw nxo t *a thread):
void systemdict this(cw nxo t *a thread):
void systemdict thread(cw nxo t *a thread):
void systemdict threadsdict(cw nxo t *a thread):
void systemdict threadcstack(cw nxo t *a thread):
void systemdict threaddstack(cw nxo t *a thread):
void systemdict threadestack(cw nxo t *a thread):
void systemdict threadistack(cw nxo t *a thread):
void systemdict threadostack(cw nxo t *a thread):
void systemdict timedwait(cw nxo t *a thread):
void systemdict token(cw nxo t *a thread):
void systemdict trapped(cw nxo t *a thread):
void systemdict trunc(cw nxo t *a thread):
void systemdict truncate(cw nxo t *a thread):
void systemdict trylock(cw nxo t *a thread):
void systemdict tuck(cw nxo t *a thread):
void systemdict type(cw nxo t *a thread):
void systemdict uid(cw nxo t *a thread):
void systemdict umask(cw nxo t *a thread):
void systemdict undef(cw nxo t *a thread):
void systemdict under(cw nxo t *a thread):
void systemdict unless(cw nxo t *a thread):
void systemdict unlink(cw nxo t *a thread):
void systemdict unlock(cw nxo t *a thread):
void systemdict unsetenv(cw nxo t *a thread):
void systemdict until(cw nxo t *a thread):
void systemdict up(cw nxo t *a thread):
void systemdict wait(cw nxo t *a thread):
void systemdict waitpid(cw nxo t *a thread):
void systemdict where(cw nxo t *a thread):

362 Onyx Manual Chapter 4

void systemdict while(cw nxo t *a thread):
void systemdict write(cw nxo t *a thread):
void systemdict xcheck(cw nxo t *a thread):
void systemdict xecheck(cw nxo t *a thread):
void systemdict xor(cw nxo t *a thread):
void systemdict yield(cw nxo t *a thread):

Input(s):
a thread: Pointer to a thread.

Output(s): None.
Exception(s):

CW ONYXX OOM.
Description: C interfaces to onyx operators.

LICENSES

Onyx is licensed according to the following terms:

Copyright (C) 1996-2004 Jason Evans <jasone@canonware.com>.
All rights reserved.
Copyright (C) 2002 Zeljko Vrba <mordor@fly.srk.fer.hr>.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice(s), this list of conditions and the following disclaimer
unmodified other than the allowable addition of one or more
copyright notices.

2. Redistributions in binary form must reproduce the above copyright
notice(s), this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ‘‘AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Onyx’s regular expression support is provided by the PCRE library package, which is open source
software, written by Philip Hazel, and copyright by the University of Cambridge, England. The of-
ficial PCRE distribution site is ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/ .
Inclusion of the previous two sentences in this documentation meets the requirements of the PCRE
license, both for source and binary distributions of Onyx. See the PCRE source distribution for addi-
tional details.

The modclopt module optionally uses the libedit library. Following is the license text. Note that the
Regents of the University of California have approved the retroactive removal of clause 3 from the
license, which means that the advertising clause no longer applies to libedit.

363

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

364 Onyx Manual LICENSE

Copyright (c) 1992, 1993
The Regents of the University of California. All rights reserved.

This code is derived from software contributed to Berkeley by
Christos Zoulas of Cornell University.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Index

(, 89
), 90
<, 90
>, 90
[, 91
], 91

abs, 91
accept, 92
acos, 92
acosh, 93
active, 36
add, 93
adn, 93
and, 94
arg enum get, 246
arg get, 247
arg int get, 248
arg uint get, 249
argcheck, 24
argv, 94
argv get, 250
array, 94
arraytype, 43, 53
asin, 95
asinh, 95
atan, 95
atan2, 96
atanh, 96
aup, 96

bdup, 97
begin, 97
bind, 97
bindsocket, 98
booleantype, 43, 54
bpop, 99
broadcast, 99
bytesavailable, 100

cat, 100
ccheck, 100
cd, 101
cdef, 101

ceiling, 102
ch, 269
ch chi remove(), 271
ch count(), 270
ch delete(), 270
ch direct hash(), 272
ch direct key comp(), 272
ch insert(), 270
ch new(), 270
ch remove(), 271
ch search(), 271
ch string hash(), 272
ch string key comp(), 272
chmod, 102
chown, 103
chroot, 103
class, 104
classname, 104, 232
classtype, 44, 54
clear, 104
cleartomark, 104
close, 105
cnd, 272
cnd broadcast(), 273
cnd delete(), 273
cnd new(), 273
cnd signal(), 273
cnd timedwait(), 273
cnd wait(), 273
collect, 36
column, 29
condition, 105
conditiontype, 44, 54
connect, 105
continue, 106
copy, 106
cos, 107
cosh, 107
count, 108
countdstack, 108
countestack, 108
counttomark, 108
cstack, 30, 109
cstackunderflow, 24

