
SnortTMUsers Manual
2.2.0

The Snort Project

11th August 2004

Copyright c©1998-2003 Martin Roesch
Copyright c©2001-2003 Chris Green
Copyright c©2003 Source�re, Inc.

1

Contents

1 Snort Overview 6
1.1 Getting Started . 6
1.2 Sni�er Mode . 6
1.3 Packet Logger Mode . 7
1.4 Network Intrusion Detection Mode . 8

1.4.1 NIDS Mode Output Options . 8
1.4.2 High Performance Con�guration . 9
1.4.3 Changing Alert Order . 10

1.5 Miscellaneous . 10
1.6 More Information . 10

2 Con�guring Snort 12
2.0.1 Includes . 12
2.0.2 Variables . 12
2.0.3 Con�g . 13

2.1 preprocessors . 16
2.1.1 portscan detector . 16
2.1.2 portscan ignorehosts . 17
2.1.3 frag2 . 17
2.1.4 stream4 . 18
2.1.5 �ow . 19
2.1.6 �ow-portscan . 20
2.1.7 telnet decode . 25
2.1.8 rpc decode . 25
2.1.9 performance monitor . 26
2.1.10 http inspect . 27

2.2 event thresholding . 36

2

2.2.1 standalone options . 36
2.2.2 standalone format . 36
2.2.3 rule keyword format . 37
2.2.4 rule keyword format . 37
2.2.5 examples . 38

2.3 event suppression . 40
2.3.1 format . 40
2.3.2 examples . 40

2.4 output modules . 41
2.4.1 alert_syslog . 41
2.4.2 alert_fast . 42
2.4.3 alert_full . 43
2.4.4 alert_unixsock . 43
2.4.5 log_tcpdump . 43
2.4.6 database . 44
2.4.7 csv . 45
2.4.8 uni�ed . 47
2.4.9 log null . 47

3 Writing Snort Rules
How to Write Snort Rules and Keep Your Sanity 48
3.1 The Basics . 48
3.2 Rules Headers . 49

3.2.1 Rule Actions . 49
3.2.2 Protocols . 49
3.2.3 IP Addresses . 49
3.2.4 Port Numbers . 50
3.2.5 The Direction Operator . 50
3.2.6 Activate/Dynamic Rules . 51

3.3 Rule Options . 53
3.4 Meta-Data Rule Options . 53

3.4.1 msg . 53
3.4.2 reference . 53
3.4.3 sid . 54
3.4.4 rev . 54
3.4.5 classtype . 55

3

3.4.6 Priority . 56
3.5 Payload Detection Rule Options . 57

3.5.1 content . 57
3.5.2 nocase . 58
3.5.3 rawbytes . 58
3.5.4 depth . 59
3.5.5 o�set . 59
3.5.6 distance . 59
3.5.7 within . 60
3.5.8 uricontent . 60
3.5.9 isdataat . 61
3.5.10 pcre . 61
3.5.11 byte_test . 62
3.5.12 byte_jump . 63
3.5.13 regex . 65
3.5.14 content-list . 65

3.6 Non-payload Detection Rule Options . 65
3.6.1 Frago�set . 65
3.6.2 ttl . 66
3.6.3 tos . 66
3.6.4 id . 67
3.6.5 ipopts . 67
3.6.6 Fragbits . 68
3.6.7 dsize . 68
3.6.8 �ags . 69
3.6.9 �ow . 70
3.6.10 �owbits . 70
3.6.11 seq . 71
3.6.12 ack . 71
3.6.13 window . 72
3.6.14 itype . 72
3.6.15 icode . 72
3.6.16 icmp_id . 73
3.6.17 icmp_seq . 73
3.6.18 rpc . 73

4

3.6.19 ip_proto . 74
3.6.20 sameip . 74

3.7 Post-Detection Rule Options . 75
3.7.1 logto . 75
3.7.2 session . 75
3.7.3 sesp . 75
3.7.4 React . 76
3.7.5 tag . 77

3.8 writing good rules . 79
3.8.1 content matching . 79
3.8.2 catch the vulnerability, not the exploit . 79
3.8.3 catch the oddities of the protocol in the rule . 79
3.8.4 optimizing rules . 80
3.8.5 testing numerical values . 81

4 Making Snort Faster 85
4.1 MMAPed pcap . 85

5 Snort Development 86
5.1 submitting patches . 86
5.2 snort data�ow . 86

5.2.1 preprocessors . 86
5.2.2 detection plugins . 87
5.2.3 output plugins . 87

5

Chapter 1

Snort Overview

This manual is based o� of Writing Snort Rules by Martin Roesch and further work from Chris Green
<cmg@snort.org>. It is now maintained by Brian Caswell <bmc@snort.org> and Jeremy Hewlett <jh@snort.org>.
If you have a better way to say something or something in the documentation is outdated, drop us a line
and we will update it. The documentation is now in LaTeX format in the doc/snortman.tex �le if you
would like to submit patches for this document. Small documentation updates are the easiest way to help
the Snort Project out.

1.1 Getting Started

Snort really isn't very hard to use, but there are a lot of command line options to play with, and it's not
always obvious which ones go together well. This �le aims to make using Snort easier for new users.
Before we proceed, there are a few basic concepts you should understand about Snort. There are three main
modes in which Snort can be con�gured: sni�er, packet logger, and network intrusion detection system.
Sni�er mode simply reads the packets o� of the network and displays them for you in a continuous stream
on the console. Packet logger mode logs the packets to the disk. Network intrusion detection mode is the
most complex and con�gurable con�guration, allowing Snort to analyze network tra�c for matches against
a user de�ned rule set and perform several actions based upon what it sees.

1.2 Sni�er Mode

First, let's start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e.
sni�er mode), try this:
./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you
want to see the application data in transit, try the following:
./snort -vd

This instructs Snort to display the packet data as well as the headers. If you want an even more descriptive
display, showing the data link layer headers do this:

6

./snort -vde

(As an aside, these switches may be divided up or smashed together in any combination. The last command
could also be typed out as:
./snort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to
specify a logging directory and Snort will automatically know to go into packet logger mode:
./snort -dev -l ./log

Of course, this assumes you have a directory named log in the current directory. If you don't, Snort will
exit with an error message. When Snort runs in this mode, it collects every packet it sees and places it in a
directory hierarchy based upon the IP address of one of the hosts in the datagram.
If you just specify a plain -l switch, you may notice that Snort sometimes uses the address of the remote
computer as the directory in which it places packets, and sometimes it uses the local host address. In order
to log relative to the home network, you need to tell Snort which network is the home network:
./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application
data into the directory ./log, and you want to log the packets relative to the 192.168.1.0 class C network.
All incoming packets will be recorded into subdirectories of the log directory, with the directory names being
based on the address of the remote (non-192.168.1) host.

4! NOTE

if both hosts are on the home network, then they are recorded based upon the higher of the two's port
numbers, or in the case of a tie, the source address.

If you're on a high speed network or you want to log the packets into a more compact form for later analysis
you should consider logging in binary mode. Binary mode logs the packets in tcpdump format to a single
binary �le in the logging directory:
./snort -l ./log -b

Note the command line changes here. We don't need to specify a home network any longer because binary
mode logs everything into a single �le, which eliminates the need to tell it how to format the output directory
structure. Additionally, you don't need to run in verbose mode or specify the -d or -e switches because in
binary mode the entire packet is logged, not just sections of it. All that is really required to place Snort into

7

logger mode is the speci�cation of a logging directory at the command line with the -l switch, the -b binary
logging switch merely provides a modi�er to tell it to log the packets in something other than the default
output format of plain ASCII text.
Once the packets have been logged to the binary �le, you can read the packets back out of the �le with
any sni�er that supports the tcpdump binary format such as tcpdump or Ethereal. Snort can also read the
packets back by using the -r switch, which puts it into playback mode. Packets from any tcpdump formatted
�le can be processed through Snort in any of its run modes. For example, if you wanted to run a binary log
�le through Snort in sni�er mode to dump the packets to the screen, you can try something like this:
./snort -dv -r packet.log

You can manipulate the data in the �le in a number of ways through Snort's packet logging and intrusion
detection modes, as well as with the BPF interface that's available from the command line. For example, if
you only wanted to see the ICMP packets from the log �le, simply specify a BPF �lter at the command line
and Snort will only see the ICMP packets in the �le:
./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the snort and tcpdump man pages.

1.4 Network Intrusion Detection Mode

To enable network intrusion detection (NIDS) mode (so that you don't record every single packet sent down
the wire), try this:
./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

Where snort.conf is the name of your rules �le. This will apply the rules set in the snort.conf �le to each
packet to decide if an action based upon the rule type in the �le should be taken. If you don't specify an
output directory for the program, it will default to /var/log/snort.
One thing to note about the last command line is that if Snort is going to be used in a long term way as an
IDS, the -v switch should be left o� the command line for the sake of speed. The screen is a slow place to
write data to, and packets can be dropped while writing to the display.
It's also not necessary to record the data link headers for most applications, so it's not necessary to specify
the -e switch either.
./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will con�gure Snort to run in it's most basic NIDS form, logging packets that the rules tell it to in plain
ASCII to a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to con�gure the output of Snort in NIDS mode. The default logging and alerting
mechanisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the

8

alert message in addition to the full packet headers. There are several other alert output modes available at
the command line, as well as two logging facilities.
Alert modes are somewhat more complex. There are seven alert modes available at the command line, full,
fast, socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line
switch. These options are:
-A fast fast alert mode, write the alert in a simple format with a timestamp, alert message, source and

destination IPs/ports
-A full this is also the default alert mode, so if you specify nothing this will automatically be used
-A unsock send alerts to a UNIX socket that another program can listen on
-A none turn o� alerting
-A console send "fast-style" alerts to the console (screen)
-A cmg generate "cmg style" alerts
Packets can be logged to their default decoded ASCII format or to a binary log �le via the -b command line
switch. If you wish to disable packet logging all together, use the -N command line switch.
For output modes available through the con�guration �le, see Section 2.7.

4! NOTE

Command line logging options override any output options speci�ed in the con�guration �le. This
allows debugging of con�guration issues quickly via the command line.

To send alerts to syslog, use the �-s � switch. The default facilities for the syslog alerting mechanism are
LOG_AUTHPRIV and LOG_ALERT. If you want to con�gure other facilities for syslog output, use the
output plugin directives in the rules �les. See Section2.4.1 for more details on con�guring syslog output.
Here are some output con�guration examples:
• Log to default (decoded ASCII) facility and send alerts to syslog

./snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

• Log to the default facility in /var/log/snort and send alerts to a fast alert �le:
./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 High Performance Con�guration

If you want Snort to go fast (like keep up with a 1000 Mbps connect), you need to use uni�ed logging and a
uni�ed log reader such as barnyard. This allows snort to log alerts in a binary form as fast as possible and
have another program performing the slow actions, such as writing into a database.
If you want a text �le that's easily parsable, but still be somewhat fast, try using binary logging with the
"fast" output mechanism.
This will log packets in tcpdump format and produce minimal alerts. For example:

9

./snort -b -A fast -c snort.conf

1.4.3 Changing Alert Order

The default way in which Snort applies it's rules to packets may not be appropriate for all installations.
The Alert rules applied �rst, then the Pass rules, and �nally the Log rules. This sequence is somewhat
counterintuitive, but it's a more foolproof method than allowing the user to write a hundred alert rules and
then disable them all with an errant pass rule. For more information on rule types, see Section 3.2.1.
For people who know what they're doing, the -o switch has been provided to change the default rule
application behavior to Pass rules, then Alert, then Log:
./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf -o

1.5 Miscellaneous

If you want to run snort in daemon mode, you can add -D switch to any combination above. Please NOTICE
that if you want to be able to restart snort by sending SIGHUP signal to the daemon, you will need to use
full path to snort binary, when you start it, i.g.:
/usr/local/bin/snort -d -h 192.168.1.0/24 -l \

/var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.
If you're going to be posting packet logs to public mailing lists you might want to try out the -O switch.
This switch obfuscates your the IP addresses in the packet printouts. This is handy if you don't want the
people on the mailing list to know the IP addresses involved. You can also combine the -O switch with the
-h switch to only obfuscate the IP addresses of hosts on the home network. This is useful if you don't care
who sees the address of the attacking host. For example:
./snort -d -v -r snort.log -O -h 192.168.1.0/24

This will read the packets from a log �le and dump the packets to the screen, obfuscating only the addresses
from the 192.168.1.0/24 class C network.

1.6 More Information

Chapter 2 contains much information about many con�guration options available in the con�guration �le.
The snort manual page and the output of
snort -?

contain information that can help get Snort running in several di�erent modes.

4! NOTE

10

Often \? is needed to escape the ? in many shells.

The Snort web page (http://www.snort.org) and the Snort User's mailing list (http://marc.theaimsgroup.
com/?l=snort-users at snort-users@lists.sourceforge.net provide informative announcements as well
as a venue for community discussion and support. There's a lot to Snort so sit back with a beverage of your
choosing and read the documentation and mailing list archives.

11

Chapter 2

Con�guring Snort

2.0.1 Includes

The include keyword allows other rule �les to be included within the rules �le indicated on the Snort command
line. It works much like an #include from the C programming language, reading the contents of the named
�le and putting them in place in the �le in the place where the include appears.

Format

include: <include file path/name>

4! NOTE

Note that there is no semicolon at the end of this line.

Included �les will substitute any prede�ned variable values into their own variable references. See Variables
(2.1) for more information on de�ning and using variables in Snort rule �les.

2.0.2 Variables

Variables may be de�ned in Snort. These are simple substitution variables set with the var keyword as in
Figure 2.1.

