
12/18/96 1996 Progressive Networks, Inc. All rights reserved. 1

Specifications for Building an Application-Level
Firewall Proxy to Support RealAudio Players

Introduction

This document provides information that enables firewall developers to support RealAudio Player-
Server communications. The information is provided for the sole purpose of designing firewall
software which supports RealAudio systems.

There are two types of firewall proxies that can be built to support RealAudio, Application-Level
and Transparent.

Application-Level Proxy Firewalls
An Application-Level Proxy firewall relies on the application inside the firewall having knowledge
of the firewall proxy. The Player inside the firewall connects to the specified Proxy, which then
connects to the requested Server outside the firewall. This means that an Application-Level Proxy
needs to know about the client application connecting and what its Proxy protocol is, but does not
need to know about the low-level protocol details.

This document describes how to build an Application-Level Proxy for RealAudio Player.

Firewall

RealAudio
Client

RealAudio
Server

Proxy

Server PortProxy Port

Proxy transfers data
between client and
Server.

Client has
hostname and
port address for
Proxy.

Figure 1 - Application-Level Proxy

Transparent Proxy Firewalls
A Transparent Proxy Firewall operates by monitoring network traffic and only letting through
connections matching certain protocols. The Transparent Firewall relies on knowing details of all
protocols it will support. Transparent proxies can perform their function without the client or server
applications being modified or configured. For information on how to build a Transparent Proxy,
please refer to Specifications for Building a Transparent Firewall Proxy to Support RealAudio
which is available from Progressive Networks at:

www.realaudio.com/help

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 2

Firewall

RealAudio
Client

RealAudio
Server

Proxy

 Server Port

Proxy “transparently”
examines data between
Client and Server.

Client has no
knowledge of
Proxy.

Figure 2 - Transparent Proxy

RealAudio 3.0 Support
RealAudio Player and Server 3.0 offer a new protocol called Robust UDP. Supporting Robust UDP
requires additional steps beyond what is required to support other RealAudio protocols.

Although supporting Robust UDP is optional, it gives end users the best audio quality. To support
Robust UDP, your Proxy must parse the hello message sent from the Player to the Server after the
basic Proxy connection is established. See “Supporting Robust UDP” on page 9.

RealAudio Communications

RealAudio Client / Server Communications
A RealAudio Client (Player) can use one of three methods for communicating with a RealAudio
Server:
• Standard UDP
• Robust UDP
• TCP-Only

Standard UDP
The RealAudio Client (Player) sets up two network connections with the RealAudio Server, as
shown in Figure 3. A full-duplex TCP connection is used for control and negotiation. A simplex
UDP path from the RealAudio Server to the Player is used for audio data delivery. By using UDP
for the audio, the RealAudio Server and Player can handle error correction instead of relying on the
transport protocol. This allows a RealAudio Server to provide a better Audio stream when packet
loss occurs.

Real Audio
Server

Server Port
(default 7070)

TCP - Control
Connection

UDP
Data Connection

Real Audio
Player

Figure 3 - RealAudio Client / Server Communications : Standard UDP Mode

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 3

Robust UDP
The RealAudio Client (Player) sets up three network connections with the RealAudio Server, as
shown in Figure 4. A full-duplex TCP connection is used for control and negotiation. A simplex
UDP path from the RealAudio Server to the Player is used for audio data delivery. A second
simplex UDP path from the Client to the Server is used to request that the Server resend lost UDP
audio data packets.

Real Audio
Server

Server Port
(default 7070)

TCP - Control
Connection

UDP Data Connection

Real Audio
Player

UDP Resend Requests

Figure 4 - RealAudio Client / Server Communications : Robust UDP Mode

TCP-Only
In TCP-Only mode, a single full-duplex TCP connection is used for both control and for audio data
delivery from the RealAudio Server to the Player, as shown in Figure 5. The standard TCP
connection port on a RealAudio Server is 7070.

Real Audio
Server

Server Port
(default 7070)

TCP - Control and
Data Connection

Real Audio
Player

Figure 5 -RealAudio Client / Server Communications : TCP-Only Mode

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 4

Real Audio Communication and Firewalls
Application-Level Proxies are supported by RealAudio Player 2.0 and later and require the Player
to be configured with the hostname and port number used by the Proxy. The Player connects to the
Proxy and passes information to it which is used by the Proxy to connect to the RealAudio Server.
Apart from an initial setup protocol between the Proxy and the Player, the dialogue is identical to
that used between a Player and Server but all data flows through the Proxy, rather than directly to
the Server.