365

366 Onyx Manual INDEX

currentdict, 109
currenterror, 28, 229
currentlocking, 109
cvc, 110
cvds, 110
cve, 110
cves, 111
cvf, 111
cvi, 111
cvl, 112
cvn, 112
cvrs, 112
cvs, 113
cvx, 113
cw assert(), 268
cw calloc(), 279
CW CH TABLE2SIZEOF(), 269
cw check ptr(), 268
cw dassert(), 268
cw error(), 268
cw free(), 280
cw htonq(), 269
cw malloc(), 279
cw not reached(), 268
cw ntohq(), 268
cw nxo class delete t(), 298
cw nxo class ref iter t(), 298
cw nxo file delete t(), 304
cw nxo file read t(), 303
cw nxo file ref iter t(), 304
cw nxo file write t(), 304
cw nxo handle delete t(), 311
cw nxo handle eval t(), 310
cw nxo handle ref iter t(), 310
cw nxo instance delete t(), 312
cw nxo instance ref iter t(), 312
cw offsetof(), 269
cw onyx code(), 267
cw opaque alloc(), 266
cw opaque alloc t(), 265
cw opaque calloc(), 267
cw opaque calloc t(), 265
cw opaque dealloc(), 267
cw opaque dealloc t(), 266
cw opaque realloc(), 267
cw opaque realloc t(), 266
cw realloc(), 279
cw thread start t(), 284

data, 114, 232
dch, 274
dch chi remove(), 276
dch count(), 274

dch delete(), 274
dch insert(), 275
dch new(), 274
dch remove(), 275
dch search(), 276
dch shrinkable get(), 275
dch shrinkable set(), 275
dec, 114
def, 114, 232
dep load, 241
deps get, 242
detach, 114
dict, 115
dicttype, 44, 55
die, 115
dirforeach, 115
div, 116
dn, 116
dstack, 30, 117
dup, 117

echeck, 117
egid, 118
end, 118
envdict, 34, 119
eq, 119
error escape, 251
error print, 252
errordict, 34, 229
errorname, 30
escape, 119
estack, 31, 120
estackoverflow, 24
euid, 120
eval, 120
exch, 121
exec, 121
exit, 121
exp, 122

false, 122
fcheck, 122
filetype, 45, 55
finotype, 45, 56
flag get, 253
floor, 122
flush, 123
flushfile, 123
for, 123
foreach, 124
forkexec, 125

gcdict, 355

INDEX Jason Evans 367

gcdict, 36, 126
gcdict active(), 355
gcdict collect(), 355
gcdict period(), 355
gcdict setactive(), 355
gcdict setperiod(), 355
gcdict setthreshold(), 355
gcdict stats(), 355
gcdict threshold(), 355
ge, 126
get, 126
getinterval, 127
getpgid, 127
getsid, 128
gid, 128
globaldict, 39, 128
gmaxestack, 129
gstderr, 129
gstdin, 129
gstdout, 129
gt, 130
gtailopt, 130

handleerror, 34
handletag, 130
handletype, 45, 56

ibdup, 131
ibpop, 131
icheck, 132
idiv, 132
idup, 132
if, 133
ifelse, 133
ilocked, 134
implementor, 134, 233
implements, 134, 233
inc, 135
index get, 254
instance, 135
instancetype, 46, 57
integertype, 46, 57
invalidaccess, 24
invalidcontinue, 24
invalidexit, 24
invalidfileaccess, 24
iobuf, 135
ioerror, 24
ipop, 136
isa, 136, 233
istack, 31, 136

join, 137

kill, 137
kind, 138, 234
known, 138

lcheck, 139
le, 139
length, 140
libonyx argv get(), 265
libonyx envdict get(), 265
libonyx gcdict get(), 265
libonyx init(), 264
libonyx shutdown(), 265
limitcheck, 24
line, 32
link, 140
listen, 141
ln, 141
load, 142, 238
localtime, 142
lock, 143
log, 143
loop, 144
lt, 144