Format

var: <name> <value>

The rule variable names can be modi�ed in several ways. You can de�ne meta-variables using the $ operator.
These can be used with the variable modi�er operators, ? and -. * $var - de�ne meta variable * $(var) -
replace with the contents of variable var * $(var:-default) - replace with the contents of the variable var or
with default if var is unde�ned. * $(var:?message) - replace with the contents of variable var or print out
the error message message and exit

12

var MY_NET [192.168.1.0/24,10.1.1.0/24]
alert tcp any any -> $MY_NET any (flags:S; msg:"SYN packet";)

Figure 2.1: Example of Variable De�nition and Usage

See Figure 2.2 for an example of these rules modi�ers in action.
var MY_NET 192.168.1.0/24
log tcp any any -> $MY_NET 23

Figure 2.2: Figure Advanced Variable Usage Example

2.0.3 Con�g

Many con�guration and command line options of Snort can be speci�ed in the con�guration �le.

Format

config <directive> [: <value>]

Directives

Table 2.1: Con�g Directives
command example explanation
order con�g order: pass alert log activation dy-

namic
Change the order that
rules are evaluated

alert�le con�g alert�le: alerts Set the alerts output �le
classi�cation con�g classi�cation: misc-activity,Misc

activity,3
See 3.2

decode_arp con�g decode_arp Turn on arp decoding
(snort -a)

dump_chars_only con�g dump_chars_only Turn on character dumps
(snort -C)

dump_payload con�g dump_payload Dump application layer
(snort -d)

decode_data_link con�g decode_data_link Decode Layer2 headers
(snort -e)

bpf_�le con�g bpf_�le: �lters.bpf Specify BPF �lters
(snort -F)

set_gid con�g set_gid: 30 Change to GID to speci-
�ed GID (snort -g)

daemon con�g daemon Fork as a daemon (snort
-D)

interface con�g interface: xl0 Set the network interface
(snort -i)

13

alert_with_interface_name con�g alert_with_interface_name Append interface name
to alert (snort -I)

logdir con�g logdir: /var/log/snort Set the logdir (snort -l)
umask con�g umask: 022 Set umask when running

(snort -m)
pkt_count con�g pkt_count: 13 Exit after N packets

(snort -n)
nolog con�g nolog Disable Logging. Note:

Alerts will still occur.
(snort -N)

obfuscate con�g obfuscate Obfuscate IP Addresses
(snort -O)

no_promisc con�g no_promisc Disable promiscuous
mode (snort -p)

quiet con�g quiet Disable banner and sta-
tus reports (snort -q)

chroot con�g chroot: /home/snort Chroot to speci�ed dir
(snort -t)

checksum_mode con�g checksum_mode : all Types of packets to cal-
culate checksums. Val-
ues: none, noip, notcp,
noicmp, noudp, or all

set_uid set_uid: snort_user Set UID to <id> (snort
-u)

utc con�g utc Use UTC instead of lo-
cal time for timestamps
(snort -U)

verbose con�g verbose Use Verbose logging to
stdout (snort -v)

dump_payload_verbose con�g dump_payload_verbose Dump raw packet start-
ing at link layer (snort
-X)

show_year con�g show_year show year in timestamps
(snort -y)

stateful con�g stateful set assurance mode for
stream4 (est). See the
stream4 reassemble con-
�guration 2.3.

min_ttl con�g min_ttl:30 sets a snort-wide min-
imum ttl to ignore all
tra�c.

disable_decode_alerts con�g disable_decode_alerts turn o� the alerts gener-
ated by the decode phase
of snort

disable_tcpopt_experimental_alerts con�g dis-
able_tcpopt_experimental_alerts

turn o� alerts generated
by experimental tcp op-
tions

disable_tcpopt_obsolete_alerts con�g disable_tcpopt_obsolete_alerts turn o� alerts generated
by obsolete tcp options

14

disable_tcpopt_ttcp_alerts con�g disable_tcpopt_ttcp_alerts turn o� alerts generated
by T/TCP options

disable_tcpopt_alerts con�g disable_tcpopt_alerts disable option length val-
idation alerts

disable_ipopt_alerts con�g disable_ipopt_alerts disable IP option length
validation alerts

detection con�g detection: search-method ac
no_stream_inserts max_queue_events

Make changes to the de-
tection engine.

reference con�g reference: www http:// add a new reference sys-
tem to snort

15

2.1 preprocessors

preprocessors were introduced in version 1.5 of snort. they allow the functionality of snort to be extended
by allowing users and programmers to drop modular plugins into snort fairly easily. preprocessor code is run
before the detection engine is called, but after the packet has been decoded. the packet can be modi�ed or
analyzed in an out of band manner through this mechanism.
preprocessors are loaded and con�gured using the preprocessor keyword. the format of the preprocessor
directive in the snort rules �le is:
preprocessor <name>: <options>

preprocessor minfrag: 128

Figure 2.3: preprocessor directive format example

2.1.1 portscan detector

the snort portscan preprocessor is developed by patrick mullen.

what the snort portscan preprocessor does
• log the start and end of portscans from a single source ip to the standard logging facility.
• if a log �le is speci�ed, logs the destination ips and ports scanned as well as the type of scan.

a portscan is de�ned as tcp connection attempts to more than p ports in t seconds or udp packets sent to
more than p ports in t seconds. ports can be spread across any number of destination ip addresses, and
may all be the same port if spread across multiple ips. this version does single->single and single->many
portscans. the next full release will do distributed portscans (multiple->single or multiple->multiple). a
portscan is also de�ned as a single stealth scan packet, such as null, �n, syn-�n, xmas, etc. this means
that from scan-lib in the standard distribution of snort you should comment out the section for stealth scan
packets. the bene�t is with the portscan module these alerts would only show once per scan, rather than
once for each packet. if you use the external logging feature you can look at the technique and type in the
log �le.
the arguments to this module are:
• network to monitor the network/cidr block to monitor for portscans
• number of ports number of ports accessed in the detection period
• detection period number of seconds to count that the port access threshold is considered for
• logdir/�lename the directory/�lename to place alerts in. alerts are also written to the standard alert
�le

format

portscan: <monitor network> <number of ports> <detection period> <file path>

16

preprocessor portscan: 192.168.1.0/24 5 7 /var/log/portscan.log

Figure 2.4: portscan preprocessor con�guration example

2.1.2 portscan ignorehosts

another module from patrick mullen that modi�es the portscan detection system's operation. if you have
servers which tend to trip o� the portscan detector (such as ntp, nfs, and dns servers), you can tell portscan
to ignore tcp syn and udp portscans from certain hosts. the arguments to this module are a list of ips/cidr
blocks to be ignored.

format

portscan-ignorehosts: <host list>

preprocessor portscan-ignorehosts: 192.168.1.5/32 192.168.3.0/24

Figure 2.5: portscan ignorehosts module con�guration example

2.1.3 frag2

frag2, introduced in snort 1.8, is a new ip defragmentation preprocessor. frag2 is designed to replace the
defrag preprocessor. this defragmenter is designed to memory e�cient and use the same memory management
routines that are in use in other parts of snort.
frag2 has con�gurable memory usage and fragment timeout options. given no arguments, frag2 uses the
default memory limit of 4194304 bytes (4mb) and a timeout period of 60 seconds. the timeout period is used
to determine a length of time that a unassembled fragment should be discarded.
in snort 1.8.7, several options were added to help catch the use of evasion techniques such as fragroute.

format

preprocessor frag2: [memcap <xxx>], [timeout <xx>], [min_ttl <xx>], \
[detect_state_problems], [ttl_limit <xx>]

timeout <seconds> amount of time to keep an inactive stream in the state table, sessions that are �ushed
will automatically be picked up again if more activity is seen, default is 30 seconds

memcap <bytes> number of bytes to set the memory cap at, if this limit is exceeded frag2 will aggressively
prune inactive reassemblers, default is 4mb

detect_state_problems turns on alerts for events such as overlapping fragments
min_ttl sets the minimum ttl that frag2 will accept
ttl_limit sets the delta value that will set o� an evasion alert. (initial fragment ttl +/- ttl limit)

17

preprocessor frag2: memcap 16777216, timeout 30

Figure 2.6: frag2 preprocessor con�guration

2.1.4 stream4

the stream4 module provides tcp stream reassembly and stateful analysis capabilities to snort. robust stream
reassembly capabilities allow snort to ignore �stateless� attacks such as stick and snot produce. stream4 also
gives large scale users the ability to track more than 256 simultaneous tcp streams. stream4 should be able
to scale to handle 32,768 simultaneous tcp connections in its default con�guration.
stream4 contains two con�gurable modules, the stream4 preprocessor and the associated stream4 reassemble
plugin. the stream4_reassemble options are listed below.

stream4 format

preprocessor stream4: [noinspect], [keepstats], [timeout <seconds>], \
[memcap <bytes>], [detect_scans], [detect_state_problems], \
[disable_evasion_alerts], [ttl_limit <count>]

noinspect disable stateful inspection
keepstats record session summary information in <logdir>/session.log
timeout <seconds> amount of time to keep an inactive stream in the state table, sessions that are �ushed

will automatically be picked up again if more activity is seen, default is 30 seconds
memcap <bytes> number of bytes to set the memory cap at, if this limit is exceeded stream4 will ag-

gressively prune inactive sessions, default is 8mb
detect_scans turns on alerts for portscan events
detect_state_problems turns on alerts for stream events of note, such as evasive rst packets, data on

the syn packet, and out of window sequence numbers
disable_evasion_alerts turns o� alerts for events such as tcp overlap
ttl_limit sets the delta value that will set o�

stream4_reassemble format

preprocessor stream4_reassemble: [clientonly], [serveronly],\
[noalerts], [ports <portlist>]

clientonly provide reassembly for the client side of a connection only
serveronly provide reassembly for the server side of a connection only
noalerts don't alert on events that may be insertion or evasion attacks
ports <portlist> - a whitespace separated lit of ports to perform reassembly for, all provides reassembly

for all ports, default provides reassembly for ports 21 23 25 53 80 110 111 143 and 513

18

notes

just setting the stream4 and stream4_reassemble directives without arguments in the snort.conf �le will set
them up in their default con�gurations shown in table 2.2 and table 2.3.
stream4 introduces a new command line switch: -z. on tcp tra�c, if the -z switch is speci�ed, snort will
only alert on streams that have been established via a three way handshake or streams where cooperative
bidirectional activity has been observed (i.e. where some tra�c went one way and something other than
a rst or �n was seen going back to the originator). with -z turned on, snort completely ignores tcp-based
stick/snot attacks.

Table 2.2: stream4 defaults
option default

session timeout 30 seconds
session memory cap 8388608 bytes
stateful inspection active

stream stats inactive
state problem alerts inactive

portscan alerts inactive

Table 2.3: stream4_reassemble defaults
option default

reassemble client active
reassemble server inactive
reassemble ports 21 23 25 53 80 143 110 111 513 1433
reassembly alerts active

2.1.5 �ow

the �ow tracking module is meant to start unifying the state keeping mechanisms of snort into a single
place. as of snort 2.1.0, only a portscan detector is implemented but in the long term, many of the stateful
subsystems of snort will be migrated over to becoming �ow plugins. with the introduction of �ow, this
e�ectively obsoletes the conversation preprocessor.
an ipv4 �ow is unique when the ip protocol (ip_proto), source ip (sip), source port (sport), destination ip
(dip), and destination port (dport) are the same. the dport and sport are 0 unless the protocol is tcp or udp.

format

preprocessor flow: [memcap <bytes>], [rows <count>], \
[stats_interval <seconds>], [hash <1|2>]

19

Table 2.4: �ow options
memcap number of bytes to allocate
rows number of rows for the �ow hash table. 1

stats_interval interval (in seconds) to dump statistics to stdout. set this to 0 to disable.
hash hashing method to use. 2

example con�guration

preprocessor flow: stats_interval 0 hash 2

2.1.6 �ow-portscan

this is module is designed to detect portscans based o� �ow creation in the �ow preprocessors. the goal is
to catch one->many hosts and one->many ports scans.
the �ow preprocessor to portscan recognizer is taken from experience with spp_conversation/portscan2 by
jason larsen & jed haile and ipaudit by jon rifkin.
this subsystem became a bit more complicated than originally intended but it does a good job of mitigating
false positives from devices such as squid proxies. the new design is also a lot more memory consistent than
portscan1 or 2. it also ignores single port syn �oods as they are a dos, not a portscan.
memory requirements should be way down from portscan2 architecture though but there's slightly less
information saved o�. the new architecture operates similarly to a ring bu�er. when a scanner has not been
active in a long time, it's only reclaimed when there is no more memory to use.
all of the prior methods for portscan detection in snort are deprecated and will be removed in the near
future. if you have custom code against conversation or one of the portscan preprocessors, consider making
it a module in �ow or portscan.
the �ow preprocessor must �rst be enabled in order for �ow-portscan to function properly.
the basic components of �ow-portscan are:
1. scoreboards

scoreboards contain information regarding timescales for a single ip address. there are two scoreboards,
one for talkers (nodes that are active on your network) and one for scanners (nodes that have talked
to a previously unknown port in your server-watch-net)

2. uniqueness tracker
the uniqueness tracker is used to determine if this connection should count as something "new" for a
particular ip. it checks if a connection is a new type of connection for a source ip by disregarding the
source port. any change in sip, dip, ip_proto, and dport indicates a new unique connection and will
be processed further for the server statistics table and scoring. this keeps things like a web page with
15 images from rapidly increasing point scores with lots of accesses to the same web server.

3. server statistics tracker
this is used to track �ows destined to the "server-watchnet" and keep "hitcounts" on the number of
times a particular service has been requested with unique requests since snort has started. this hitcount
is tracked by dip, dport, and protocol.