Firewall

RealAudio
Player

RealAudio
Server

RealAudio
Proxy

UDP Data Connection UDP Data Connection

TCP - Control Connection

TCP - Control Connection

Port 7070

Proxy Port

UDP Resend Requests UDP Resend Requests

Figure 6 - RealAudio Application-Level Proxy Communications

Application-Level Proxy Handshaking
Application-Level Proxies are supported by RealAudio Player 2.0 and later. The interaction
between the Player and the Proxy is described with diagrams that show the messages and actions.
The connections from prior steps in the diagrams are grayed out when they are not an active part of
a step. All descriptions of messages refer to structured RealAudio Proxy Protocol messages, defined
in Table 2 - RealAudio Proxy Protocol, Version 1 on page 13.

Handshake and Communications Description
1. The Proxy listens on its defined TCP port, PPPORT (standard is port 7070). All Players within

the firewall must be set up with the Proxy hostname and TCP port. The RealAudio Server is
outside the firewall and is passively listening for incoming connections on TCP port RAPORT
(standard is port 7070).

ProxyPlayer Server

Step 1

The Proxy listens on
TCP port PPPORT

PPPORT RAPORT

The Server listens on
TCP port RAPORT

2. The Player connects using TCP to the Proxy on port PPPORT. This is a control connection
between the Proxy and the Player.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 5

ProxyPlayer Server

Step 2

The Player connects on port PPPORT. This is the
Player-Proxy control connection.

PPPORT RAPORT

3. The Player sends a set of messages to the Proxy. The Proxy protocol version message must be
the first message sent and the End proxy message must be the last. There is no specified order
for other messages.

a) Proxy protocol version
b) Server hostname
c) TCP port number for the Server, call this RAPORT
d) Type of data connection, TCP-Only or UDP (the type of UDP, Standard or Robust,

is determined later)
e) Offset to the location of the UDP data port number in the subsequent

communication between the Player and the Server. This offset is relative to the start
of the normal Player - Server communication. (Not sent for TCP-Only mode.)

f) End proxy

ProxyPlayer Server

Step 3

The Player sends the Proxy Message details to the
Proxy.

PPPORTDATA ◊◊ RAPORT

4. The Proxy responds to the Player with the Proxy Protocol Version message.

ProxyPlayer Server

Step 4

The Proxy sends the Proxy Version Message to the
Player.

PPPORT⇓⇓ DATA RAPORT

5. If the Proxy protocol version sent by the Proxy is not supported by the Player, the Player and
the Proxy terminate the communication and the Player displays an error message.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 6

6. The Proxy reads in all incoming messages from the Player and collects and saves the following
information:

a) Proxy Protocol Version
b) Server hostname
c) TCP port number for the Server, call this RAPORT
d) Type of data connection, TCP or UDP (the type of UDP, Standard or Robust, is

determined later)
e) Offset to UDP Port number
f) Proxy End

7. Once all of the required information in step 6 has been received by the Proxy from the Player,
the Proxy opens a TCP connection to the Server on TCP port RAPORT. The hostname and
port for the RealAudio Server are those received in Step 6. This completes the TCP Control
connection between the Player and the Server through the Proxy.

ProxyPlayer Server

Step 7

The Proxy connects to the RealAudio Server
 on the Server’s TCP Port, RAPORT

PPPORT RAPORT

8. The Proxy sends a status message with a success code to the Player. If all required information
is not received or if a error occurs in completing the connection to the server then a status
message with an error code and message is sent to the Player.

ProxyProxyPlayerPlayer ServerServer

Step 8Step 8

The Proxy sends the Proxy Status message to the
Player.

PPPORTPPPORT⇓⇓ DATA RAPORTRAPORT

9. The Player examines the Status message code received from the Proxy and if it contains a
Status of Success, it then begins it’s normal Player / Server interaction. The existing TCP
control connection is kept open and is used for the ongoing Player / Server communications.

If the Status Message code received from the Proxy by the Player is an Error, the Player
displays the corresponding error message and any error string supplied with the Status
Message. The Player will then close the TCP control connection to the Proxy ending all
interactions.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 7

Depending on whether the data connection is UDP or TCP, complete one of the following sets of
steps:

TCP-Only Connection
10. The Proxy transfers every byte read from the Player on the TCP Control connection to the

Server on its TCP Control connection. The Proxy also transfers all data received from the
Server to the Player over the TCP control connection.