mark, 145
marktype, 47, 57
match, 145
maxestack, 145
mb, 276
mb write(), 277
mdef, 242
mdefs get, 242
mem, 277
mem calloc(), 279
mem calloc e(), 279
mem free(), 280
mem free e(), 280
mem malloc(), 279
mem malloc e(), 279
mem realloc(), 279
mem realloc e(), 279
mema alloc get(), 278
mema arg get(), 278
mema calloc get(), 278
mema dealloc get(), 278
mema delete(), 278
mema new(), 277
mema realloc get(), 278
method, 146, 234
methods, 146, 234
mkdir, 147
mkfifo, 147
mod, 147

368 Onyx Manual INDEX

modload, 148
modules, 239
monitor, 149
mpath post, 39
mpath pre, 40
mq, 280
mq delete(), 280
mq get(), 281
mq get start(), 282
mq get stop(), 282
mq new(), 280
mq put(), 281
mq put start(), 282
mq put stop(), 282
mq timedget(), 281
mq tryget(), 281
mrequire, 149
mtx, 283
mtx delete(), 283
mtx lock(), 283
mtx new(), 283
mtx trylock(), 283
mtx unlock(), 284
mul, 149
mutex, 150
mutextype, 47, 58

nametype, 47, 58
nbpop, 150
ncat, 150
ndn, 151
ndup, 151
ne, 152
neg, 153
neterror, 24
new, 235, 239, 243, 255
newerror, 32
nip, 153
nonblocking, 153
not, 154
npop, 154
nsleep, 155
null, 155
nulltype, 48, 59
nup, 155
nx, 284
nx delete(), 284
nx globaldict get(), 286
nx maxestack get(), 285
nx maxestack set(), 285
nx new(), 284
nx stderr get(), 286
nx stderr set(), 287

nx stdin get(), 286
nx stdin set(), 286
nx stdout get(), 286
nx stdout set(), 286
nx systemdict get(), 285
nx tailopt get(), 285
nx tailopt set(), 285
nxa, 287
nxa active get(), 288
nxa active set(), 289
nxa calloc(), 287
nxa calloc e(), 287
nxa collect(), 288
nxa free(), 288
nxa free e(), 288
nxa malloc(), 287
nxa malloc e(), 287
nxa period get(), 289
nxa period set(), 289
nxa realloc(), 288
nxa realloc e(), 288
nxa stats get(), 290
nxa threshold get(), 289
nxa threshold set(), 289
nxm, 290
nxm iter get(), 291
nxm iter set(), 291
nxm new(), 290
nxm pre unload hook get(), 291
nxm pre unload hook set(), 291
nxn, 292
nxn len(), 292
nxn str(), 292
nxo, 292
nxo array, 295
nxo array copy(), 296
nxo array el get(), 296
nxo array el set(), 296
nxo array len get(), 296
nxo array new(), 295
nxo array origin get(), 297
nxo array origin set(), 297
nxo array subarray new(), 295
nxo attr get(), 295
nxo attr set(), 295
nxo boolean, 297
nxo boolean get(), 297
nxo boolean new(), 297
nxo boolean set(), 298
nxo class, 298
nxo class data get(), 299
nxo class eval(), 300
nxo class methods get(), 299

INDEX Jason Evans 369

nxo class name get(), 299
nxo class new(), 299
nxo class opaque get(), 300
nxo class opaque set(), 300
nxo class super get(), 299
nxo compare(), 293
nxo condition, 300
nxo condition broadcast(), 301
nxo condition new(), 300
nxo condition signal(), 301
nxo condition timedwait(), 301
nxo condition wait(), 301
nxo dict, 301
nxo dict copy(), 302
nxo dict count(), 303
nxo dict def(), 302
nxo dict iterate(), 303
nxo dict lookup(), 302
nxo dict new(), 302
nxo dict undef(), 302
nxo dup(), 293
nxo file, 303
nxo file buffer count(), 309
nxo file buffer flush(), 309
nxo file buffer size get(), 309
nxo file buffer size set(), 309
nxo file close(), 306
nxo file fd get(), 306
nxo file fd wrap(), 305
nxo file new(), 304
nxo file nonblocking get(), 307
nxo file nonblocking set(), 307
nxo file open(), 305
nxo file origin get(), 306
nxo file origin set(), 306
nxo file position get(), 308
nxo file position set(), 309
nxo file read(), 307
nxo file readline(), 307
nxo file synthetic(), 305
nxo file truncate(), 308
nxo file write(), 308
nxo fino, 310
nxo fino new(), 310
nxo handle, 310
nxo handle eval(), 312
nxo handle new(), 311
nxo handle opaque get(), 311
nxo handle opaque set(), 312
nxo handle tag get(), 311
nxo ilocked(), 294
nxo instance, 312
nxo instance data get(), 313