20

if a service is very popular, connections can be ignored for scoring by comparing the hitcount to the "server-
ignore-limit". if there are more requests to this service than the server-ignore-limit, then �ow-portscan will
completely ignore this service. similarly, the "server-scanner-limit" controls if a request to a service counts
as scanner points or as talker points.
if a request to a service is not in the server-watchnet, it will count as talker points. if no server-watchnet is
de�ned, all alerts will be talker alerts.

execution path of �ow-portscan

1. �ow-portscan receives a new �ow message from the �ow module
2. the uniqueness tracker determines if message is a new type of �ow by looking for changes in sip, dip,

ip_proto, and dport. if this is not unique, and the tcp �ags are normal, exit out.
3. if this connection is to an destination ip in the server-watchnet:

during the "server-learning-time", it increments the hitcounts for service popularity.
if it's otherwise just get the stored hitcount. if the hitcount is greater than the server-ignore-limit, exit
out. if it's less than the server-scanner-limit, mark the incremented points as scanner points.

4. a connection is marked as either a talker or a scanner by step 3.
there are 4 time scales; 2 each for the ip scanner and ip talker.
the �xed timescales detect n events in m seconds. this is the typical type of portscan alert.
the sliding timescales adjust the "score reset point" on each event after the �rst. this adjusts the side
of the window we're detecting portscan events in by taking
end = end + ((end - start) * sliding-scale-factor)

each time scale has it's own point tally that is incremented per new �ow. each set of points only touches
either the talker-�xed-score and talker-sliding-score or scanner-�xed-score and scanner-sliding-score

5. evaluate the score against individual thresholds, either talker or scanner.
if(fixed_limit <= fixed_score)
generate_alert()

format

preprocessor flow-portscan: [scoreboard-memcap-talker <bytes>] \
[scoreboard-rows-talker <count>] \
[scoreboard-rows-scanner <count>] \
[scoreboard-memcap-scanner <bytes>] \
[scanner-fixed-threshold <integer>] \
[scanner-sliding-threshold <integer>] \
[scanner-fixed-window <integer>] \
[scanner-sliding-window <integer>] \
[scanner-sliding-scale-factor <float>] \
[talker-fixed-threshold <integer>] \
[talker-sliding-threshold <integer>] \
[talker-fixed-window <integer>] \

21

[talker-sliding-window <integer>] \
[talker-sliding-scale-factor <float>] \
[unique-memcap <bytes>] \
[unique-rows <integer>] \
[server-memcap <bytes>] \
[server-rows <integer>] \
[server-watchnet <ip list in snort notation>] \
[src-ignore-net <ip list in snort notation>] \
[dst-ignore-net <ip list in snort notation>] \
[tcp-penalties <on|off>] \
[server-learning-time <seconds>] \
[server-ignore-limit <hit count>] \
[server-scanner-limit <hit count>] \
[alert-mode <once|all>] \
[output-mode <msg|pktkludge>] \
[base-score <integer>] \
[dumpall <1>]

1. scoreboard-rows-talker (default: 1000000).
number of rows to use for the talker table.

2. scoreboard-rows-scanner (default: 250000).
number of rows to use for the scanner table.

3. unique-rows (default: 1000000)
how many rows to allocate for the uniqueness tracker.

4. server-rows (default: 65536)
how many rows to allocate for server learning
general note about rows: higher row counts will take more memory away from the memory caps for a
speci�c subsystem. in the snort output, this is referred to as "overhead bytes" and the percentage of
overhead encountered will be shown. higher row counts provide a larger hash table to minimize collisions
and have a faster overall processing time at the expense of memory. the hash tables themselves use a
pseudorandom hardening salt that is picked at initialization time.

5. scoreboard-memcap-talker (default: 25165824)
number of bytes to use for the talker table.

6. scoreboard-memcap-scanner (default: 6291456)
number of bytes to use for the scanner table.

7. unique-memcap (default: 25165824)
how many bytes to allocate to the uniqueness tracker. the more memory given, the less that connections
to a busy server will appear as a scan target on a popular service.

8. server-memcap (default: 2097152)
how many bytes to allocate for server learning

9. scanner-�xed-threshold (default: 15)
number of points that a scanner must accumulate in the scanner-�xed-window time range. set to 0 to
disable this type of alert.

22

10. talker-�xed-threshold (default: 15)
number of points that a scanner must accumulate in talker-�xed-window time range. set to 0 to disable
this type of alert.

11. scanner-sliding-threshold (default: 40)
number of points that a scanner must accumulate in scanner-sliding-window time range. set to 0 to
disable this type of alert.

12. talker-sliding-threshold (default: 30)
number of points that a scanner must accumulate in talker-sliding-window time range. set to 0 to
disable this type of alert.

13. scanner-�xed-window (default: 15)
how many seconds we should go before reseting the �xed scanner score.

14. talker-�xed-window (default: 30)
how many seconds we should go before reseting the �xed talker score.

15. scanner-sliding-window (default: 20)
how many seconds we should go before reseting the �xed scanner score.

16. talker-sliding-window (default: 30)
how many seconds we should go before reseting the sliding talker score.

17. scanner-sliding-scale-factor (default: 0.5)
how much to increase the sliding window by each time we get a new sliding scanner entry. it's current
size + (<scale factor> * current_size).

18. talker-sliding-scale-factor (default: 0.5)
how much to increase the sliding window by each time we get a new sliding talker entry. it's current
size + (<scale factor> * current_size).

19. src-ignore-net
the ip list of what source ips to ignore.

20. dst-ignore-net
the ip list of what destination ips to ignore.

21. tcp-penalties (default: on)
if this is enabled, when a new tcp �ow enters the portscan detection set, check the tcp �ags for
non-standard session initiators and assign penalty points for odd combinations such as syn+�n

22. �ag mapping
23. server-watchnet

the ip list of what machines to learn services on. busy servers should be placed here to help the portscan
detector learn what services are requested on the network.

23

Table 2.5: �ag mapping
syn or syn+ecn bits base_score (defaults to 1 point)

syn+�n+th_ack and anything else 5 points
syn+�n and anything else without ack 3 points

anything else 2 points

24. server-learning-time (default: 28800)
how many seconds we should keep increment hitcounts of services on ips in the server-watchnet
this does not perform validation that the service is connected correctly. it is possible while learning
that someone �oods the table with unique connections, causing something to become a service that
you do not wish to be a service. it's generally assumed that the learning time will occur at a time
where tra�c is "typical". future versions of snort should allow this state to be saved and modi�able.
if this caveat is a concern in your environment, do not set a server watchnet and rely only on talker
scores.

25. server-ignore-limit (default: 500)
how many requests a port on an ip in the server-watchnet must see before it is ignored for the purposes
of portscans.

26. server-scanner-limit (default: 500)
how many requests a port on an ip in the server-watchnet must see before it is is treated as a talker
rather than a scanner. this is a minimum number of requests that must be seen during the server-
learning-time for the �ow to be treated as a talker connection rather than as a scanner connection.

27. alert-mode (default: once)

Table 2.6: alert modes
once alert only on the �rst time we get a scan entry hit. this

dramatically reduces clutter because the scan alert in the
�rst place tells one to look for other event types.

all alert each time the score increases beyond a threshold

28. output-mode (default: msg)

Table 2.7: output modes
msg a variable text message with the scores included

pktkludge generate a fake packet and use the logging output system

29. dumpall when snort is exiting, dump the entire contents of the server table, the uniqueness tracker
table, and the scoreboard entries. this is useful if you suspect an underlying bug in the algorithms
used or if you would just like to see what it has learned. set this to "1" to enable.

30. base-score (default: 1) default score for a new connection. this is probably only useful for debugging.

24

example con�guration

preprocessor flow-portscan: server-watchnet [10.0.0.0/8] \
unique-memcap 5000000 \
unique-rows 50000 \
tcp-penalties on \
server-scanner-limit 50 \
alert-mode all \
output-mode msg \
server-learning-time 3600

2.1.7 telnet decode

the telnet_decode preprocessor allows snort to normalize telnet control protocol characters from the session
data. in snort 1.9.0 and above, it accepts a list of ports to run on as arguments. also in 1.9.0, it normalizes
into a separate data bu�er from the packet itself so that the raw data may be logged or examined with the
rawbytes content modi�er3.5.3.
it defaults to running on ports 21, 23, 25, and 119.

format

preprocessor telnet_decode: <ports>

2.1.8 rpc decode

the rpc_decode preprocessor normalizes rpc multiple fragmented records into a single un-fragmented record.
it does this by normalizing the packet into the the packet bu�er. if stream4 is enabled, it will only process
client side tra�c. it defaults to running on ports 111 and 32771.

Table 2.8: rpc decoder options
option purpose

alert_fragments alert on any fragmented rpc record
no_alert_multiple_requests don't alert when there are multiple records in one packet
no_alert_large_fragments don't alert when the sum of fragmented records exceeds one packet

no_alert_incomplete don't alert when a single fragment record exceeds the size of one packet

format

preprocessor rpc_decode: <ports> [alert_fragments] \
[no_alert_multiple_requests] [no_alert_large_fragments] \
[no_alert_incomplete]

25

2.1.9 performance monitor

this preprocessor measures snort's real-time and theoretical maximum performance. whenever this prepro-
cessor is turned on it should have an output mode enabled, either "console" which prints statistics to the
console window or "�le" with a �le name, where statistics get printed to the speci�ed �le name. the default
statistics that are processed are snort's real-time statistics. this includes:
1. packets received
2. packets dropped
3. % packets dropped
4. packets received
5. kpackets per second
6. average bytes per packets
7. mbits per second (wire)
8. mbits per second (rebuilt) [this is the average mbits that snort injects after rebuilding packets]
9. mbits per second (total)
10. pattern matching percent [the average percent of data received that snort processes in pattern

matching]
11. cpu usage (user time) (system time) (idle time)
12. alerts per second
13. syn packets per second
14. syn/ack packet per second
15. new sessions per second
16. deleted sessions per second
17. total sessions
18. max sessions during time interval
19. stream �ushes per second
20. stream faults per second
21. stream timeouts
22. frag completes per second
23. frag inserts per second
24. frag deletes per second
25. frag �ushes per second
26. frag timeouts

26

27. frag faults
when the keyword "�ow" is enabled, statistics are printed out about the type of tra�c and protocol distri-
butions that snort is seeing. this option can produce large amounts of output.
the keyword "events" turns on event reporting. this prints out statistics as to the number of signatures that
were matched by the setwise pattern matcher and the number of those matches that were veri�ed with the
signature �ags. we call these non-quali�ed and quali�ed events. it shows the user if there is a problem with
the ruleset that they are running.
the keyword "max" turns on the theoretical maximum performance that snort calculates given the processor
speed and current performance. this is only valid for uniprocessor machines, since many operating systems
don't keep accurate kernel statistics for multiple cpus.
the keyword "console" prints statistics at the console, this is on by default.
the keyword "�le" prints statistics in a comma delimited format to the �le that is speci�ed. not all statistics
are output to this �le. you may also use "snort�le" which will output into your de�ned snort log directory.
the keyword "pktcnt" adjusts the number of pkts to process before checking for the time sample. this boosts
performance since checking the time sample reduces snort's performance. by default, this is 10000.
the keyword "time" represents the number of seconds between intervals.

examples

preprocessor perfmonitor: time 30 events flow file stats.profile max \
console pktcnt 10000

preprocessor perfmonitor: time 300 file /var/tmp/snortstat pktcnt 10000

2.1.10 http inspect

httpinspect is a generic http decoder for user applications. given a data bu�er, httpinspect will decode
the bu�er, �nd http �elds, and normalize the �elds. httpinspect works on both client requests and server
responses.
the current version of httpinspect only handles stateless processing. this means that httpinspect looks for
http �elds on a packet by packet basis, and will be fooled if packets are not reassembled. this works �ne
when there is another module handling the reassembly, but there are limitations in analyzing the protocol.
future versions will have a stateful processing mode which will hook into various reassembly modules.
httpinspect has a very "rich" user con�guration. users can con�gure individual http servers with a variety
of options, which should allow the user to emulate any type of web server. within httpinspect, there are two
areas of con�guration, global, and server.

global con�guration

the global con�guration deals with con�guration options that determine the global functioning of httpinspect.
the following example gives the generic global con�guration format:

format

preprocessor http_inspect: global \

27

iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

you can only have a single global con�guration, you'll get an error if you try otherwise.

con�guration

1. iis_unicode_map <map_�lename> [codemap <integer>]
This is the global iis_unicode_map �le. The iis_unicode_map is a required con�guration parameter.
The map �le can reside in the same directory as snort.conf or speci�ed via a fully quali�ed path to the
map �le.
The iis_unicode_map �le is a unicode codepoint map which tells HttpInspect which codepage to use
when decoding Unicode characters. For US servers, the codemap is usually 1252.
A Microsoft us unicode codepoint map is provided in the snort source etc directory by default. It is
called unicode.map and should be used if no other codepoint map is available. A tool is supplied with
Snort to generate custom unicode maps. (ms_unicode_generator.c in the contrib directory)

4! NOTE

Remember that this con�guration is for the global iis unicode map, individual servers can reference
their own iis unicode map.

2. detect_anomalous_servers
this global con�guration option enables generic http server tra�c inspection on non-http con�gured
ports, and alerts if http tra�c is seen. don't turn this on if you don't have a default server con�guration
that encompasses all of the http server ports that your users might go to. in the future we want to
limit this to particular networks so it's more useful, but for right now this inspects all network tra�c.

3. proxy_alert
this enables global alerting on http server proxy usage. by con�guring httpinspect servers and enabling
allow_proxy_use, you will only receive proxy use alerts for web users that aren't using the con�gured
proxies or are using a rogue proxy server.
please note that if users aren't required to con�gure web proxy use, then you may get a lot of proxy
alerts. so, please only use this feature with traditional proxy environments. blind �rewall proxies don't
count.

example global con�guration

preprocessor http_inspect: global iis_unicode_map unicode.map 1252

server con�guration

there are two types of server con�gurations, default and by ip address.