ProxyPlayer Server

TCP
Step 10

All data received by the Proxy from the
Server is passed to the Player

PPPORT ⇓⇓ Data⇓⇓ Data RAPORT

All data received by the Proxy from the
Player is passed to the Server

UDP Connection
10. The Proxy transfers every byte read from the Player on the TCP control connection to the

RealAudio Server on its TCP control connection. The Proxy also transfers all data received
from the Server to the Player over the TCP control connection.

11. After receiving the End Proxy message from the Player, the Proxy begins counting the number
of bytes of incoming data from the Player. This enables the Proxy to locate the requested UDP
Port number in the data stream sent between the Player and the RealAudio Server. The port
number is located after the number of bytes indicated in the UDP Offset Message (that is, if the
offset is 4 bytes then the Port number is located in the 5th and 6th byte). The Port number is
always two bytes long.

12. The Proxy extracts the Player Port number from the data stream. This Port is used by the
Player to receive the incoming Audio Data from the Server. This port is PLPORT.

The Proxy scans the incoming data from the
Player and extracts PLPORT. The Proxy

passes all data up to PLPORT to the Server

ProxyPlayer Server

UDP
Steps 11
& 12

PPPORTData◊◊ Data◊◊ RAPORT

13. The Proxy allocates an unused port number to connect to the Server. This is SVPORT.

14. The Proxy replaces PLPORT from Step 12 with the new port number (SVPORT) and passes
the data stream to the Server.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 8

ProxyPlayer Server

UDP
Steps 13
& 14

The Proxy sends port SVPORT to
the Server and saves PLPORT

PPPORTData◊◊ Data◊◊

PLPORT

RAPORT

15. The Proxy opens UDP port SVPORT to the RealAudio Server.

ProxyPlayer Server

UDP
Step 15

The TCP control connections are
maintained throughout the session

PPPORT

SVPORT

RAPORT

The Proxy opens UDP port SVPORT.

16. The Proxy opens a UDP port (PLPORT) to the Player. This completes the basic data
connection between the Player and the RealAudio Server through the Proxy.

ProxyPlayer Server

UDP
Step 16 PPPORT

PLPORT

RAPORT

SVPORT

The Proxy opens UDP port
PLPORT to the Player.

17. All data received by the Proxy on UDP port SVPORT from the Server is forwarded to the
Player on UDP port PLPORT.

ProxyPlayer Server

UDP
Step 17

The RealAudio Server sends UDP messages to the Proxy on SVPORT.
 The Proxy transfers these to the Player on PLPORT.

PPPORT

PLPORT
Audio
DATA 1

SVPORT
Audio
DATA 2

RAPORT

18. When any of the connections are closed all other open connections in this Server - Proxy -
Player interaction should also be closed.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 9

Supporting Robust UDP
An application-level Proxy can optionally support Robust UDP communication. Robust UDP uses a
second UDP connection from the Player to the Server to request resending lost packets. By
supporting Robust UDP, your Proxy enables users to receive the best audio quality.

If the Player specifies a TCP-Only connection, the Proxy should skip these steps.

Once basic communication is established through the Proxy, the Proxy needs to parse the messages
between the Player and Server to set up the UDP connection for resend requests as follows:

1. After the Player sends the Proxy message, it sends a Hello message to the RealAudio Server
that starts with the string “PNA” (hex = 504e41) followed by the protocol version number (a
two byte integer). All numeric values are encoded in network byte order.

 Series of
Startup Messages Follow

Protocol Version
(2 bytes)

“PNA” string
(3 bytes)

The Player sends “PNA” hello string followed by protocol
version number and series of startup messages.

Step 1

2. The Proxy must detect and modify specific startup messages being passed over the TCP control
connection to determine if the connection is Standard UDP or Robust UDP.

ProxyProxyPlayerPlayer ServerServer

Step 2

The Player sends startup messages to the RealAudio Server.
The Proxy monitors and modifies messages as needed.

PPPORTPPPORTData◊◊ RAPORTRAPORT

3. Startup messages are formatted as tuplets made up of:

Message identifier (2 byte integer)
Byte length (n) of the message (2 byte integer)
Message (n bytes long)

All numeric values are encoded in network byte order as integers.