nxo instance eval(), 314
nxo instance isa get(), 313
nxo instance new(), 313
nxo instance opaque get(), 313
nxo instance opaque set(), 313
nxo integer, 314
nxo integer get(), 314
nxo integer new(), 314
nxo integer set(), 314
nxo mark, 315
nxo mark new(), 315
nxo mutex, 315
nxo mutex lock(), 315
nxo mutex new(), 315
nxo mutex trylock(), 315
nxo mutex unlock(), 316
nxo name, 316
nxo name len get(), 316
nxo name new(), 316
nxo name str get(), 316
nxo no, 317
nxo no new(), 317
nxo null, 317
nxo null new(), 317
nxo nxoe get(), 294
nxo operator, 317
nxo operator f(), 317
nxo operator new(), 317
nxo pmark, 318
nxo pmark line get(), 318
nxo pmark line set(), 318
nxo pmark new(), 318
nxo real, 318
nxo real get(), 319
nxo real new(), 319
nxo real set(), 319
nxo regex, 319
nxo regex match(), 320
nxo regex new(), 319
nxo regex nonew match(), 320
nxo regex nonew split(), 321
nxo regex split(), 321
nxo regex submatch(), 322
nxo regsub, 322
nxo regsub new(), 323
nxo regsub nonew subst(), 323
nxo regsub subst(), 323
nxo stack, 324
nxo stack bget(), 326
nxo stack bpop(), 326
nxo stack bpush(), 325
nxo stack copy(), 325
nxo stack count(), 325

370 Onyx Manual INDEX

nxo stack exch(), 327
nxo stack get(), 326
nxo stack nbget(), 327
nxo stack nbpop(), 326
nxo stack new(), 324
nxo stack nget(), 327
nxo stack npop(), 326
nxo stack pop(), 325
nxo stack push(), 325
nxo stack roll(), 328
nxo stack rot(), 327
nxo string, 328
nxo string copy(), 329
nxo string cstring(), 329
nxo string el get(), 329
nxo string el set(), 329
nxo string get(), 330
nxo string len get(), 329
nxo string lock(), 330
nxo string new(), 328
nxo string set(), 330
nxo string substring new(), 328
nxo string unlock(), 330
nxo thread, 330
nxo thread class hier search(), 335
nxo thread currenterror get(), 337
nxo thread currentlocking(), 336
nxo thread deferred(), 333
nxo thread detach(), 333
nxo thread dstack get(), 338
nxo thread dstack search(), 335
nxo thread errordict get(), 337
nxo thread estack get(), 338
nxo thread exit(), 332
nxo thread flush(), 334
nxo thread interpret(), 334
nxo thread istack get(), 338
nxo thread join(), 333
nxo thread loop(), 334
nxo thread maxestack get(), 336
nxo thread maxestack set(), 336
nxo thread nerror(), 335
nxo thread new(), 332
nxo thread nx get(), 337
nxo thread ostack get(), 338
nxo thread reset(), 334
nxo thread serror(), 335
nxo thread setlocking(), 336
nxo thread start(), 332
nxo thread state(), 333
nxo thread stderr get(), 339
nxo thread stderr set(), 339
nxo thread stdin get(), 338

nxo thread stdin set(), 339
nxo thread stdout get(), 339
nxo thread stdout set(), 339
nxo thread tailopt get(), 336
nxo thread tailopt set(), 337
nxo thread thread(), 332
nxo thread tstack get(), 338
nxo thread userdict get(), 337
nxo threadp delete(), 331
nxo threadp new(), 331
nxo threadp origin get(), 331
nxo threadp origin set(), 331
nxo threadp position get(), 331
nxo threadp position set(), 332
nxo type get(), 294

offset, 156
onyxdict, 39, 156
open, 156
operatortype, 48, 59
or, 157
origin, 33, 157
ostack, 33, 158
output, 158
outputs, 159
outputsdict, 41, 159
over, 159