28

default this con�guration supplies the default server con�guration for any server that is not individually
con�gured. most of your web servers will most likely end up using the default con�guration.

example default con�guration

preprocessor http_inspect_server: server default profile all ports { 80 }

con�guration by ip address this format is very similar to "default" the only di�erence being that speci�c
ips can be con�gured.

example ip con�guration

preprocessor http_inspect_server: server 10.1.1.1 profile all ports { 80 }

server con�guration options

important: some con�guration options have an argument of 'yes' or 'no'. this argument speci�es whether
the user wants the con�guration option to generate an httpinspect alert or not. the 'yes/no' argument does
not specify whether the con�guration option itself is on or o�, only the alerting functionality. in other words,
whether set to 'yes' or 'no', http normalization will still occur, and rules based o� http tra�c will still trigger.
1. pro�le <all|apache|iis>

users can con�gure httpinspect by using pre-de�ned http server pro�les. pro�les allow the user to
easily con�gure the preprocessor for a certain type of server, but are not required for proper operation.
there are three pro�les available: all, apache, and iis.
1-1. all

the "all" pro�le is meant to normalize the uri using most of the common tricks available. we alert
on the more serious forms of evasions. this is a great pro�le for detecting all the types of attacks
regardless of the http server. "pro�le all" sets the following con�guration options.

1-2. apache
the "apache" pro�le is used for apache web servers. this di�ers from the 'iis' pro�le by only
excepting utf-8 standard unicode encoding and not excepting backslashes as legitimate slashes, like
iis does. apache also excepts tabs as whitespace. "pro�le apache" sets the following con�guration
options:

1-3. iis
the "iis" pro�le mimics iis servers. so that means we use iis unicode codemaps for each server, %u
encoding, bare-byte encoding, double decoding, backslashes, etc. "pro�le iis" sets the following
con�guration options:
pro�les must be speci�ed as the �rst server option and cannot be combined with any other options
except:
1. ports
2. iis_unicode_map
3. allow_proxy_use
4. �ow_depth
5. no_alerts
6. inspect_uri_only
7. oversize_dir_length these options must be speci�ed after the 'pro�le' option.

29

Table 2.9: pro�le "all" options
�ow_depth 300

chunk encoding alert on chunks larger than 500000 bytes
iis_unicode_map codepoint map in the global con�guration
ascii decoding on, alert o�

looking for null bytes in url on, alert on
multiple slash on, alert o�

directory normalization on, alert o�
apache whitespace on
double decoding on
%u decoding on

bare byte decoding on
iis unicode codepoints alert on

iis backslash on, alert o�
iis delimiter on

Table 2.10: pro�le "apache" options
�ow_depth 300

chunk encoding alert on chunks larger than 500000 bytes
ascii decoding on alert o�

looking for null bytes in url on, alert on
multiple slash on, alert o�

directory normalization on, alert o�
apache whitespace on, alert on
utf_8 encoding on, alert o�

non_strict url parsing on

Table 2.11: pro�le "iis" options
�ow_depth 300

iis_unicode_map codepoint map in the global con�guration
ascii decoding on, alert o�
multiple slash on, alert o�

directory normalization on, alert o�
double decoding on, alert on
%u decoding on, alert on

bare byte decoding on, alert on
iis unicode codepoints on, alert on

iis backslash on, alert o�
iis delimiter on, alert on

apache whitespace on, alert on

30

example
preprocessor http_inspect_server: server 1.1.1.1 profile all ports { 80 3128 }

2. ports { <port> [<port> <...>] }
this is how the user con�gures what ports to decode on the http server. encrypted tra�c (ssl) cannot
be decoded, so adding ports 443 will only yield encoding false positives.

3. iis_unicode_map <map_�lename> codemap <integer>
the iis unicode map is generated by the program ms_unicode_generator.c. this program is located in
snort contrib directory. executing this program generates a unicode map for the system that it was
run on. so to get the speci�c unicode mappings for an iis web server, you run this program on that
server and use that unicode map in this con�guration.
when using this option, the user needs to specify the �le that contains the iis unicode map and also
specify the unicode map to use. for us servers, this is usually 1252. but the ms_unicode_generator
program tells you which codemap to use for you server, it's the ansi code page. you can select the
correct code page by looking at the available code pages that the ms_unicode_generator outputs.

4. �ow_depth <integer>
this speci�es the amount of server response payload to inspect. this option signi�cantly increases ids
performance because we are ignoring a large part of the network tra�c, that we don't really have rules
for anyway. most of the http server rules that we do have are for the http header and a few bytes after
that, so we can catch those alerts by specifying a �ow_depth of about 150 - 300. mileage may vary.

5. ascii <yes|no>
the ascii decode option tells us whether to decode encoded ascii chars, a.k.a %2f = /, %2e = ., etc. it
is normal to see ascii encoding usage in urls, so it is recommended to not enable httpinspect alerting
for this option.

6. utf_8 <yes|no>
the utf-8 decode option tells httpinspect to decode standard utf-8 unicode sequences that are in the
uri. this abides by the unicode standard and only uses % encoding. apache uses this standard, so for
any apache servers, make sure you have this option turned on. as for alerting, you may be interested
in knowing when you have an utf-8 encoded uri, but this will be prone to false positives as legitimate
web clients use this type of encoding. when utf_8 is enabled, ascii decoding is also enabled to enforce
correct functioning.

7. u_encode <yes|no>
this option emulates the iis %u encoding scheme. how the %u encoding scheme works is as follows:
the encoding scheme is started by a %u followed by 4 chars, like %uxxxx. the xxxx is a hex encoded
value that correlates to an iis unicode codepoint. this value can most de�nitely be ascii. an ascii char
is encoded like, %u002f = /, %u002e = ., etc. if no iis_unicode_map is speci�ed before or after this
option, the default codemap is used.
you should alert on %u encodings, because we are not aware of any legitimate clients that use this
encoding. so it is most likely someone trying to be covert.

8. bare_byte <yes|no>
bare byte encoding is an iis trick that uses non-ascii chars as valid values in decoding utf-8 values. this
is not in the http standard, as all non-ascii values have to be encoded with a %. bare byte encoding
allows the user to emulate an iis server and interpret non-standard encodings correctly.
the alert on this decoding should be enabled, because there are no legitimate clients that encoded utf-8
this way, since it is non-standard.

31

9. base36 <yes|no>
this is an option to decode base36 encoded chars. this option is based o� of info from http://www.
yk.rim.or.jp/~shikap/patch/spp_http_decode.patch
if %u encoding is enabled, this option will not work. you have to use the base36 option with the
utf_8 option. don't use the %u option, because base36 won't work. when base36 is enabled, so is ascii
encoding to enforce correct behavior.

10. iis_unicode <yes|no>
the iis_unicode option turns on the unicode codepoint mapping. if there is no iis_unicode_map option
speci�ed with the server con�g, iis_unicode uses the default codemap. the iis_unicode option handles
the mapping of non-ascii codepoints that the iis server accepts and decodes normal utf-8 request.
users should alert on the iis_unicode option, because it is seen mainly in attacks and evasion attempts.
when iis_unicode is enabled, so is ascii and utf-8 decoding to enforce correct decoding. to alert on
utf-8 decoding, the user must enable also enable 'utf_8 yes'.

11. double_decode <yes|no>
the double_decode option is once again iis speci�c and emulates iis functionality. how this works is
that iis does two passes through the request uri, doing decodes in each one. in the �rst pass, it seems
that all types of iis encoding is done: utf-8 unicode, ascii, bare byte, and %u. in the second pass the
following encodings are done: ascii, bare byte, and %u. we leave out utf-8 because i think how this
works is that the % encoded utf-8 is decoded to the unicode byte in the �rst pass, and then utf-8
decoded in the second stage. anyway, this is really complex and adds tons of di�erent encodings for
one char. when double_decode is enabled, so is ascii to enforce correct decoding.

12. non_rfc_char { <byte> [<byte ...>] }
this option let's users receive an alert if certain non-rfc chars are used in a request uri. for instance,
a user may not want to see null bytes in the request-uri and we can give an alert on that. please use
this option with care, because you could con�gure it to say, alert on all '/' or something like that. it's
�exible, so be careful.

13. multi_slash <yes|no>
this option normalizes multiple slashes in a row, so something like: "foo/////////bar" get normalized
to "foo/bar".
if you want an alert when multiple slashes are seen, then con�gure with a yes, otherwise a no.

14. iis_backslash <yes|no>
normalize backslashes to slashes. this is again an iis emulation. so a request-uri of "/foo
bar" gets normalized to "/foo/bar".

15. directory <yes|no>
this option normalizes directory traversals and self-referential directories.
the directory:
/foo/fake_dir/../bar

gets normalized to:
/foo/bar

the directory:

32

/foo/./bar

gets normalized to:
/foo/bar

if a user wants to con�gure an alert, then specify "yes", otherwise "no". this alert may give false
positives since some web sites refer to �les using directory traversals.

16. apache_whitespace <yes|no>
this option deals with non-rfc standard of tab for a space delimiter. apache uses this, so if the emulated
web server is apache you need to enable this option. alerts on this option may be interesting, but may
also be false positive prone.

17. iis_delimiter <yes|no>
this started out being iis speci�c, but apache takes this non-standard delimiter was well. since this is
common, we always take this as standard since the most popular web servers accept it. but you can
still get an alert on this option.

18. chunk_length <non-zero positive integer>
this option is an anomaly detector for abnormally large chunk sizes. this picks up the apache chunk
encoding exploits, and may also alert on http tunneling that uses chunk encoding.

19. no_pipeline_req
this option turns http pipeline decoding o�, and is a performance enhancement if needed. by default
pipeline requests are inspected for attacks, but when this option is enabled, pipeline requests are not
decoded and analyzed per http protocol �eld. it is only inspected with the generic pattern matching.

20. non_strict
this option turns on non-strict uri parsing for the broken way in which apache servers will decode a
uri. only use this option on servers that will accept uris like this "get /index.html alsjdfk alsj lj aj la
jsj s
n". the non_strict option assumes the uri is between the �rst and second space even if there is no
valid http identi�er after the second space.

21. allow_proxy_use
by specifying this keyword, the user is allowing proxy use on this server. this means that no alert
will be generated if the proxy_alert global keyword has been used. if the proxy_alert keyword is
not enabled, then this option does nothing. the allow_proxy_use keyword is just a way to suppress
unauthorized proxy use for an authorized server.

22. no_alerts
this option turns o� all alerts that are generated by the httpinspect preprocessor module. this has no
e�ect on http rules in the ruleset. no argument is speci�ed.

23. oversize_dir_length <non-zero positive integer>
this option takes a non-zero positive integer as an argument. the argument speci�es the max char
directory length for url directory. if a url directory is larger than this argument size, an alert is
generated. a good argument value is 300 chars. this should limit the alerts to ids evasion type attacks,
like whisker -i 4.

33

24. inspect_uri_only
this is a performance optimization. when enabled, only the uri portion of http requests will be inspected
for attacks. as this �eld usually contains 90-95% of the web attacks, you'll catch most of the attacks.
so if you need extra performance, then enable this optimization. it's important to note that if this
option is used without any uricontent rules, then no inspection will take place. this is obvious since
the uri is only inspected with uricontent rules, and if there are none available then there is nothing to
inspect.
for example, if we have the following rule set:
alert tcp any any -> any 80 (msg:"content"; content: "foo";)

and the we inspect the following uri:
get /foo.htm http/1.0\r\n\r\n

no alert will be generated when 'inspect_uri_only' is enabled. The 'inspect_uri_only' con�guration
turns o� all forms of detection except uricontent inspection.

25. webroot
This option generates an alert when a directory traversal traverses past the web server root directory.
This generates much less false positives than the directory option, because it doesn't alert on direc-
tory traversals that stay within the web server directory structure. It only alerts when the directory
traversals go past the web server root directory, which is associated with certain web attacks.

examples

preprocessor http_inspect_server: server 10.1.1.1 \
ports { 80 3128 8080 } \
flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { 0x00 } \
flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \

34

iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server: server default \
profile all \
ports { 80 8080 }

35

2.2 event thresholding

Event thresholding can be used to reduce the number of logged alerts for noisy rules. this can be tuned
to signi�cantly reduce false alarms, and it can also be used to write a newer breed of rules. Thresholding
commands limit the number of times a particular event is logged during a speci�ed time interval.
There are 3 types of thresholding:
1. limit

alert on the 1st m events during the time interval, then ignore events for the rest of the time interval.
2. threshold

alert every m times we see this event during the time interval.
3. both

alert once per time interval after seeing m occurrences of the event, then ignore any additional events
during the time interval.

thresholding commands can be included as part of a rule, or you can use standalone threshold commands
that reference the generator and sid they are applied to. there is no functional di�erence between adding
a threshold to a rule, or using a separate threshold command applied to the same rule. there is a logical
di�erence. some rules may only make sense with a threshold. these should incorporate the threshold
command into the rule. for instance a rule for detecting a too many login password attempts may require
more than 5 attempts. this can be done using the 'limit' type of threshold command. it makes sense that
the threshold feature is an integral part of this rule.
In order for rule thresholds to apply properly, these rules must contain a sid.
Only one threshold may be applied to any given generator and sid pair. If more than one threshold is applied
to a generator and sid pair, snort will terminate with an error while reading the con�guration information.

2.2.1 standalone options

this format supports 6 threshold options - all are required.

Table 2.12: standalone options
gen_id <generator id>
sig_id <snort signature id>
type limit, threshold, or both
track by_src or by_dst
count <number of events>
seconds <time period over which count is accrued>

2.2.2 standalone format

threshold gen_id <gen-id>, sig_id <sig-id>, \
type <limit|threshold|both>, \
track <by_src|by_dst>, count <s>, seconds <m>

36

2.2.3 rule keyword format

this format supports 4 threshold options - all are required.