 Startup Message
(n bytes)

Message ID Number
(2 bytes)

Message Length
(2 bytes)Step 3

The Proxy needs to check for the following startup messages sent by the Player:

ID 7 = Robust UDP
ID 0 = End of start up messages

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 10

Message ID 7 means that the Player is requesting Robust UDP audio delivery. The message value
contains the UDP port on the Player computer from which UDP resend requests will be sent.

Message ID 0 marks the end of the startup messages from the Player. The Player and Server
continue to communicate over the TCP Control Connection.

The Proxy needs to check for two possible message sequences:

Message ID 7 before Message ID 0: Robust UDP Connection
Message ID 0 without Message ID 7: Standard UDP Connection

Note The Player may send other startup messages before Message ID 0; all messages except
Message ID 7 should be passed through unmodified to the Server.

If the connection type is Standard UDP, the Proxy continues passing data unmodified between
the Player and Server. If the connection type is Robust UDP, the Proxy completes the following
steps:

4. After detecting the Robust UDP request message (ID # 7) from the Player, the Proxy then reads
the next two bytes to determine the byte length of the UDP port value (always 2 bytes). The Proxy
then reads two additional bytes to obtain the UDP port number on the Player from which the
Player sends UDP resend requests to the Server. This port is PRPORT.

 UDP Port Number PRPORT
(2 byte integer)

Message ID 7
(0x0007)

Message Length
(0x0002)Step 4

Note Port PRPORT can optionally be used to validate requests; otherwise the PRPORT value
is not needed by the Proxy. However, the Proxy does need to check for message ID 7 to know if
Robust UDP is requested by the Player, and modify it if it is found.

5. The Proxy allocates a new UDP port number to connect the Proxy to the Server. This is
XSPORT.

ProxyPlayer Server

Step 5
PPPORT RAPORT

SVPORTPLPORT

PRPORT XSPORT

Port from Player
Message ID 7

Select a new UDP
port

UDP

TCP

6. The Proxy substitutes the port number (PRPORT) extracted in Step 4 with the new port number
(XSPORT) and passes the modified message to the RealAudio Server.

New UDP Port Number XSPORT
(2 byte integer)

Message ID 7
(0x0007)

Message Length
(0x0002)

Step 6

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 11

7. The Proxy scans the messages sent from the RealAudio Server to the Player on the TCP Control
Connection. The Server first sends the Server Hello message.

The Server Hello message is always 9 bytes long, starting with "PNA" (0x504e41).

Step 7

Server Hello Message - 9 Bytes

"PNA"
(0x504e41)

Protocol Version
(2 byte integer)

Hello Data
(4 bytes)

8. Immediately following the Server Hello message is Robust UDP response message from the
Server.

Step 8

Robust UDP Response - 10 Bytes

"O"
(0x4f)

Data Length
(0x08)

Player Request ID
(4 bytes)

Opcode 7
(0x0007)

Server Port SRPORT
(2 byte integer)

The Robust UDP Response message from the Server contains the port number on the Server to
which the Player sends UDP resend requests. This is port SRPORT. The Robust UDP Response
message also contains a 4-byte identifier that the Player uses in UDP resend requests to identify
the source of the request. This ID can optionally be used to validate resend requests from the
Player.

If the Proxy does not receive the Robust UDP response message from the Server immediately
following the Server Hello message, the Server does not support Robust UDP. The Proxy should
release the UDP port XSPORT and continue the session as a Standard UDP connection.

9. The Proxy allocates a new UDP port number to connect the Player to the Proxy. This is
XPPORT.

ProxyPlayer Server

Step 9
PPPORT RAPORT

XPPORT SRPORT

SVPORTPLPORT

PRPORT XSPORT

Port from Server Robust
UDP ResponseSelect a new UDP port

UDP

TCP

10. The Proxy substitutes the Port number (SRPORT) extracted in step 8 with the new port number
(XPPORT) and passes the modified Robust UDP Response message to the RealAudio Player on
the TCP Control Connection.

11. The Proxy opens a UDP connection from XSPORT to SRPORT on the Server. The RealAudio
Player opens a UDP connection from PRPORT to XPPORT on the Proxy.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 12

ProxyPlayer Server

Step 11
PPPORT RAPORT

XPPORT SRPORT

SVPORTPLPORT

PRPORT XSPORT

Proxy connects to
Server port SRPORT

Player connects to
Proxy port XPPORT

UDP

TCP

UDP

12. The Proxy passes unmodified all bytes received from PRPORT on the Player to SRPORT on the
Server.

13. When any of the connections are closed all other open connections in this Server - Proxy - Player
interaction should also be closed. This terminates the Player - Proxy interaction and the Server -
Proxy interaction.