parse, 255
path, 160
peername, 160
period, 37
pid, 161
pipe, 161
pmarktype, 49, 60
poll, 161
pop, 162
post unload hook set, 243
pow, 162
ppid, 163
pre unload hook set, 243
print, 163
product, 164
progname get, 257
promptstring, 260
pstack, 164
put, 164
putinterval, 165
pwd, 165

ql, 340
ql after insert(), 342
ql before insert(), 342

INDEX Jason Evans 371

ql elm(), 340
ql elm new(), 340
ql first(), 341
ql foreach(), 343
ql head(), 340
ql head initializer(), 340
ql head insert(), 342
ql head remove(), 343
ql last(), 341
ql new(), 340
ql next(), 341
ql prev(), 341
ql remove(), 342
ql reverse foreach(), 343
ql tail insert(), 342
ql tail remove(), 343
qr, 344
qr(), 344
qr after insert(), 345
qr before insert(), 344
qr foreach(), 345
qr meld(), 345
qr new(), 344
qr next(), 344
qr prev(), 344
qr remove(), 345
qr reverse foreach(), 346
qr split(), 345
qs, 346
qs down(), 347
qs elm(), 346
qs elm new(), 347
qs foreach(), 348
qs head(), 346
qs head initializer(), 346
qs new(), 347
qs pop(), 348
qs push(), 347
qs top(), 347
qs under push(), 348
quit, 165

rand, 166
rangecheck, 24
read, 166
readline, 167
readlink, 167
realtime, 168
realtype, 49, 61
recv, 168
regex, 168
regexerror, 24
regextype, 49, 60

regsub, 169
regsubtype, 50, 60
rename, 169
repeat, 170
require, 170
resume, 260
rmdir, 171
rnew, 235
roll, 171
rot, 172
round, 172
rpath post, 40
rpath pre, 40

sadn, 173
saup, 173
sbdup, 173
sbpop, 174
sbpush, 174
sclear, 174
scleartomark, 175
scount, 175
scounttomark, 175
sdn, 176
sdup, 176
seek, 176
self, 176
send, 177
serviceport, 177
setactive, 37
setclassname, 178, 235
setdata, 178, 236
setegid, 178
setenv, 179
seteuid, 179
setgid, 179
setgmaxestack, 180
setgstderr, 180
setgstdin, 180
setgstdout, 181
setgtailopt, 181
setiobuf, 182
setisa, 182, 236
setlocking, 182
setmaxestack, 183
setmethods, 183, 236
setnonblocking, 183
setperiod, 37
setpgid, 184
setsid, 184
setsockopt, 184
setstderr, 185
setstdin, 186

372 Onyx Manual INDEX

setstdout, 186
setsuper, 187, 237
settailopt, 187
setthreshold, 38
setuid, 187
sexch, 188
shift, 188
sibdup, 188
sibpop, 189
sidup, 189
sigmask, 189
signal, 191
sigpending, 191
sigsuspend, 192
sigwait, 193
sin, 194
singleton, 239
sinh, 194
sipop, 195
snbpop, 195
sndn, 195
sndup, 196
snip, 196
snpop, 196
snup, 197
socket, 197
socketpair, 197
sockname, 198
sockopt, 199
sover, 199
split, 200
spop, 201
sprint, 201
sprints, 201
sprintsdict, 51, 202
spush, 202
sqrt, 202
srand, 203
sroll, 203
srot, 203
stack, 204
stacktype, 50, 61
stackunderflow, 24
start, 204
stats, 38
status, 204
stderr, 205
stdin, 205
stdout, 205
stop, 35, 206, 260
stopped, 206
string, 206
stringtype, 51, 62

stuck, 207
sub, 207
submatch, 207
subst, 208
sunder, 208
sup, 209
super, 209, 237
symlink, 209
syntaxerror, 24
system, 210
systemdict, 355
mclass, 238
modclopt, 245
module, 240
systemdict, 63, 211
vclass, 230
systemdict abs(), 356
systemdict accept(), 356
systemdict acos(), 356
systemdict acosh(), 356
systemdict add(), 356
systemdict adn(), 356
systemdict and(), 356
systemdict array(), 356
systemdict asin(), 356
systemdict asinh(), 356
systemdict atan(), 356
systemdict atan2(), 356
systemdict atanh(), 356
systemdict aup(), 356
systemdict bdup(), 356
systemdict begin(), 356
systemdict bind(), 356
systemdict bindsocket(), 356
systemdict bpop(), 356
systemdict broadcast(), 356
systemdict bytesavailable(), 356
systemdict cat(), 356
systemdict ccheck(), 356
systemdict cd(), 356
systemdict cdef(), 356
systemdict ceiling(), 356
systemdict chmod(), 356
systemdict chown(), 356
systemdict chroot(), 356
systemdict class(), 356
systemdict classname(), 356
systemdict clear(), 356
systemdict cleartomark(), 356
systemdict close(), 356
systemdict condition(), 356
systemdict connect(), 356
systemdict continue(), 356