Table 2.13: rule keyword options
type limit, threshold, or both
track by_src or by_dst
count <number of events>
seconds <time period over which count is accrued>

2.2.4 rule keyword format

threshold: type <limit|threshold|both>, track <by_src|by_dst>, \
count <n>, seconds <m>;

for either standalone or rule format, all tracking is by src or by dst ip, ports or anything else are not tracked.
thresholding can also be used globally, this allows you to specify a threshold for every rule. standard
thresholding tests are applied 1st to an event, if they do not block a rule from being logged then the global
thresholding test is applied - thresholds in a rule will override a global threshold.
the global threshold options are the same as the standard threshold options with the exception of the 'sig_id'
�eld. the sig_id �eld must be set to 0 to indicate this threshold command applies to all sig_id values with
the speci�ed gen_id. to apply the same threshold to all gen_id's at the same time, and with just one
command specify a value of gen_id=0.
the format for global threshold commands is as such:
threshold gen_id <gen-id>, sig_id 0, \

type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

this applies a threshold to every event from <gen-id>.
or
threshold gen_id 0 , sig_id 0, \

type <limit|threshold|both>, \
track <by_src|by_dst>, \
count <n>, \
seconds <m>

this applies a threshold to every event from every gen-id.

37

2.2.5 examples

standalone thresholds

limit to logging 1 event per 60 seconds:
threshold gen_id 1, sig_id 1851, \

type limit, track by_src, \
count 1, seconds 60

limit to logging every 3rd event:
threshold gen_id 1, sig_id 1852, \

type threshold, track by_src, \
count 3, seconds 60

limit to logging just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds:
threshold gen_id 1, sig_id 1853, \

type both, track by_src, \
count 30, seconds 60

rule thresholds

this rule logs the 1st event of this sid every 60 seconds
alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type limit, track \
by_src, count 1 , seconds 60 ; sid:1000852; rev:1;)

this rule logs every 10th event on this sid during a 60 second interval, so if less than 10 occur in 60 seconds,
nothing gets logged. once an event is logged, a new time period starts for type=threshold.
alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type threshold, \
track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

this rule logs at most one event every 60 seconds if at least 10 events on this sid are �red.
alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, established; \
uricontent:"/robots.txt"; nocase; reference:nessus,10302; \
classtype:web-application-activity; threshold: type both , track \
by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

38

global thresholds

limit to logging 1 event per 60 seconds per ip triggering each rule (rule gen_id is 1):
threshold gen_id 1, sig_id 0, type limit, track by_src, count 1, seconds 60

limit to logging 1 event per 60 seconds per ip triggering each rule for each event generator:
threshold gen_id 0, sig_id 0, type limit, track by_src, count 1, seconds 60

events in snort are generated in the usual way, thresholding is handled as part of the output system. read
gen-msg.map for details on gen ids.
users can also con�gure a memcap for threshold with a "con�g:" option:
config threshold: memcap <bytes>

39

2.3 event suppression

event suppression stops speci�ed events from �ring without removing the rule from the rule base. suppres-
sion uses a cidr block notation to select speci�c networks and users for suppression. suppression tests are
performed prior to either standard or global thresholding tests.
suppression commands are standalone commands that reference generators, sids, and ip addresses via a cidr
block. this allows a rule to be completely suppressed, or suppressed when the causative tra�c is going to or
coming from a speci�c ip or group of ip addresses.
you may apply multiple suppression commands to a sid. you may also combine one threshold command and
several suppression commands to the same sid.

2.3.1 format

the suppress command supports either 2 or 4 options

Table 2.14: suppression options
gen_id <generator id> required
sig_id <snort signature id> required
track by_src or by_dst optional, requires ip
ip ip[/mask] optional, requires track

suppress gen_id <gen-id>, sid_id <sid-id>, \
track <by_src|by_dst>, ip <ip|mask-bits>

2.3.2 examples

suppress this event completely
suppress gen_id 1, sig_id 1852

suppress this event from this ip
suppress gen_id 1, sig_id 1852, track by_src, ip 10.1.1.54

suppress this event to this cidr block
suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.0/24

40

2.4 output modules

output modules are new as of version 1.6. they allow snort to be much more �exible in the formatting and
presentation of output to its users. the output modules are run when the alert or logging subsystems of
snort are called, after the preprocessors and detection engine. the format of the directives in the rules �le is
very similar to that of the preprocessors.
multiple output plugins may be speci�ed in the snort con�guration �le. when multiple plugins of the same
type (log, alert) are speci�ed, they are stacked and called in sequence when an event occurs. as with the
standard logging and alerting systems, output plugins send their data to /var/log/snort by default or to a
user directed directory (using the -l command line switch).
output modules are loaded at runtime by specifying the output keyword in the rules �le:
output <name>: <options>

output alert_syslog: log_auth log_alert

Figure 2.7: output module con�guration example

2.4.1 alert_syslog

this module sends alerts to the syslog facility (much like the -s command line switch). this module also allows
the user to specify the logging facility and priority within the snort rules �le, giving users greater �exibility
in logging alerts.

available keywords

facilities

• log_auth
• log_authpriv
• log_daemon
• log_local0
• log_local1
• log_local2
• log_local3
• log_local4
• log_local5
• log_local6
• log_local7
• log_user

41

priorities

• log_emerg
• log_alert
• log_crit
• log_err
• log_warning
• log_notice
• log_info
• log_debug

options

• log_cons
• log_ndelay
• log_perror
• log_pid

format

alert_syslog: <facility> <priority> <options>

4! NOTE

As WIN32 does not run syslog servers locally by default, a hostname and port can be passed as options.
The default host is 127.0.0.1. The default port is 514.

output alert_syslog: [host=<hostname[:<port>],] <facility> <priority> <options>

output alert_syslog: 10.1.1.1:514, <facility> <priority> <options>

Figure 2.8: syslog con�guration example

2.4.2 alert_fast

this will print snort alerts in a quick one line format to a speci�ed output �le. it is a faster alerting method
than full alerts because it doesn't need to print all of the packet headers to the output �le

42

output alert_fast: alert.fast

Figure 2.9: fast alert con�guration

format

alert_fast: <output filename>

2.4.3 alert_full

print snort alert messages with full packet headers. the alerts will be written in the default logging directory
(/var/log/snort) or in the logging directory speci�ed at the command line.
inside the logging directory, a directory per ip will be created. these �les will be decoded packet dumps of
the packets that triggered the alerts. the creation of these �les slows snort down considerably. this output
method is discouraged for all but the lightest tra�c situations.

format

alert_full: <output filename>

output alert_full: alert.full

Figure 2.10: full alert con�guration

2.4.4 alert_unixsock

sets up a unix domain socket and sends alert reports to it. external programs/processes can listen in on this
socket and receive snort alert and packet data in real time. this is currently an experimental interface.

format

alert_unixsock

output alert_unixsock

Figure 2.11: unixsock alert con�guration

2.4.5 log_tcpdump

the log_tcpdump module logs packets to a tcpdump-formatted �le. this is useful for performing post process
analysis on collected tra�c with the vast number of tools that are available for examining tcpdump formatted
�les. this module only takes a single argument, the name of the output �le. note that the �le name will have
the unix timestamp in seconds appended the �le name. this is so data from separate snort runs can be kept
distinct.

43

format

log_tcpdump: <output filename>

output log_tcpdump: snort.log

Figure 2.12: tcpdump output module con�guration example

2.4.6 database

this module from jed pickel sends snort data to a variety of sql databases. more information on installing
and con�guring this module can be found on the [91]incident.org web page. the arguments to this plugin
are the name of the database to be logged to and a parameter list. parameters are speci�ed with the format
parameter = argument. see �gure 2.13 for example usage.

format

database: <log | alert>, <database type>, <parameter list>

the following parameters are available:
host host to connect to. if a non-zero-length string is speci�ed, tcp/ip communication is used. without a

host name, it will connect using a local unix domain socket.
port port number to connect to at the server host, or socket �lename extension for unix-domain connections.
dbname database name
user database username for authentication
password password used if the database demands password authentication
sensor_name specify your own name for this snort sensor. if you do not specify a name one will be

generated automatically
encoding because the packet payload and option data is binary, there is no one simple and portable way

to store it in a database. blobs are not used because they are not portable across databases. so i leave
the encoding option to you. you can choose from the following options. each has its own advantages
and disadvantages:
hex (default) represent binary data as a hex string.

storage requirements - 2x the size of the binary
searchability - very good
human readability - not readable unless you are a true geek, requires post processing

base64 represent binary data as a base64 string.
storage requirements - �1.3x the size of the binary
searchability - impossible without post processing
human readability - not readable requires post processing

44

ascii represent binary data as an ascii string. this is the only option where you will actually loose data.
non ascii data is represented as a .. if you choose this option then data for ip and tcp options will
still be represented as hex because it does not make any sense for that data to be ascii.
storage requirements - slightly larger than the binary because some characters are escaped

(&,<,>)
searchability - very good for searching for a text string impossible if you want to search for

binary
human readability - very good

detail how much detailed data do you want to store? the options are:
full (default) log all details of a packet that caused an alert (including ip/tcp options and the payload)
fast log only a minimum amount of data. you severely limit the potential of some analysis applications

if you choose this option, but this is still the best choice for some applications. the following �elds
are logged - (timestamp, signature, source ip, destination ip, source port, destination port, tcp
�ags, and protocol)

furthermore, there is a logging method and database type that must be de�ned. there are two logging types
available, log and alert. setting the type to log attaches the database logging functionality to the log facility
within the program. if you set the type to log, the plugin will be called on the log output chain. setting the
type to alert attaches the plugin to the alert output chain within the program.
There are �ve database types available in the current version of the plugin. These are mssql, mysql, post-
gresql, oracle, and odbc. Set the type to match the database you are using.

4! NOTE

The database output plugin does not have the ability to handle alerts that are generated by using the
tag keyword. See section 3.7.5 for more details.

output database: log, mysql, dbname=snort user=snort host=localhost password=xyz

Figure 2.13: database output plugin con�guration

2.4.7 csv

the csv output plugin allows alert data to be written in a format easily importable to a database. the plugin
requires 2 arguments, a full pathname to a �le and the output formatting option.
the list of formatting options is below. if the formatting option is default, the output is in the order the
formatting option is listed.
• timestamp
• sig_generator
• sig_id
• sig_rev

45

• msg
• proto
• src
• srcport
• dst
• dstport
• ethsrc
• ethdst
• ethlen
• tcp�ags
• tcpseq
• tcpack
• tcplen
• tcpwindow
• ttl
• tos
• id
• dgmlen
• iplen
• icmptype
• icmpcode
• icmpid
• icmpseq

format

output alert_csv: <filename> <format>

output alert_csv: /var/log/alert.csv default

output alert_csv: /var/log/alert.csv timestamp, msg

Figure 2.14: csv output con�guration

46

2.4.8 uni�ed

The uni�ed output plugin is designed to be the fastest possible method of logging snort events. The uni�ed
output plugin logs events in binary format, allowing another programs to handle complex logging mechanisms
that would otherwise diminish the performance of Snort.
The name uni�ed is a misnomer, as the uni�ed output plugin creates two di�erent �les, an alert �le, and a
log �le. The alert �le contains the high-level details of an event (eg: ips, protocol, port, message id). The log
�le contains the detailed packet information (a packet dump with the associated event id). Both �le types
are written in a bimary format described in spo_uni�ed.h.
NOTE: Files have the �le creation time (in Unix Epoch format) appended to each �le when it is created.

format

output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size limit in MB>]

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

Figure 2.15: uni�ed con�guration example

2.4.9 log null

sometimes it is useful to be able to create rules that will alert to certain types of tra�c but will not cause
packet log entries. in snort 1.8.2, the log_null plugin was introduced. this is equivalent to using the -n
command line option but it is able to work within a ruletype.

format

output log_null

output log_null # like using snort -n

ruletype info {
type alert
output alert_fast: info.alert
output log_null

}

Figure 2.16: log null usage example

47

Chapter 3

Writing Snort Rules

How to Write Snort Rules and Keep

Your Sanity

3.1 The Basics

Snort uses a simple, lightweight rules description language that is �exible and quite powerful. There are a
number of simple guidelines to remember when developing Snort rules.
Most Snort rules are written in a single line. This was required in versions prior to 1.8. In current versions
of Snort, rules may span multiple lines by adding a backslash \ to the end of the line.
Snort rules are divided into two logical sections, the rule header and the rule options. The rule header
contains the rule's action, protocol, source and destination IP addresses and netmasks, and the source and
destination ports information. The rule option section contains alert messages and information on which
parts of the packet should be inspected to determine if the rule action should be taken.
Figure 3.1 illustrates a sample Snort rule.
alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule
The text up to the �rst parenthesis is the rule header and the section enclosed in parenthesis is the rule
options. The words before the colons in the rule options section are called option keywords.

4! NOTE
The rule options section is not speci�cally required by any rule, they are just used for the sake of making
tighter de�nitions of packets to collect or alert on (or drop, for that matter).

All of the elements in that make up a rule must be true for the indicated rule action to be taken. When
taken together, the elements can be considered to form a logical and statement. At the same time, the
various rules in a Snort rules library �le can be considered to form a large logical or statement.

48

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that de�nes the who, where, and what of a packet, as well as what
to do in the event that a packet with all the attributes indicated in the rule should show up. The �rst item
in a rule is the rule action. The rule action tells Snort what to do when it �nds a packet that matches the
rule criteria. There are 5 available default actions in Snort, alert, log, pass, activate, and dynamic.