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 13

Message Definitions for Proxy Server Interaction
Messages are encoded in a standard format. This allows unknown messages to be skipped over and
ignored. The standard format is as follows

Table 1 - RealAudio Proxy Protocol Message Format

2 Bytes 1 Byte n Bytes
Length of opcode & data
portion of message

Opcode, defines
message type

Optional Data

All numeric fields are in Network byte order

Table 2 - RealAudio Proxy Protocol, Version 1

Opcode Op Name Data Length
Bytes

Data Contents Purpose

0 end 0 (implied) Signals end of Player /
Proxy communication.

1 version 1 1 Specifies the version of the
Proxy protocol

2 hostname string length host name as ascii
string

Specifies the RealAudio
server hostname. This can
be an ascii IP address

3 port 2 port number Specifies the port number
for the RealAudio Server.

4 port_off 2 port offset Specifies the number of
bytes to the location of the
Port number in the
incoming data stream once
Player / Proxy
communications have
completed.

5 use_tcp 1 0 or 1 Specifies whether the data
connection will be TCP or
UDP.

6 status 1+string
length

error code + ascii string Provides a status on
operations. This includes a
1 byte code plus a optional
ascii string.

The following table lists the current set of status values defined in the protocol. If a player receives
a status that is not included in this table it will display the supplied string and terminate the Proxy
interaction.

Table 3 - RealAudio Proxy Protocol Status codes

Status Number Status Description
0 Success
1 No Connect, could not connect to RealAudio Server
2 Bad Info, Bad information was passed in the Proxy dialog
3 Bad Version, the RealAudio Proxy Protocol version number does not match
4 Bad Opcode, a message with an invalid opcode was received

Data Flow

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 14

The following table details an example of each message. All numeric values are encoded in
network byte order as integers All strings are in ascii and are not nul (‘\0’) terminated. The middle
three columns of the table can be taken as an example message layout Where the data is listed as
None this signifies that no data is sent with this message.

Table 4 - Sample RealAudio Proxy Protocol Messages

Op Name Length
2 Bytes

Opcode
1 Bytes

Data Notes

end 1 0 None
version 2 1 1 network byte order
hostname 18 2 www.realaudio.com ascii
port 3 3 7070 network byte order
port_off 3 4 15 network byte order
use_tcp 2 5 0 network byte order
status 36 6 2Permission Denied,

Invalid Username
1 byte number
followed by ascii
string

Pseudo Code of Player Proxy Interactions
The following section uses a C Style pseudo code to describe the operations in both the Player and
the Proxy during a Firewall interaction. All descriptions of messages refer to structured RealAudio
Proxy Protocol messages. These messages are defined in Table 2 - RealAudio Proxy Protocol,
Version 1

Player Pseudo Code Proxy Pseudo Code
Player-side: {

player_side_dialog;
if success

normal server_player stuff
else

error processing
}

player_side_dialog: {
send version message
send hostname message
send port message
send port_off message
send use_tcp message
send end message
await message
if (message != version or an

Proxy-side: {
proxy_side_dialog;
if success {

if (use_tcp == 0 {
open a udp port

while (off < port_off) {
copy every byte from the player to

the server
}
read two bytes.
send the port number of the socket we

 just opened.
}
do {

read from player => send to the server
read byte server => send to the player
if (use_tcp == 0) {

read audio packet from server => send
 to player

}
} while (all tcp connections are open);
close all tcp connections;

} else
close the connection;

}

proxy-side-dialog: {
send version message;
await message;
if (message != version or unknown version) {

send status = bad first message or
unknown version

return bad_player;
}

12/18/96 1996 Progressive Networks, Inc. All rights reserved. 15

unknown version)
return bad_proxy;

await message
switch (message) {

case status:
if (status == error)

return status;
done = 1;

default:
return invalid message

} while (!done);

send end
return success;

}

done = 0;
do {

await message;
switch (message) {

case hostname: stash hostname;
case port: stash port;
case port_off: stash port_off;
case use_tcp: stash use_tcp;
case end: done = 1;

}
if (all required information received)

done = 1;
} while (!done);

connect to the server's host:port

if (connection OK)
send status = success;

else
send status = failure;

return success;
}