INDEX Jason Evans 373

systemdict copy(), 356
systemdict cos(), 356
systemdict cosh(), 356
systemdict count(), 356
systemdict countdstack(), 356
systemdict countestack(), 356
systemdict counttomark(), 356
systemdict cstack(), 356
systemdict currentdict(), 356
systemdict currentlocking(), 356
systemdict cvc(), 356
systemdict cvds(), 356
systemdict cve(), 356
systemdict cves(), 356
systemdict cvf(), 356
systemdict cvi(), 357
systemdict cvl(), 357
systemdict cvn(), 357
systemdict cvrs(), 357
systemdict cvs(), 357
systemdict cvx(), 357
systemdict data(), 357
systemdict dec(), 357
systemdict def(), 357
systemdict detach(), 357
systemdict dict(), 357
systemdict die(), 357
systemdict dirforeach(), 357
systemdict div(), 357
systemdict dn(), 357
systemdict dstack(), 357
systemdict dup(), 357
systemdict echeck(), 357
systemdict egid(), 357
systemdict end(), 357
systemdict eq(), 357
systemdict escape(), 357
systemdict estack(), 357
systemdict euid(), 357
systemdict eval(), 357
systemdict exch(), 357
systemdict exec(), 357
systemdict exit(), 357
systemdict exp(), 357
systemdict fcheck(), 357
systemdict floor(), 357
systemdict flush(), 357
systemdict flushfile(), 357
systemdict for(), 357
systemdict foreach(), 357
systemdict forkexec(), 357
systemdict ge(), 357
systemdict get(), 357

systemdict getinterval(), 357
systemdict getpgid(), 357
systemdict getsid(), 357
systemdict gid(), 357
systemdict gmaxestack(), 357
systemdict gstderr(), 357
systemdict gstdin(), 357
systemdict gstdout(), 357
systemdict gt(), 357
systemdict gtailopt(), 357
systemdict handletag(), 357
systemdict ibdup(), 357
systemdict ibpop(), 357
systemdict icheck(), 357
systemdict idiv(), 357
systemdict idup(), 358
systemdict if(), 358
systemdict ifelse(), 358
systemdict ilocked(), 358
systemdict implementor(), 358
systemdict implements(), 358
systemdict inc(), 358
systemdict instance(), 358
systemdict iobuf(), 358
systemdict ipop(), 358
systemdict isa(), 358
systemdict istack(), 358
systemdict join(), 358
systemdict kill(), 358
systemdict kind(), 358
systemdict known(), 358
systemdict lcheck(), 358
systemdict le(), 358
systemdict length(), 358
systemdict link(), 358
systemdict listen(), 358
systemdict ln(), 358
systemdict load(), 358
systemdict localtime(), 358
systemdict lock(), 358
systemdict log(), 358
systemdict loop(), 358
systemdict lt(), 358
systemdict match(), 358
systemdict maxestack(), 358
systemdict method(), 358
systemdict methods(), 358
systemdict mkdir(), 358
systemdict mkfifo(), 358
systemdict mod(), 358
systemdict modload(), 358
systemdict monitor(), 358
systemdict mul(), 358