1. alert - generate an alert using the selected alert method, and then log the packet
2. log - log the packet
3. pass - ignore the packet
4. activate - alert and then turn on another dynamic rule
5. dynamic - remain idle until activated by an activate rule , then act as a log rule

You can also de�ne your own rule types and associate one or more output plugins with them. You can then
use the rule types as actions in Snort rules.
This example will create a type that will log to just tcpdump:
ruletype suspicious
{

type log
output log_tcpdump: suspicious.log

}

This example will create a rule type that will log to syslog and a MySQL database:
ruletype redalert
{

type alert
output alert_syslog: LOG_AUTH LOG_ALERT
output database: log, mysql, user=snort dbname=snort host=localhost

}

3.2.2 Protocols

The next �eld in a rule is the protocol. There are four Protocols that Snort currently analyzes for suspicious
behavior � tcp, udp, icmp, and ip. In the future there may be more, such as ARP, IGRP, GRE, OSPF, RIP,
IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP address and port information for a given rule. The
keyword any may be used to de�ne any address. Snort does not have a mechanism to provide host name
lookup for the IP address �elds in the rules �le. The addresses are formed by a straight numeric IP address and

49

a CIDR[?] block. The CIDR block indicates the netmask that should be applied to the rule's address and any
incoming packets that are tested against the rule. A CIDR block mask of /24 indicates a Class C network,
/16 a Class B network, and /32 indicates a speci�c machine address. For example, the address/CIDR
combination 192.168.1.0/24 would signify the block of addresses from 192.168.1.1 to 192.168.1.255. Any rule
that used this designation for, say, the destination address would match on any address in that range. The
CIDR designations give us a nice short-hand way to designate large address spaces with just a few characters.
In Figure 3.1, the source IP address was set to match for any computer talking, and the destination address
was set to match on the 192.168.1.0 Class C network.
There is an operator that can be applied to IP addresses, the negation operator. This operator tells Snort to
match any IP address except the one indicated by the listed IP address. The negation operator is indicated
with a !. For example, an easy modi�cation to the initial example is to make it alert on any tra�c that
originates outside of the local net with the negation operator as shown in Figure 3.2.
alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \

(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 3.2: Example IP Address Negation Rule

This rule's IP addresses indicate any tcp packet with a source IP address not originating from the internal
network and a destination address on the internal network.
You may also specify lists of IP addresses. An IP list is speci�ed by enclosing a comma separated list of IP
addresses and CIDR blocks within square brackets. For the time being, the IP list may not include spaces
between the addresses. See Figure 3.3 for an example of an IP list in action.
alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \

[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5|"; \
msg: "external mountd access";)

Figure 3.3: IP Address Lists

3.2.4 Port Numbers

Port numbers may be speci�ed in a number of ways, including any ports, static port de�nitions, ranges, and
by negation. Any ports are a wildcard value, meaning literally any port. Static ports are indicated by a
single port number, such as 111 for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated
with the range operator :. The range operator may be applied in a number of ways to take on di�erent
meanings, such as in Figure 3.4.

Port negation is indicated by using the negation operator !. The negation operator may be applied against
any of the other rule types (except any, which would translate to none, how Zen...). For example, if for some
twisted reason you wanted to log everything except the X Windows ports, you could do something like the
rule in Figure 3.5.

3.2.5 The Direction Operator

The direction operator -> indicates the orientation, or direction, of the tra�c that the rule applies to. The
IP address and port numbers on the left side of the direction operator is considered to be the tra�c coming

50

log udp any any -> 192.168.1.0/24 1:1024 log udp
tra�c coming from any port and destination ports ranging from 1 to 1024
log tcp any any -> 192.168.1.0/24 :6000

log tcp tra�c from any port going to ports less than or equal to 6000
log tcp any :1024 -> 192.168.1.0/24 500:

log tcp tra�c from privileged ports less than or equal to 1024 going to ports greater than or equal to 500
Figure 3.4: Port Range Examples

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation

from the source host, and the address and port information on the right side of the operator is the destination
host. There is also a bidirectional operator, which is indicated with a <> symbol. This tells Snort to consider
the address/port pairs in either the source or destination orientation. This is handy for recording/analyzing
both sides of a conversation, such as telnet or POP3 sessions. An example of the bidirectional operator being
used to record both sides of a telnet session is shown in Figure 3.6.
Also, note that there is no <- operator. In snort versions before 1.8.7, the direction operator did not have
proper error checking and many people used an invalid token. The reason the <- does not exist is so that
rules always read consistently.
log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

3.2.6 Activate/Dynamic Rules

4! NOTE

Activate and Dynamic rules are being phased out in favor of a combination of tagging (3.7.5) and
�owbits (3.6.10).

Activate/dynamic rule pairs give Snort a powerful capability. You can now have one rule activate another
when it's action is performed for a set number of packets. This is very useful if you want to set Snort up
to perform follow on recording when a speci�c rule goes o�. Activate rules act just like alert rules, except
they have a *required* option �eld: activates. Dynamic rules act just like log rules, but they have a di�erent
option �eld: activated_by. Dynamic rules have a second required �eld as well, count.
Activate rules are just like alerts but also tell snort to add a rule when a speci�c network event occurs .
Dynamic rules are just like log rules except are dynamically enabled when the activate rule id goes o�.
Put 'em together and they look like Figure 3.7.

51

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|E8C0FFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 3.7: Activate/Dynamic Rule Example

These rules tell Snort to alert when it detects an IMAP bu�er over�ow and collect the next 50 packets
headed for port 143 coming from outside $HOME_NET headed to $HOME_NET. If the bu�er over�ow
happened and was successful, there's a very good possibility that useful data will be contained within the
next 50 (or whatever) packets going to that same service port on the network, so there's value in collecting
those packets for later analysis.

52

3.3 Rule Options

Rule options form the heart of Snort's intrusion detection engine, combining ease of use with power and
�exibility. All Snort rule options are separated from each other using the semicolon (;) character. Rule
option keywords are separated from their arguments with a colon (:) character.
There are four major categories of rule options.
meta-data These options provide information about the rule but do not have any a�ect during detection
payload These options all look for data inside the packet payload and can be inter-related
non-payload These options look for non-payload data
post-detection These options are rule speci�c triggers that happen after a rule has "�red".

3.4 Meta-Data Rule Options

3.4.1 msg

The msg rule option tells the logging and alerting engine the message to print along with a packet dump or
to an alert. It is a simple text string that utilizes the \ as an escape character to indicate a discrete character
that might otherwise confuse Snort's rules parser (such as the semi-colon ; character).

Format

msg: "<message text>";

3.4.2 reference

The reference keyword allows rules to include references to external attack identi�cation systems. The
plugin currently supports several speci�c systems as well as unique URLs. This plugin is to be used by
output plugins to provide a link to additional information about the alert produced.
Make sure to also take a look at http://www.snort.org/snort-db/ http://www.snort.org/snort-db/ for a
system that is indexing descriptions of alerts based o� of the sid (See Section 3.4.3).

Table 3.1: Supported Systems
System URL Pre�x
bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=

nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids (currently down) http://www.whitehats.com/info/IDS
mcafee http://vil.nai.com/vil/dispVirus.asp?virus_k=
url http://

53

Format

reference: <id system>,<id>; [reference: <id system>,<id>;]

alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio"; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids,IDS411;)

alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-venglin-linux"; \
flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \
reference:arachnids,IDS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

Figure 3.8: Reference Usage Examples

3.4.3 sid

The sid keyword is used to uniquely identify Snort rules. This information allows output plugins to identify
rules easily. This option should be used with the rev keyword. (See section 3.4.4)
• <100 Reserved for future use
• 100-1,000,000 Rules included with the Snort distribution
• >1,000,000 Used for local rules

The �le sid-msg.map contains a mapping of alert messages to Snort rule IDs. This information is useful
when post-processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.
alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

3.4.4 rev

The sid keyword is used to uniquely identify revisions of Snort rules. Revisions, along with snort rule id's,
allow signatures and descriptions to be re�ned and replaced with updated information. This option should
be used with the sid keyword. (See section 3.4.3)

Format

rev: <revision integer>

54

Example

This example is a rule with the Snort Rule Revision of 1.
alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

3.4.5 classtype

The classtype keyword categorizes alerts to be attack classes. By using the and prioritized. The user can
specify what priority each type of rule classi�cation has. Rules that have a classi�cation will have a default
priority set.

Format

classtype: <class name>;

Rule classi�cations are de�ned in the classification.config �le. The con�g �le uses the following syntax:
config classification: <class name>,<class description>,<default priority>

The standard classi�cations included with Snort are listed in Table 3.2. The standard classi�cations are
ordered with 3 default priorities currently. A priority 1 is the most severe priority level of the default rule
set and 4 is the least severe.

Table 3.2: Snort Default Classi�cations
Classtype Description Priority
attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high
web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Tra�c medium
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or

event
medium

rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-�lename-detect A suspicious �lename was detected medium

55

suspicious-login An attempted login using a suspicious
username was detected

medium
system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity access to a potentially vulnerable web ap-

plication
medium

icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Tra�c low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Tra�c low

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10);

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon;)

Figure 3.9: Example Classtype Rules

Warnings

classtype uses classi�cations de�ned by the classi�cation con�g option. The classi�cations used by the rules
provided with snort are de�ned in etc/classi�cation.con�g

3.4.6 Priority

The priority tag assigns a severity level to rules. A classtype rule assigns a default priority that may be
overridden with a priority rule. For an example in conjunction with a classi�cation rule refer to Figure 3.9.
For use by itself, see Figure 3.10

Format

priority: <priority integer>;

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flags:A+; \
content: "/cgi-bin/phf"; priority:10;)

Figure 3.10: Example Priority Rule

56

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important features of Snort. It allows the user to set rules that
search for speci�c content in the packet payload and trigger response based on that data. Whenever a
content option pattern match is performed, the Boyer-Moore pattern match function is called and the
(rather computationally expensive) test is performed against the packet contents. If data exactly matching
the argument data string is contained anywhere within the packet's payload, the test is successful and the
remainder of the rule option tests are performed. Be aware that this test is case sensitive.
The option data for the content keyword is somewhat complex; it can contain mixed text and binary data.
The binary data is generally enclosed within the pipe (|) character and represented as bytecode. Bytecode
represents binary data as hexadecimal numbers and is a good shorthand method for describing complex
binary data. Figure 3.11 contains an example of mixed text and binary data in a Snort rule.
Note that multiple content rules can be speci�ed in one rule. This allows rules to be tailored for less false
positives.
If the rule is preceded by a !, the alert will be triggered on packets that do not contain this content. This
is useful when writing rules that want to alert on packets that do not match a certain pattern

4! NOTE

The following characters must be escaped inside a content rule:
: ; \ "

Format

content: [!] "<content string>";

Example

alert tcp any any -> any 139 (content:"|5c 00|P|00|I|00|P|00|E|00 5c|";)

Figure 3.11: Mixed Binary Bytecode and Text in a 'content' keyword
alert tcp any any -> any 80 (content:!"GET";)

Figure 3.12: Negation Example

Changing content behavior

The content keyword has a number of modi�er keywords. The modi�er keywords change how the previously
speci�ed content works. These modi�er keywords are:
1. depth

57

2. o�set
3. distance
4. within
5. nocase
6. rawbytes

3.5.2 nocase

The nocase keyword allows the rule writer to specify that the snort should look for the speci�c pattern,
ignoring case. nocase modi�es the previous 'content' keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

Figure 3.13: Content rule with nocase modi�er

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding that was done by
preprocessors. This acts as a modi�er to the previous content 3.5.1option.

format

rawbytes;

Example

This example tells the content pattern matcher to look at the raw tra�c, instead of the decoded tra�c
provided by the telnet decoder.
alert tcp any any -> any 21 (msg: "Telnet NOP"; content: "|FF F1|"; rawbytes;)

58

3.5.4 depth

The depth keyword allows the rule writer to specify how far into a packet snort should search for the speci�ed
pattern. depth modi�es the previous 'content' keyword in the rule.
A depth of 5 would tell snort to only look look for the speci�ed pattern within the �rst 5 bytes of the payload.
As the depth keyword is a modi�er to the previous 'content' keyword, there must be a content in the rule
before 'depth' is speci�ed.
See Figure 3.14 for an example of a combined content, o�set, and depth search rule.

Format

depth: <number>;

3.5.5 o�set

The o�set keyword allows the rule writer to specify where to start searching for a pattern within a packet.
o�set modi�es the previous 'content' keyword in the rule.
An o�set of 5 would tell snort to start looking for the speci�ed pattern after the �rst 5 bytes of the payload.
As this keyword is a modi�er to the previous 'content' keyword, there must be a content in the rule before
'o�set' is speci�ed.
See Figure 3.14 for an example of a combined content, o�set, and depth search rule.

Format

offset: <number>;

alert tcp any any -> any 80 (content: "cgi-bin/phf"; offset:4; depth:20;)

Figure 3.14: Combined Content, O�set and Depth Rule. Skip the �rst 4 bytes, and look for cgi-bin/phf in
the next 20 bytes

3.5.6 distance

The distance keyword allows the rule writer to specify how far into a packet snort should search for the
speci�ed pattern relative to the end of the previous pattern match. This can be thought of as exactly the
same thing as depth (See Section 3.5.4), except it is relative to the end of the last pattern match instead of
the beginning of the packet.

Format

distance: <byte count>;

59

Example

The rule listed in Figure 3.15 maps to a regular expression of /ABCDE.{1}EFGH/.
alert tcp any any -> any any (content:"ABC"; content: "DEF"; distance:1;)

Figure 3.15: distance usage example

3.5.7 within

The within keyword is a content modi�er that makes sure that at most N bytes are between pattern matches
using the Content (See Section 3.5.1). It's designed to be used in conjunction with the distance (Section
3.5.6) rule option.
The rule listed in Figure 3.16 constrains the search to not go past 10 bytes past the ABCDE match.

Format

within: <byte count>;

Examples

alert tcp any any -> any any (content:"ABC"; content: "EFG"; within:10;)

Figure 3.16: within usage example

3.5.8 uricontent

The uricontent parameter in the snort rule language searches the NORMALIZED request URI �eld. This
means that if you are writing rules that include things that are normalized, such as %2f or directory traversals,
these rules will not alert. The reason is that the things you are looking for are normalized out of the URI
bu�er.
For example, the URI:
/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:
/winnt/system32/cmd.exe?/c+ver

Another example, the URI:
\begin{verbatim} /cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

will get normalized into:
/cgi-bin/phf?