374 Onyx Manual INDEX

systemdict mutex(), 358
systemdict nbpop(), 358
systemdict ncat(), 358
systemdict ndn(), 358
systemdict ndup(), 358
systemdict ne(), 358
systemdict neg(), 358
systemdict nip(), 358
systemdict nonblocking(), 358
systemdict not(), 358
systemdict npop(), 358
systemdict nsleep(), 358
systemdict nup(), 358
systemdict offset(), 358
systemdict open(), 358
systemdict or(), 359
systemdict origin(), 359
systemdict ostack(), 359
systemdict over(), 359
systemdict path(), 359
systemdict peername(), 359
systemdict pid(), 359
systemdict pipe(), 359
systemdict poll(), 359
systemdict pop(), 359
systemdict pow(), 359
systemdict ppid(), 359
systemdict print(), 359
systemdict put(), 359
systemdict putinterval(), 359
systemdict pwd(), 359
systemdict quit(), 359
systemdict rand(), 359
systemdict read(), 359
systemdict readline(), 359
systemdict readlink(), 359
systemdict realtime(), 359
systemdict recv(), 359
systemdict regex(), 359
systemdict regsub(), 359
systemdict rename(), 359
systemdict repeat(), 359
systemdict rmdir(), 359
systemdict roll(), 359
systemdict rot(), 359
systemdict round(), 359
systemdict sadn(), 359
systemdict saup(), 359
systemdict sbdup(), 359
systemdict sbpop(), 359
systemdict sbpush(), 359
systemdict sclear(), 359
systemdict scleartomark(), 359

systemdict scount(), 359
systemdict scounttomark(), 359
systemdict sdn(), 359
systemdict sdup(), 359
systemdict seek(), 359
systemdict self(), 359
systemdict send(), 359
systemdict serviceport(), 359
systemdict setclassname(), 359
systemdict setdata(), 359
systemdict setegid(), 359
systemdict setenv(), 359
systemdict seteuid(), 359
systemdict setgid(), 359
systemdict setgmaxestack(), 359
systemdict setgstderr(), 360
systemdict setgstdin(), 360
systemdict setgstdout(), 360
systemdict setgtailopt(), 360
systemdict setiobuf(), 360
systemdict setisa(), 360
systemdict setlocking(), 360
systemdict setmaxestack(), 360
systemdict setmethods(), 360
systemdict setnonblocking(), 360
systemdict setpgid(), 360
systemdict setsid(), 360
systemdict setsockopt(), 360
systemdict setstderr(), 360
systemdict setstdin(), 360
systemdict setstdout(), 360
systemdict setsuper(), 360
systemdict settailopt(), 360
systemdict setuid(), 360
systemdict sexch(), 360
systemdict shift(), 360
systemdict sibdup(), 360
systemdict sibpop(), 360
systemdict sidup(), 360
systemdict sigmask(), 360
systemdict signal(), 360
systemdict sigpending(), 360
systemdict sigsuspend(), 360
systemdict sigwait(), 360
systemdict sin(), 360
systemdict sinh(), 360
systemdict sipop(), 360
systemdict snbpop(), 360
systemdict sndn(), 360
systemdict sndup(), 360
systemdict snip(), 360
systemdict snpop(), 360
systemdict snup(), 360

INDEX Jason Evans 375

systemdict socket(), 360
systemdict socketpair(), 360
systemdict sockname(), 360
systemdict sockopt(), 360
systemdict sover(), 360
systemdict split(), 360
systemdict spop(), 360
systemdict spush(), 360
systemdict sqrt(), 360
systemdict srand(), 360
systemdict sroll(), 360
systemdict srot(), 360
systemdict stack(), 360
systemdict start(), 360
systemdict status(), 360
systemdict stderr(), 361
systemdict stdin(), 361
systemdict stdout(), 361
systemdict stop(), 361
systemdict stopped(), 361
systemdict string(), 361
systemdict stuck(), 361
systemdict sub(), 361
systemdict submatch(), 361
systemdict subst(), 361
systemdict sunder(), 361
systemdict sup(), 361
systemdict super(), 361
systemdict sym gt(), 361
systemdict sym lp(), 361
systemdict sym rb(), 361
systemdict sym rp(), 361
systemdict symlink(), 361
systemdict tailopt(), 361
systemdict tan(), 361
systemdict tanh(), 361
systemdict tell(), 361
systemdict test(), 361
systemdict this(), 361
systemdict thread(), 361
systemdict threadcstack(), 361
systemdict threaddstack(), 361
systemdict threadestack(), 361
systemdict threadistack(), 361
systemdict threadostack(), 361
systemdict threadsdict(), 361
systemdict timedwait(), 361
systemdict token(), 361
systemdict trapped(), 361
systemdict trunc(), 361
systemdict truncate(), 361
systemdict trylock(), 361
systemdict tuck(), 361