60

When writing a uricontent rule, write the content that you want to �nd in the context that the URI will be
normalized. For example, if snort normalizes directory traversals, do not include directory traversals.
You can write rules that look for the non-normalized content by using the content option. (See Section 3.5.1)
For a description of the parameters to this function, see the content rule options in Section 3.5.1.
This option works in conjunction with the HTTP Inspect preprocessor speci�ed in Section ??.

Format

uricontent:[!]<content string>;

3.5.9 isdataat

Verify that the payload has data at a speci�ed location, optionally looking for data relative to the end of
the previous content match.

Format

isdataat:<int>[,relative];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,relative; \
content:!"|0a|"; distance:0;)

This rule looks for the string PASS exists in the packet, then veri�es there is at least 50 bytes after the end
of the string PASS, then veri�es that there is not a newline character within 50 bytes of the end of the PASS
string.

3.5.10 pcre

The pcre keyword allows rules to be written using perl compatible regular expressions. For more detail on
what can be done via a pcre regular expression, check out the PCRE web site http://www.pcre.org

Format

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUB]";

The post-re modi�ers set compile time �ags for the regular expression.
Table 3.3: Perl compatible modi�ers

i case insensitive
s include newlines in the dot metacharacter

61

m By default, the string is treated as one big line of charac-
ters. � and $ match at the beginning and ending of the
string. When m is set, � and $ match immediately follow-
ing or immediately before any newline in the bu�er, as well
as the very start and very end of the bu�er.

x whitespace data characters in the pattern are ignored ex-
cept when escaped or inside a character class

Table 3.4: PCRE compatible modi�ers
A the pattern must match only at the start of the bu�er

(same as �)
E Set $ to match only at the end of the subject string. With-

out E, $ also matches immediately before the �nal charac-
ter if it is a newline (but not before any other newlines).

G Inverts the "greediness" of the quanti�ers so that they are
not greedy by default, but become greedy if followed by
"?".

Table 3.5: Snort speci�c modi�ers
R Match relative to the end of the last pattern match. (Sim-

ilar to distance:0;)
U Match the decoded URI bu�ers (Similar to uricontent)
B Do not use the decoded bu�ers (Similar to rawbytes)

The modi�ers R and B should not be used together.

Example

This example looks for the string BLAH in the packet payload, ignoring the case of the payload.
alert ip any any -> any any (pcre:"/BLAH/i";)

3.5.11 byte_test

Test a byte �eld against a speci�c value (with operator). Capable of testing binary values or converting
representative byte strings to their binary equivalent and testing them.
For a more detailed explanation, please read Section 3.8.5.

Format

byte_test: <bytes to convert>, [!]<operator>, <value>, <offset> \
[,relative] [,<endian>] [,<number type>, string]

62

bytes to convert number of bytes to pick up from the packet
operator operation to perform to test the value

< less than
> greater than
= equal
& bitwise AND
� bitwise OR

value value to test the converted value against
o�set number of bytes into the payload to start processing
relative use an o�set relative to last pattern match
endian endian type of the number being read

big process data as big endian (default)
little process data as little endian

string data is stored in string format in packet (to be used in conjunction with number type)
number type type of number being read

hex converted string data is represented in hexadecimal
dec converted string data is represented in decimal
oct converted string data is represented in octal

Any of the operators can also include ! to check if the operator is not true. If ! is speci�ed without an
operator, then the operator is set to =.

4! NOTE

Snort uses the C operators for each of these operators. If the & operator is used, then it would be the
same as using if (data & value) { do_something();}

3.5.12 byte_jump

The byte_jump option allows rules to be written for length encoded protocols trivially. By having an option
that reads the length of a portion of data, then skipping that far forward in the packet, rules can be written
that skip over speci�c portions of length encoded protocols and perform detection in very speci�c locations.
The byte_jump option does this by reading some number of bytes, convert them to their numeric represen-
tation, move that many bytes forward and set a pointer for later detection. This pointer is known as the
detect o�set end pointer, or doe_ptr.
For a more detailed explanation, please read Section 3.8.5.

63

alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4,>, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "|00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte_test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!";)

alert udp any any -> any 1235 \
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!";)

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!";)

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test: 8, =, 0xdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

Figure 3.17: Byte Test Usage Example

64

Format

byte_jump: <bytes_to_convert>, <offset> \
[, [relative],[big],[little],[string],[hex],[dec],[oct],[align]]

bytes_to_convert number of bytes to pick up from the packet
o�set number of bytes into the payload to start processing
relative use an o�set relative to last pattern match
big process data as big endian (default)
little process data as little endian
string data is stored in string format in packet
hex converted string data is represented in hexadecimal
dec converted string data is represented in decimal
oct converted string data is represented in octal
align round the number of converted bytes up to the next 32-bit boundary

alert udp any any -> any 32770:34000 (content: "|00 01 86 B8|"; \
content: "|00 00 00 01|"; distance: 4; within: 4; \
byte_jump: 4, 12, relative, align; \
byte_test: 4, >, 900, 20, relative; \
msg: "statd format string buffer overflow";)

Figure 3.18: byte jump Usage Example

3.5.13 regex

The regex keyword has been superceded by PCRE. See Section 3.5.10.

3.5.14 content-list

The content-list keyword is broken and should not be used.

3.6 Non-payload Detection Rule Options

3.6.1 Frago�set

The frago�set keyword allows one to compare the IP fragment o�set �eld against a decimal value. To catch
all the �rst fragments of an IP session, you could use the fragbits keyword and look for the More fragments
option in conjunction with a frago�set of 0.

65

Format

fragoffset:[<|>]<number>

alert ip any any -> any any \
(msg: "First Fragment"; fragbits: M; fragoffset: 0;)

Figure 3.19: Frago�set usage example

3.6.2 ttl

The ttl keyword is used to check the IP time-to-live value. This option keyword was intended for use in the
detection of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

Example

This example checks for a time-to-live value that is less than 3.
ttl:<3;

This example checks for a time-to-live value that between 3 and 5.
ttl:3-5;

3.6.3 tos

The tos keyword is used to check the IP TOS �eld for a speci�c value.

Format

tos:[!]<number>;

Example

This example looks for a tos value that is not 4
tos:!4;

66

3.6.4 id

The id keyword is used to check the IP ID �eld for a speci�c value. Some tools (exploits, scanners and other
odd programs) set this �eld speci�cally for various purposes, for example the value 31337 is very popular
with some hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.
id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a speci�c IP option is present.
The following options may be checked:
rr - Record route
eol - End of list
nop - No op
ts - Time Stamp
sec - IP security option
lsrr - Loose source routing
ssrr - Strict source routing
satid - Stream identi�er
any - any IP options are set
The most frequently watched for IP options are strict and loose source routing which aren't used in any
widespread internet applications.

Format

ipopts:<rr|eol|nop|ts|sec|lsrr|ssrr|satid|any>;

Example

This example looks for the IP Option of Loose Source Routing.
ipopts:lsrr;

67

Warning

Only a single ipopts keyword may be speci�ed per rule.

3.6.6 Fragbits

The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.
The following bits may be checked:
M More Fragments
D Don't Fragment
R Reserved Bit
The following modi�ers can be set to change the match criteria:
+ match on the speci�ed bits, plus any others
- match if any of the speci�ed bits are set
! match if the speci�ed bits are not set

Format

fragbits:[+-*]<[MDR]>

Example

This example checks if the More Fragments bit and the Do not Fragment bit are set.
fragbits:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size. This may be used to check for abnormally sized
packets. In many cases, it is useful for detecting bu�er over�ows.

Format

dsize: [<>]<number>[<><number>];

Example

This example looks for a dsize that is between 300 and 400 bytes.
dsize:300<>400;

68

Warning

dsize will fail on stream rebuilt packets, regardless of the size of the payload.

3.6.8 �ags

The �ags keyword is used to check if speci�c TCP �ag bits are present.
The following bits may be checked:
F FIN (LSB in TCP Flags byte)
S SYN
R RST
P PSH
A ACK
U URG
1 Reserved bit 1 (MSB in TCP Flags byte)
2 Reserved bit 2
0 No TCP Flags Set
The following modi�ers can be set to change the match criteria:
+ match on the speci�ed bits, plus any others
* match if any of the speci�ed bits are set
! match if the speci�ed bits are not set
To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with the
previously reserved bits 1 and 2 set, an option mask may be speci�ed. A rule could check for a �ags value
of S,12 if one wishes to �nd packets with just the syn bit, regardless of the values of the reserved bits.

Format

flags:[!|*|+]<FSRPAU120>[,<FSRPAU120>];

Example

This example checks if just the SYN and the FIN bits are set, ignoring reserved bit 1 and reserved bit 2.
alert tcp any any -> any any (flags:SF,12;)

69

3.6.9 �ow

The �ow rule option is used in conjunction with TCP stream reassembly (see Section 2.1.4). It allows rules
to only apply to certain directions of the tra�c �ow.
This allows rules to only apply to clients or servers. This allows packets related to $HOME_NET clients
viewing web pages to be distinguished from servers running the $HOME_NET.
The established keyword will replace the flags: A+ used in many places to show established TCP connec-
tions.

Options
to_client trigger on server responses from A to B
to_server trigger on client requests from A to B
from_client trigger on client requests from A to B
from_server trigger on server responses from A to B
established trigger only on established TCP connections
stateless trigger regardless of the state of the stream processor (useful for packets that are designed to

cause machines to crash)
no_stream do not trigger on rebuilt stream packets (useful for dsize and stream4)
only_stream only trigger on rebuilt stream packets

Format

flow: [(established|stateless)]
[,(to_client|to_server|from_client|from_server)]
[,(no_stream|only_stream)]

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming detected"; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffic"; \
flow:stateless;)

Figure 3.20: Flow usage examples

3.6.10 �owbits

The �owbits rule option is used in conjunction with conversation tracking from the Flow preprocessor (see
Section??). It allows rules to track states across transport protocol sessions. The �owbits option is most
useful for TCP sessions, as it allows rules to generically track the state of an application protocol.
There are seven keywords associated with �owbits, most of the options need a user de�ned name for the
speci�c state that is being checked. This string should be limited to any alphanumeric string including
periods, dashes, and underscores.

70

set sets the speci�ed state for the current �ow
unset unsets the speci�ed state for the current �ow
toggle sets the speci�ed state if the state is unset, otherwise unsets the state if the state is set
isset checks if the speci�ed state is set
isnotset checks if the speci�ed state is not set
noalert cause the rule to not generate an alert, regardless of the rest of the detection options

Format

flowbits: [set|unset|toggle|isset,reset,noalert][,<STATE_NAME>];

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming detected"; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffic"; \
flow:stateless;)

Figure 3.21: Flow usage examples

3.6.11 seq

The seq keyword is used to check for a speci�c TCP sequence number.

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.
seq:0;

3.6.12 ack

The ack keyword is used to check for a speci�c TCP acknowledge number.

Format

ack: <number>;

71

Example

This example looks for a TCP acknowledge number of 0.
ack:0;

3.6.13 window

The ack keyword is used to check for a speci�c TCP window size.

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.
window:55808;

3.6.14 itype

The itype keyword is used to check for a speci�c ICMP type value.

Format

itype:[<|>]<number>[<><number>];

Example

This example looks for an ICMP type greater than 30.
itype:>30;

3.6.15 icode

The itype keyword is used to check for a speci�c ICMP code value.

Format

icode: [<|>]<number>[<><number>];

72

Example

This example looks for an ICMP code greater than 30.
code:>30;

3.6.16 icmp_id

The itype keyword is used to check for a speci�c ICMP ID value.
This is useful because some covert channel programs use static ICMP �elds when they communicate. This
particular plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.
icmp_id:0;

3.6.17 icmp_seq

The itype keyword is used to check for a speci�c ICMP sequence value.
This is useful because some covert channel programs use static ICMP �elds when they communicate. This
particular plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_seq: <number>;

Example

This example looks for an ICMP Sequence of 0.
icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC CALL
requests.
Wildcards are valid for both version and procedure numbers by using '*';

73

Format

rpc: <application number>, [<version number>|*], [<procedure number>|*]>;

Example

The following example looks for an RPC portmap GETPORT request.
alert tcp any any -> any 111 (rpc: 100000,*,3;);

Warning

Because of the fast pattern matching engine, the RPC keyword is slower than looking for the RPC values
by using normal content matching.

3.6.19 ip_proto

The ip_proto keyword allows checks against the IP protocol header. For a list of protocols that may be
speci�ed by name, see /etc/protocols.

Format

ip_proto:[!><] <name or number>;

Example

This example looks for IGMP tra�c.
alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ip is the same as the destination IP.

Format

sameip;

Example

This example looks for any tra�c where the Source IP and the Destination IP is the same.
alert ip any any -> any any (sampeip;)

74

3.7 Post-Detection Rule Options

3.7.1 logto

The logto option tells Snort to log all packets that trigger this rule to a special output log �le. This is
especially handy for combining data from things like NMAP activity, HTTP CGI scans, etc. It should be
noted that this option does not work when Snort is in binary logging mode.

Format

logto:"filename";

3.7.2 session

The session keyword is built to extract user data from TCP Sessions. There are many cases where seeing
what users are typing in telnet, rlogin, ftp, or even web sessions is very useful.
There are two available argument keywords for the session rule option, printable or all. The printable
keyword only prints out data that the user would normally see or be able to type.
The all keyword substitutes non-printable characters with their hexadecimal equivalents.

Format

session: [printable|all];

Example

The following example logs all printable strings in a telnet packet.
log tcp any any <> any 23 (session:printable;)

Warnings

Using the session keyword can slow Snort down considerably, so it should not be used in heavy load situations.
The session keyword is best suited for post-processing binary (pcap) log �les.

3.7.3 sesp

The resp keyword is used attempt to close sessions when an alert is triggered. In snort, this is called �exible
response.
Flexible Response supports the following mechanisms for attempting to close sessions:
rst_snd send TCP-RST packets to the sending socket
rst_rcv send TCP-RST packets to the receiving socket
rst_all send TCP_RST packets in both directions

75

icmp_net send a ICMP_NET_UNREACH to the sender
icmp_host send a ICMP_HOST_UNREACH to the sender
icmp_port send a ICMP_PORT_UNREACH to the sender
icmp_all send all above ICMP packets to the sender
These options can be combined to send multiple responses to the target host.

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mechanism>]];

Warnings

This functionality is not built in by default. Use the �enable-�exresp �ag to con�gure when building Snort
to enable this functionality.
Be very careful when using Flexible Response. It is quite easy to get snort into an in�nite loop by de�ning
a rule such as:
alert tcp any any -> any any (resp:rst_all;)

It is easy to be fooled into interfering with normal network tra�c as well.

Example

The following example attempts to reset any TCP connection to port 1524.
alert tcp any any -> any 1524 (flags:S; resp:rst_all;)

3.7.4 React

The react keyword based on �exible response (Flex Resp) implements �exible reaction to tra�c that matches
a Snort rule. The basic reaction is blocking interesting sites users want to access: New York Times, slashdot,
or something really important - napster and porn sites. The Flex Resp code allows Snort to actively close
o�ending connections and/or send a visible notice to the browser (warn modi�er available soon). The notice
may include your own comment. The following arguments (basic modi�ers) are valid for this option:
• block - close connection and send the visible notice
• warn - send the visible, warning notice (will be available soon)

The basic argument may be combined with the following arguments (additional modi�ers):
• msg - include the msg option text into the blocking visible notice
• proxy: <port_nr> - use the proxy port to send the visible notice (will be available soon)

Multiple additional arguments are separated by a comma. The react keyword should be placed as the last
one in the option list.

76

Format

react: <react_basic_modifier[, react_additional_modifier]>;

alert tcp any any <> 192.168.1.0/24 80 (content: "bad.htm"; \
msg: "Not for children!"; react: block, msg;)

Figure 3.22: React Usage Example

Warnings

This functionality is not built in by default. Use the �enable-�exresp �ag to con�gure when building Snort
to enable this functionality.
Be very careful when using react. Causing a network tra�c generation loop is very easy to do with this
functionality.

3.7.5 tag

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a rule is
triggered, additional tra�c involving the source and/or destination host is tagged. Tagged tra�c is logged to
allow analysis of response codes and post-attack tra�c. tagged alerts will be sent to the same output plugins
as the original alert, but it is the responsibility of the output plugin to properly handle these special alerts.
Currently, the database output plugin, described in Section 2.4.6, does not properly handle tagged alerts.

Format

tag: <type>, <count>, <metric>, [direction]

type
session log packets in the session that set o� the rule
host log packets from the host that caused the tag to activate (uses [direction] modi�er)

count Count is speci�ed as a number of units. Units are speci�ed in the <metric> �eld.
metric

packets tag the host/session for <count> packets
seconds tag the host/session for <count> seconds

Note, any packets that generate an alert will not be tagged. For example, it may seem that the following
rule will tag the �rst 600 seconds of any packet involving 10.1.1.1.
alert tcp any any <> any 10.1.1.1 (tag:host,600,seconds,src;)

However, since the rule will �re on every packet involving 10.1.1.1, no packets will get tagged. The �owbits
option would be useful here.
alert tcp any any <> any 10.1.1.1 (flowbits:isnotset,tagged;

flowbits:set,tagged; tag:host,600,seconds,src;)

77

example

this example logs the �rst 10 seconds of any telnet session.
alert tcp any any -> any 23 (flags:s,12; tag:session,10,seconds;)

78

3.8 writing good rules

there are some general concepts to keep in mind when developing snort rules to maximize e�ciency and
speed.

3.8.1 content matching

the 2.0 detection engine changes the way snort works slightly by having the �rst phase be a setwise pattern
match. the longer a content option is, the more exact the match. rules without content (or uricontent) slow
the entire system down.
while some detection options, such as pcre and byte_test, perform detection in the payload section of the
packet, they do not use the setwise pattern matching engine. if at all possible, try and have at least one
content option if at all possible.

3.8.2 catch the vulnerability, not the exploit

try to write rules that target the vulnerability, instead of a speci�c exploit.
for example, look for a the vulnerable command with an arguement that is too large, instead of shellcode
that binds a shell.
by writing rules for the vulnerability, the rule is less vulnerable to evasion when an attacker changes the
exploit slightly.

3.8.3 catch the oddities of the protocol in the rule

many services typically send the commands in upper case letters. ftp is a good example. in ftp, to send the
username, the client sends:
user username_here

a simple rule to look for ftp root login attempts could be:
alert tcp any any -> any any 21 (content:"user root";)

while it may seem trivial to write a rule that looks for the username root, a good rule will handle all of the
odd things that the protocol might handle when accepting the user command.
for example, each of the following are accepted by most ftp servers:
user root
user root
user root
user root
user<tab>root

to handle all of the cases that the ftp server might handle, the rule needs more smarts than a simple string
match.
a good rule that looks for root login on ftp would be:

79

alert tcp any any -> any 21 (flow:to_server,established; content:"root";
pcre:"/user\s+root/i";)

there are a few important things to note in this rule:
• the rule has a �ow option, verifying this is tra�c going to the server on an enstablished session.
• the rule has a content option, looking for root, which is the longest, most unique string in the attack.
this option is added to allow snort's setwise pattern match detection engine to give snort a boost in
speed.

• the rule has a pcre option, looking for user, followed at least one space character (which includes tab),
followed by root, ignoring case.

3.8.4 optimizing rules

the content matching portion of the detection engine has recursion to handle a few evasion cases. rules that
are not properly written can cause snort to waste time duplicating checks.
the way the recursion works now is if a pattern matches, and if any of the detection options after that pattern
fail, then look for the pattern again after where it was found the previous time. repeat until the pattern is
not found again or the opt functions all succeed.
on �rst read, that may not sound like a smart idea, but it is needed. for example, take the following rule:
alert ip any any -> any any (content:"a"; content:"b"; within:1;)

this rule would look for "a", immediately followed by "b". without recursion, the payload "aab" would fail,
even though it is obvious that the payload "aab" has "a" is immediately followed by "b", because the �rst
"a" is not immediately followed by "b".
while recursion is important for detection, the recursion implementation is not very smart.
for example, the following rule options are not optimized:
content:"|13|"; dsize:1;

by looking at this rule snippit, it is obvious the rule looks for a packet with a single byte of 0x13. however,
because of recursion, a packet with 1024 bytes of 0x13 could cause 1023 too many pattern match attempts
and 1023 too many dsize checks. why? the content 0x13 would be found in the �rst byte, then the dsize
option would fail, and because of recursion, the content 0x13 would be found again starting after where the
previous 0x13 was found, once it is found, then check the dsize again, repeating until 0x13 is not found in
the payload again.
reordering the rule options so that discrete checks (such as dsize) are moved to the begining of the rule speed
up snort.
the optimized rule snipping would be:
dsize:1; content:"|13|";

a packet of 1024 bytes of 0x13 would fail immediately, as the dsize check is the �rst option checked and dsize
is a discrete check without recursion.
the following rule options are discrete and should generally be placed at the begining of any rule:

80

• dsize
• �ags
• �ow
• fragbits
• icmp_id
• icmp_seq
• icode
• id
• ipopts
• ip_proto
• itype
• seq
• session
• tos
• ttl
• ack
• window
• resp
• sameip

3.8.5 testing numerical values

The rule options byte_test and byte_jump were written to support writing rules for protocols that have
length encoded data. RPC was the protocol that spawned the requirement for these two rule options, as
RPC uses simple length based encoding for passing data.
In order to understand why byte_test and byte_jump are useful, lets go through an exploit attempt against
the sadmind service.
This is the payload of the exploit:
89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88
00 00 00 0a 00 00 00 01 00 00 00 01 00 00 00 20
40 28 3a 10 00 00 00 0a 4d 45 54 41 53 50 4c 4f @(:.....metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df@(:...e.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04
7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 04

81

7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 11
00 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f;metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00system..
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f/../../../
2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1e ../bin/sh.......
<snip>

lets break this up, describe each of the �elds, and �gure out how to write a rule to catch this exploit.
There are a few things to note with rpc:
• Numbers are written as uint32s, taking four bytes. the number 26 would show up as 0x0000001a.
• Strings are written as a uint32 specifying the length of the string, then the string, and then null bytes
to pad the length of the string to end on a 4 byte boundary. the string "bob" would show up as
0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each request
00 00 00 00 - rpc type (call = 0, response = 1)
00 00 00 02 - rpc version (2)
00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)
00 00 00 0a - rpc program version (0x0000000a = 10)
00 00 00 01 - rpc procedure (0x00000001 = 1)
00 00 00 01 - credential flavor (1 = auth_unix)
00 00 00 20 - length of auth_unix data (0x20 = 32

the next 32 bytes are the auth_unix data
40 28 3a 10 - unix timestamp (0x40283a10 = 1076378128 = feb 10 01:55:28 2004 gmt)
00 00 00 0a - length of the client machine name (0x0a = 10)
4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)
00 00 00 00 - gid of requesting user (0)
00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth_null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed to procedure 1 of sadmind.
However, we know the vulnerability is that sadmind trusts the uid coming from the client. sadmind runs
any request where the client's uid is 0 as root. as such, we have decoded enough of the request to write our
rule.
First, we need to make sure that our packet is an rpc call.

content:"|00 00 00 00|"; offset:4; depth:4;

Then, we need to make sure that our packet is a call to sadmind.

82

content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the procedure 1, the vulnerable procedure.
content:"|00 00 00 01|"; offset:16; depth:4;

Then, we need to make sure that our packet has auth_unix credentials.
content:"|00 00 00 01|"; offset:20; depth:4;

We don't care about the hostname, but we want to skip over it and check a number value after the hostname.
this is where byte_test is useful. starting at the length of the hostname, the data we have is:
00 00 00 0a 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump that many bytes forward, making sure to account
for the padding that rpc requires on strings. if we do that, we are now at:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

Which happens to be the exact location of the uid, the value we want to check.
In english, we want to read 4 bytes, 36 bytes from the beginning of the packet, and turn those 4 bytes into
an integer and jump that many bytes forward, aligning on the 4 byte boundary. To do that in a snort rule,
we use:

byte_jump:4,36,align;

Then we want to look for the uid of 0.
content:"|00 00 00 00|"; within:4;

Now that we have all the detection capabilities for our rule, lets put them all together.
content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01|"; offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

The 3rd and fourth string match are right next to each other, so we should combine those patterns. we end
up with:

83

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_jump:4,36,align;
content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a bu�er over�ow when reading the client's hostname, instead of
reading the length of the hostname and jumping that many bytes forward, we would check the length of the
hostname to make sure it is not too large.
To do that, we would read 4 bytes, starting 36 bytes into the packet, turn it into a number, and then make
sure it is not too large (lets say bigger than 200 bytes). In snort we do:

byte_test:4,>,200,36;

Our full rule would be:
content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_test:4,>,200,36;

84

Chapter 4

Making Snort Faster

4.1 MMAPed pcap

On linux, a modi�ed version of libpcap is available that implements a shared memory ring bu�er. Phil
Woods (cpw@lanl.gov) is the current maintainer of the libpcap implementation of the shared memory ring
bu�er. The shared memory ring bu�er libpcap can be downloaded from his website at http://public.
lanl.gov/cpw/.
Instead of the normal mechanism of copying the packets from kernel memory into userland memory, by using
a shared memory ring bu�er, libpcap is able to queue packets into a shared bu�er that Snort is able to read
directly. This change speeds up Snort by limiting the number of times the packet is copied before Snort gets
to perform its detection upon it.
Once snort linked against the shared memory libpcap, enabling the ring bu�er is done via setting the
enviornment variable PCAP_FRAMES. PCAP_FRAMES is the size of the ring bu�er. According to Phil,
the maximum size is 32768, as this appears to be the maximum number of iovecs the kernel can handle. By
using PCAP_FRAMES=max, libpcap will automatically use the most frames possible. On Ethernet, this
ends up being 1530 bytes per frame, for a total of around 52 Mbytes of memory for the ring bu�er alone.

85

Chapter 5

Snort Development

Currently, this chapter is here as a place holder. it will someday contain references on how to create new
detection plugins and preprocessors. end users don't really need to be reading this section. this is intended
to help developers get a basic understanding of whats going on quickly.
If you are going to be helping out with snort development, please use the head branch of cvs. we've had
problems in the past of people submitting patches only to the stable branch (since they are likely writing
this stu� for their own ids purposes). bug�xes are what goes into stable. features go into head.

5.1 submitting patches

patches to snort should be sent to the snort-devel@lists.sourceforge.net mailing list. patches should
done with the command diff -nu snort-orig snort-new.

5.2 snort data�ow

�rst, tra�c is acquired from the network link via libpcap. packets are passed through a series of decoder
routines that �rst �ll out the packet structure for link level protocols then are further decoded for things
like tcp and udp ports.
packets are then sent through the registered set of preprocessors. each preprocessor checks to see if this
packet is something it should look at.
packets are then sent through the detection engine. the detection engine checks each packet against the
various options listed in the snort rules �les. each of the keyword options is a plugin. this allows this to be
easily extensible.

5.2.1 preprocessors

for example, a tcp analysis preprocessor could simply return if the packet does not have a tcp header. it can
do this by checking
if (p->tcph==null)

return;

86

similarly, there are a lot of packet_�ags available that can be used to mark a packet as �reassembled� or
logged. check out src/decode.h for the list of pkt_* constants.

5.2.2 detection plugins

basically, look at an existing output plugin and copy it to a new item and change a few things. later, we'll
document what these few things are.

5.2.3 output plugins

generally, new output plugins should go into the barnyard project rather than the snort project. we are
currently cleaning house on the available output options.

87

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/phrack49/p49-06
[2] http://www.nmap.org
[3] http://public.pacbell.net/dedicated/cidr.html
[4] http://www.whitehats.com
[5] http://www.incident.org/snortdb
[6] http://www.pcre.org

88