systemdict type(), 361
systemdict uid(), 361
systemdict umask(), 361
systemdict undef(), 361
systemdict under(), 361
systemdict unless(), 361
systemdict unlink(), 361
systemdict unlock(), 361
systemdict unsetenv(), 361
systemdict until(), 361
systemdict up(), 361
systemdict wait(), 361
systemdict waitpid(), 361
systemdict where(), 361
systemdict while(), 361
systemdict write(), 362
systemdict xcheck(), 362
systemdict xecheck(), 362
systemdict xor(), 362
systemdict yield(), 362

tailopt, 210
tan, 211
tanh, 211
tell, 211
test, 212
thd, 348
thd crit enter(), 350
thd crit leave(), 350
thd delete(), 349
thd join(), 349
thd new(), 349
thd resume(), 351
thd self(), 349
thd sigmask(), 349
thd single enter(), 350
thd single leave(), 350
thd suspend(), 350
thd trysuspend(), 351
thd yield(), 349
this, 213
thread, 213
threadcstack, 213
threaddict, 228, 229
threaddstack, 214
threadestack, 214
threadistack, 214
threadostack, 215
threadsdict, 215, 230
threadtype, 51, 62
threshold, 38
throw, 215
timedwait, 216

376 Onyx Manual INDEX

token, 216
trapped, 217
true, 219
trunc, 218
truncate, 218
trylock, 219
tsd, 351
tsd delete(), 351
tsd get(), 351
tsd new(), 351
tsd set(), 352
tuck, 219
type, 220
typecheck, 24

uid, 220
umask, 221
undef, 221, 237
undefined, 24
undefinedfilename, 24
undefinedresult, 24
under, 221
unless, 222
unlink, 222
unload, 244
unload notify, 240
unlock, 223
unmatchedfino, 24
unmatchedmark, 25
unregistered, 25
unsetenv, 223
until, 223
up, 224
userdict, 224, 230

vclass, 224
version, 225
version get, 244
version set, 244

wait, 225
waitpid, 225
where, 226
while, 226
write, 226

xcheck, 227
xecheck, 227
xep, 352
xep acatch, 354
xep begin(), 353
xep catch(), 353
xep end(), 353
xep filename(), 354

xep handled(), 355
xep line num(), 354
xep mcatch(), 353
xep retry(), 355
xep throw(), 354
xep throw e(), 354
xep try, 353
xep value(), 354
xor, 228

yield, 228

	Onyx Language Tutorial
	Syntax
	Data types
	Execution
	Memory management
	Stacks
	Efficiency issues
	Using stacks as queues
	Using the operand stack as two stacks

	Dictionaries
	Efficiency issues

	Regular expressions
	Matching
	Splitting
	Substituting

	Code organization
	Procedures
	Modules

	Error handling
	Introspection
	Threads
	Implicit synchronization
	General threading concerns

	Optimization
	Debugging

	Onyx Language Reference
	Objects
	Syntax
	Stacks
	Standard I/O
	Interpreter recursion
	Error handling
	Threads
	Implicit synchronization
	Explicit synchronization

	Memory management
	Regular expressions
	Object-oriented programming
	Dictionary reference
	currenterror
	envdict
	errordict
	gcdict
	globaldict
	onyxdict
	outputsdict
	sprintsdict
	systemdict
	threaddict
	threadsdict
	userdict

	Class reference
	vclass
	mclass
	module

	Module reference
	modclopt

	The onyx program
	Usage
	Environment variables
	Initialization for interactive sessions
	Language differences

	The libonyx library
	Compilation
	Global variables
	Multiple interpreters
	Threads
	Garbage collection
	Exceptions
	Integration issues
	Thread creation
	Restarted interrupted system calls
	Signals

	Guidelines for writing extensions
	API
	Classes
	ch
	cnd
	dch
	mb
	mem
	mq
	mtx
	nx
	nxa
	nxm
	nxn
	nxo
	nxo_array
	nxo_boolean
	nxo_class
	nxo_condition
	nxo_dict
	nxo_file
	nxo_fino
	nxo_handle
	nxo_instance
	nxo_integer
	nxo_mark
	nxo_mutex
	nxo_name
	nxo_no
	nxo_null
	nxo_operator
	nxo_pmark
	nxo_real
	nxo_regex
	nxo_regsub
	nxo_stack
	nxo_string
	nxo_thread
	ql
	qr
	qs
	thd
	tsd
	xep

	Dictionaries
	gcdict
	systemdict

	LICENSES
	Index

